3 #include "object-store.h"
4 #include "cache-tree.h"
12 #include "commit-slab.h"
14 #include "commit-graph.h"
16 define_commit_slab(blame_suspects
, struct blame_origin
*);
17 static struct blame_suspects blame_suspects
;
19 struct blame_origin
*get_blame_suspects(struct commit
*commit
)
21 struct blame_origin
**result
;
23 result
= blame_suspects_peek(&blame_suspects
, commit
);
25 return result
? *result
: NULL
;
28 static void set_blame_suspects(struct commit
*commit
, struct blame_origin
*origin
)
30 *blame_suspects_at(&blame_suspects
, commit
) = origin
;
33 void blame_origin_decref(struct blame_origin
*o
)
35 if (o
&& --o
->refcnt
<= 0) {
36 struct blame_origin
*p
, *l
= NULL
;
38 blame_origin_decref(o
->previous
);
40 /* Should be present exactly once in commit chain */
41 for (p
= get_blame_suspects(o
->commit
); p
; l
= p
, p
= p
->next
) {
46 set_blame_suspects(o
->commit
, p
->next
);
51 die("internal error in blame_origin_decref");
56 * Given a commit and a path in it, create a new origin structure.
57 * The callers that add blame to the scoreboard should use
58 * get_origin() to obtain shared, refcounted copy instead of calling
59 * this function directly.
61 static struct blame_origin
*make_origin(struct commit
*commit
, const char *path
)
63 struct blame_origin
*o
;
64 FLEX_ALLOC_STR(o
, path
, path
);
67 o
->next
= get_blame_suspects(commit
);
68 set_blame_suspects(commit
, o
);
73 * Locate an existing origin or create a new one.
74 * This moves the origin to front position in the commit util list.
76 static struct blame_origin
*get_origin(struct commit
*commit
, const char *path
)
78 struct blame_origin
*o
, *l
;
80 for (o
= get_blame_suspects(commit
), l
= NULL
; o
; l
= o
, o
= o
->next
) {
81 if (!strcmp(o
->path
, path
)) {
85 o
->next
= get_blame_suspects(commit
);
86 set_blame_suspects(commit
, o
);
88 return blame_origin_incref(o
);
91 return make_origin(commit
, path
);
96 static void verify_working_tree_path(struct repository
*r
,
97 struct commit
*work_tree
, const char *path
)
99 struct commit_list
*parents
;
102 for (parents
= work_tree
->parents
; parents
; parents
= parents
->next
) {
103 const struct object_id
*commit_oid
= &parents
->item
->object
.oid
;
104 struct object_id blob_oid
;
107 if (!get_tree_entry(r
, commit_oid
, path
, &blob_oid
, &mode
) &&
108 oid_object_info(r
, &blob_oid
, NULL
) == OBJ_BLOB
)
112 pos
= index_name_pos(r
->index
, path
, strlen(path
));
114 ; /* path is in the index */
115 else if (-1 - pos
< r
->index
->cache_nr
&&
116 !strcmp(r
->index
->cache
[-1 - pos
]->name
, path
))
117 ; /* path is in the index, unmerged */
119 die("no such path '%s' in HEAD", path
);
122 static struct commit_list
**append_parent(struct repository
*r
,
123 struct commit_list
**tail
,
124 const struct object_id
*oid
)
126 struct commit
*parent
;
128 parent
= lookup_commit_reference(r
, oid
);
130 die("no such commit %s", oid_to_hex(oid
));
131 return &commit_list_insert(parent
, tail
)->next
;
134 static void append_merge_parents(struct repository
*r
,
135 struct commit_list
**tail
)
138 struct strbuf line
= STRBUF_INIT
;
140 merge_head
= open(git_path_merge_head(r
), O_RDONLY
);
141 if (merge_head
< 0) {
144 die("cannot open '%s' for reading",
145 git_path_merge_head(r
));
148 while (!strbuf_getwholeline_fd(&line
, merge_head
, '\n')) {
149 struct object_id oid
;
150 if (get_oid_hex(line
.buf
, &oid
))
151 die("unknown line in '%s': %s",
152 git_path_merge_head(r
), line
.buf
);
153 tail
= append_parent(r
, tail
, &oid
);
156 strbuf_release(&line
);
160 * This isn't as simple as passing sb->buf and sb->len, because we
161 * want to transfer ownership of the buffer to the commit (so we
164 static void set_commit_buffer_from_strbuf(struct repository
*r
,
169 void *buf
= strbuf_detach(sb
, &len
);
170 set_commit_buffer(r
, c
, buf
, len
);
174 * Prepare a dummy commit that represents the work tree (or staged) item.
175 * Note that annotating work tree item never works in the reverse.
177 static struct commit
*fake_working_tree_commit(struct repository
*r
,
178 struct diff_options
*opt
,
180 const char *contents_from
)
182 struct commit
*commit
;
183 struct blame_origin
*origin
;
184 struct commit_list
**parent_tail
, *parent
;
185 struct object_id head_oid
;
186 struct strbuf buf
= STRBUF_INIT
;
190 struct cache_entry
*ce
;
192 struct strbuf msg
= STRBUF_INIT
;
196 commit
= alloc_commit_node(r
);
197 commit
->object
.parsed
= 1;
199 parent_tail
= &commit
->parents
;
201 if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING
, &head_oid
, NULL
))
202 die("no such ref: HEAD");
204 parent_tail
= append_parent(r
, parent_tail
, &head_oid
);
205 append_merge_parents(r
, parent_tail
);
206 verify_working_tree_path(r
, commit
, path
);
208 origin
= make_origin(commit
, path
);
210 ident
= fmt_ident("Not Committed Yet", "not.committed.yet",
211 WANT_BLANK_IDENT
, NULL
, 0);
212 strbuf_addstr(&msg
, "tree 0000000000000000000000000000000000000000\n");
213 for (parent
= commit
->parents
; parent
; parent
= parent
->next
)
214 strbuf_addf(&msg
, "parent %s\n",
215 oid_to_hex(&parent
->item
->object
.oid
));
219 "Version of %s from %s\n",
221 (!contents_from
? path
:
222 (!strcmp(contents_from
, "-") ? "standard input" : contents_from
)));
223 set_commit_buffer_from_strbuf(r
, commit
, &msg
);
225 if (!contents_from
|| strcmp("-", contents_from
)) {
227 const char *read_from
;
229 unsigned long buf_len
;
232 if (stat(contents_from
, &st
) < 0)
233 die_errno("Cannot stat '%s'", contents_from
);
234 read_from
= contents_from
;
237 if (lstat(path
, &st
) < 0)
238 die_errno("Cannot lstat '%s'", path
);
241 mode
= canon_mode(st
.st_mode
);
243 switch (st
.st_mode
& S_IFMT
) {
245 if (opt
->flags
.allow_textconv
&&
246 textconv_object(r
, read_from
, mode
, null_oid(), 0, &buf_ptr
, &buf_len
))
247 strbuf_attach(&buf
, buf_ptr
, buf_len
, buf_len
+ 1);
248 else if (strbuf_read_file(&buf
, read_from
, st
.st_size
) != st
.st_size
)
249 die_errno("cannot open or read '%s'", read_from
);
252 if (strbuf_readlink(&buf
, read_from
, st
.st_size
) < 0)
253 die_errno("cannot readlink '%s'", read_from
);
256 die("unsupported file type %s", read_from
);
260 /* Reading from stdin */
262 if (strbuf_read(&buf
, 0, 0) < 0)
263 die_errno("failed to read from stdin");
265 convert_to_git(r
->index
, path
, buf
.buf
, buf
.len
, &buf
, 0);
266 origin
->file
.ptr
= buf
.buf
;
267 origin
->file
.size
= buf
.len
;
268 pretend_object_file(buf
.buf
, buf
.len
, OBJ_BLOB
, &origin
->blob_oid
);
271 * Read the current index, replace the path entry with
272 * origin->blob_sha1 without mucking with its mode or type
273 * bits; we are not going to write this index out -- we just
274 * want to run "diff-index --cached".
276 discard_index(r
->index
);
281 int pos
= index_name_pos(r
->index
, path
, len
);
283 mode
= r
->index
->cache
[pos
]->ce_mode
;
285 /* Let's not bother reading from HEAD tree */
286 mode
= S_IFREG
| 0644;
288 ce
= make_empty_cache_entry(r
->index
, len
);
289 oidcpy(&ce
->oid
, &origin
->blob_oid
);
290 memcpy(ce
->name
, path
, len
);
291 ce
->ce_flags
= create_ce_flags(0);
292 ce
->ce_namelen
= len
;
293 ce
->ce_mode
= create_ce_mode(mode
);
294 add_index_entry(r
->index
, ce
,
295 ADD_CACHE_OK_TO_ADD
| ADD_CACHE_OK_TO_REPLACE
);
297 cache_tree_invalidate_path(r
->index
, path
);
304 static int diff_hunks(mmfile_t
*file_a
, mmfile_t
*file_b
,
305 xdl_emit_hunk_consume_func_t hunk_func
, void *cb_data
, int xdl_opts
)
308 xdemitconf_t xecfg
= {0};
309 xdemitcb_t ecb
= {NULL
};
311 xpp
.flags
= xdl_opts
;
312 xecfg
.hunk_func
= hunk_func
;
314 return xdi_diff(file_a
, file_b
, &xpp
, &xecfg
, &ecb
);
317 static const char *get_next_line(const char *start
, const char *end
)
319 const char *nl
= memchr(start
, '\n', end
- start
);
321 return nl
? nl
+ 1 : end
;
324 static int find_line_starts(int **line_starts
, const char *buf
,
327 const char *end
= buf
+ len
;
332 for (p
= buf
; p
< end
; p
= get_next_line(p
, end
))
335 ALLOC_ARRAY(*line_starts
, num
+ 1);
336 lineno
= *line_starts
;
338 for (p
= buf
; p
< end
; p
= get_next_line(p
, end
))
346 struct fingerprint_entry
;
348 /* A fingerprint is intended to loosely represent a string, such that two
349 * fingerprints can be quickly compared to give an indication of the similarity
350 * of the strings that they represent.
352 * A fingerprint is represented as a multiset of the lower-cased byte pairs in
353 * the string that it represents. Whitespace is added at each end of the
354 * string. Whitespace pairs are ignored. Whitespace is converted to '\0'.
355 * For example, the string "Darth Radar" will be converted to the following
357 * {"\0d", "da", "da", "ar", "ar", "rt", "th", "h\0", "\0r", "ra", "ad", "r\0"}
359 * The similarity between two fingerprints is the size of the intersection of
360 * their multisets, including repeated elements. See fingerprint_similarity for
363 * For ease of implementation, the fingerprint is implemented as a map
364 * of byte pairs to the count of that byte pair in the string, instead of
365 * allowing repeated elements in a set.
369 /* As we know the maximum number of entries in advance, it's
370 * convenient to store the entries in a single array instead of having
371 * the hashmap manage the memory.
373 struct fingerprint_entry
*entries
;
376 /* A byte pair in a fingerprint. Stores the number of times the byte pair
377 * occurs in the string that the fingerprint represents.
379 struct fingerprint_entry
{
380 /* The hashmap entry - the hash represents the byte pair in its
381 * entirety so we don't need to store the byte pair separately.
383 struct hashmap_entry entry
;
384 /* The number of times the byte pair occurs in the string that the
385 * fingerprint represents.
390 /* See `struct fingerprint` for an explanation of what a fingerprint is.
391 * \param result the fingerprint of the string is stored here. This must be
392 * freed later using free_fingerprint.
393 * \param line_begin the start of the string
394 * \param line_end the end of the string
396 static void get_fingerprint(struct fingerprint
*result
,
397 const char *line_begin
,
398 const char *line_end
)
400 unsigned int hash
, c0
= 0, c1
;
402 int max_map_entry_count
= 1 + line_end
- line_begin
;
403 struct fingerprint_entry
*entry
= xcalloc(max_map_entry_count
,
404 sizeof(struct fingerprint_entry
));
405 struct fingerprint_entry
*found_entry
;
407 hashmap_init(&result
->map
, NULL
, NULL
, max_map_entry_count
);
408 result
->entries
= entry
;
409 for (p
= line_begin
; p
<= line_end
; ++p
, c0
= c1
) {
410 /* Always terminate the string with whitespace.
411 * Normalise whitespace to 0, and normalise letters to
412 * lower case. This won't work for multibyte characters but at
413 * worst will match some unrelated characters.
415 if ((p
== line_end
) || isspace(*p
))
419 hash
= c0
| (c1
<< 8);
420 /* Ignore whitespace pairs */
423 hashmap_entry_init(&entry
->entry
, hash
);
425 found_entry
= hashmap_get_entry(&result
->map
, entry
,
426 /* member name */ entry
, NULL
);
428 found_entry
->count
+= 1;
431 hashmap_add(&result
->map
, &entry
->entry
);
437 static void free_fingerprint(struct fingerprint
*f
)
439 hashmap_clear(&f
->map
);
443 /* Calculates the similarity between two fingerprints as the size of the
444 * intersection of their multisets, including repeated elements. See
445 * `struct fingerprint` for an explanation of the fingerprint representation.
446 * The similarity between "cat mat" and "father rather" is 2 because "at" is
447 * present twice in both strings while the similarity between "tim" and "mit"
450 static int fingerprint_similarity(struct fingerprint
*a
, struct fingerprint
*b
)
452 int intersection
= 0;
453 struct hashmap_iter iter
;
454 const struct fingerprint_entry
*entry_a
, *entry_b
;
456 hashmap_for_each_entry(&b
->map
, &iter
, entry_b
,
457 entry
/* member name */) {
458 entry_a
= hashmap_get_entry(&a
->map
, entry_b
, entry
, NULL
);
460 intersection
+= entry_a
->count
< entry_b
->count
?
461 entry_a
->count
: entry_b
->count
;
467 /* Subtracts byte-pair elements in B from A, modifying A in place.
469 static void fingerprint_subtract(struct fingerprint
*a
, struct fingerprint
*b
)
471 struct hashmap_iter iter
;
472 struct fingerprint_entry
*entry_a
;
473 const struct fingerprint_entry
*entry_b
;
475 hashmap_iter_init(&b
->map
, &iter
);
477 hashmap_for_each_entry(&b
->map
, &iter
, entry_b
,
478 entry
/* member name */) {
479 entry_a
= hashmap_get_entry(&a
->map
, entry_b
, entry
, NULL
);
481 if (entry_a
->count
<= entry_b
->count
)
482 hashmap_remove(&a
->map
, &entry_b
->entry
, NULL
);
484 entry_a
->count
-= entry_b
->count
;
489 /* Calculate fingerprints for a series of lines.
490 * Puts the fingerprints in the fingerprints array, which must have been
491 * preallocated to allow storing line_count elements.
493 static void get_line_fingerprints(struct fingerprint
*fingerprints
,
494 const char *content
, const int *line_starts
,
495 long first_line
, long line_count
)
498 const char *linestart
, *lineend
;
500 line_starts
+= first_line
;
501 for (i
= 0; i
< line_count
; ++i
) {
502 linestart
= content
+ line_starts
[i
];
503 lineend
= content
+ line_starts
[i
+ 1];
504 get_fingerprint(fingerprints
+ i
, linestart
, lineend
);
508 static void free_line_fingerprints(struct fingerprint
*fingerprints
,
513 for (i
= 0; i
< nr_fingerprints
; i
++)
514 free_fingerprint(&fingerprints
[i
]);
517 /* This contains the data necessary to linearly map a line number in one half
518 * of a diff chunk to the line in the other half of the diff chunk that is
519 * closest in terms of its position as a fraction of the length of the chunk.
521 struct line_number_mapping
{
522 int destination_start
, destination_length
,
523 source_start
, source_length
;
526 /* Given a line number in one range, offset and scale it to map it onto the
528 * Essentially this mapping is a simple linear equation but the calculation is
529 * more complicated to allow performing it with integer operations.
530 * Another complication is that if a line could map onto many lines in the
531 * destination range then we want to choose the line at the center of those
533 * Example: if the chunk is 2 lines long in A and 10 lines long in B then the
534 * first 5 lines in B will map onto the first line in the A chunk, while the
535 * last 5 lines will all map onto the second line in the A chunk.
536 * Example: if the chunk is 10 lines long in A and 2 lines long in B then line
537 * 0 in B will map onto line 2 in A, and line 1 in B will map onto line 7 in A.
539 static int map_line_number(int line_number
,
540 const struct line_number_mapping
*mapping
)
542 return ((line_number
- mapping
->source_start
) * 2 + 1) *
543 mapping
->destination_length
/
544 (mapping
->source_length
* 2) +
545 mapping
->destination_start
;
548 /* Get a pointer to the element storing the similarity between a line in A
551 * The similarities are stored in a 2-dimensional array. Each "row" in the
552 * array contains the similarities for a line in B. The similarities stored in
553 * a row are the similarities between the line in B and the nearby lines in A.
554 * To keep the length of each row the same, it is padded out with values of -1
555 * where the search range extends beyond the lines in A.
556 * For example, if max_search_distance_a is 2 and the two sides of a diff chunk
563 * Then the similarity array will contain:
564 * [-1, -1, am, bm, cm,
565 * -1, an, bn, cn, dn,
566 * ao, bo, co, do, eo,
567 * bp, cp, dp, ep, -1,
568 * cq, dq, eq, -1, -1]
569 * Where similarities are denoted either by -1 for invalid, or the
570 * concatenation of the two lines in the diff being compared.
572 * \param similarities array of similarities between lines in A and B
573 * \param line_a the index of the line in A, in the same frame of reference as
575 * \param local_line_b the index of the line in B, relative to the first line
576 * in B that similarities represents.
577 * \param closest_line_a the index of the line in A that is deemed to be
578 * closest to local_line_b. This must be in the same
579 * frame of reference as line_a. This value defines
580 * where similarities is centered for the line in B.
581 * \param max_search_distance_a maximum distance in lines from the closest line
582 * in A for other lines in A for which
583 * similarities may be calculated.
585 static int *get_similarity(int *similarities
,
586 int line_a
, int local_line_b
,
587 int closest_line_a
, int max_search_distance_a
)
589 assert(abs(line_a
- closest_line_a
) <=
590 max_search_distance_a
);
591 return similarities
+ line_a
- closest_line_a
+
592 max_search_distance_a
+
593 local_line_b
* (max_search_distance_a
* 2 + 1);
596 #define CERTAIN_NOTHING_MATCHES -2
597 #define CERTAINTY_NOT_CALCULATED -1
599 /* Given a line in B, first calculate its similarities with nearby lines in A
600 * if not already calculated, then identify the most similar and second most
601 * similar lines. The "certainty" is calculated based on those two
604 * \param start_a the index of the first line of the chunk in A
605 * \param length_a the length in lines of the chunk in A
606 * \param local_line_b the index of the line in B, relative to the first line
608 * \param fingerprints_a array of fingerprints for the chunk in A
609 * \param fingerprints_b array of fingerprints for the chunk in B
610 * \param similarities 2-dimensional array of similarities between lines in A
611 * and B. See get_similarity() for more details.
612 * \param certainties array of values indicating how strongly a line in B is
613 * matched with some line in A.
614 * \param second_best_result array of absolute indices in A for the second
615 * closest match of a line in B.
616 * \param result array of absolute indices in A for the closest match of a line
618 * \param max_search_distance_a maximum distance in lines from the closest line
619 * in A for other lines in A for which
620 * similarities may be calculated.
621 * \param map_line_number_in_b_to_a parameter to map_line_number().
623 static void find_best_line_matches(
628 struct fingerprint
*fingerprints_a
,
629 struct fingerprint
*fingerprints_b
,
632 int *second_best_result
,
634 const int max_search_distance_a
,
635 const struct line_number_mapping
*map_line_number_in_b_to_a
)
638 int i
, search_start
, search_end
, closest_local_line_a
, *similarity
,
639 best_similarity
= 0, second_best_similarity
= 0,
640 best_similarity_index
= 0, second_best_similarity_index
= 0;
642 /* certainty has already been calculated so no need to redo the work */
643 if (certainties
[local_line_b
] != CERTAINTY_NOT_CALCULATED
)
646 closest_local_line_a
= map_line_number(
647 local_line_b
+ start_b
, map_line_number_in_b_to_a
) - start_a
;
649 search_start
= closest_local_line_a
- max_search_distance_a
;
650 if (search_start
< 0)
653 search_end
= closest_local_line_a
+ max_search_distance_a
+ 1;
654 if (search_end
> length_a
)
655 search_end
= length_a
;
657 for (i
= search_start
; i
< search_end
; ++i
) {
658 similarity
= get_similarity(similarities
,
660 closest_local_line_a
,
661 max_search_distance_a
);
662 if (*similarity
== -1) {
663 /* This value will never exceed 10 but assert just in
666 assert(abs(i
- closest_local_line_a
) < 1000);
667 /* scale the similarity by (1000 - distance from
668 * closest line) to act as a tie break between lines
669 * that otherwise are equally similar.
671 *similarity
= fingerprint_similarity(
672 fingerprints_b
+ local_line_b
,
673 fingerprints_a
+ i
) *
674 (1000 - abs(i
- closest_local_line_a
));
676 if (*similarity
> best_similarity
) {
677 second_best_similarity
= best_similarity
;
678 second_best_similarity_index
= best_similarity_index
;
679 best_similarity
= *similarity
;
680 best_similarity_index
= i
;
681 } else if (*similarity
> second_best_similarity
) {
682 second_best_similarity
= *similarity
;
683 second_best_similarity_index
= i
;
687 if (best_similarity
== 0) {
688 /* this line definitely doesn't match with anything. Mark it
689 * with this special value so it doesn't get invalidated and
690 * won't be recalculated.
692 certainties
[local_line_b
] = CERTAIN_NOTHING_MATCHES
;
693 result
[local_line_b
] = -1;
695 /* Calculate the certainty with which this line matches.
696 * If the line matches well with two lines then that reduces
697 * the certainty. However we still want to prioritise matching
698 * a line that matches very well with two lines over matching a
699 * line that matches poorly with one line, hence doubling
701 * This means that if we have
702 * line X that matches only one line with a score of 3,
703 * line Y that matches two lines equally with a score of 5,
704 * and line Z that matches only one line with a score or 2,
705 * then the lines in order of certainty are X, Y, Z.
707 certainties
[local_line_b
] = best_similarity
* 2 -
708 second_best_similarity
;
710 /* We keep both the best and second best results to allow us to
711 * check at a later stage of the matching process whether the
712 * result needs to be invalidated.
714 result
[local_line_b
] = start_a
+ best_similarity_index
;
715 second_best_result
[local_line_b
] =
716 start_a
+ second_best_similarity_index
;
721 * This finds the line that we can match with the most confidence, and
722 * uses it as a partition. It then calls itself on the lines on either side of
723 * that partition. In this way we avoid lines appearing out of order, and
724 * retain a sensible line ordering.
725 * \param start_a index of the first line in A with which lines in B may be
727 * \param start_b index of the first line in B for which matching should be
729 * \param length_a number of lines in A with which lines in B may be compared.
730 * \param length_b number of lines in B for which matching should be done.
731 * \param fingerprints_a mutable array of fingerprints in A. The first element
732 * corresponds to the line at start_a.
733 * \param fingerprints_b array of fingerprints in B. The first element
734 * corresponds to the line at start_b.
735 * \param similarities 2-dimensional array of similarities between lines in A
736 * and B. See get_similarity() for more details.
737 * \param certainties array of values indicating how strongly a line in B is
738 * matched with some line in A.
739 * \param second_best_result array of absolute indices in A for the second
740 * closest match of a line in B.
741 * \param result array of absolute indices in A for the closest match of a line
743 * \param max_search_distance_a maximum distance in lines from the closest line
744 * in A for other lines in A for which
745 * similarities may be calculated.
746 * \param max_search_distance_b an upper bound on the greatest possible
747 * distance between lines in B such that they will
748 * both be compared with the same line in A
749 * according to max_search_distance_a.
750 * \param map_line_number_in_b_to_a parameter to map_line_number().
752 static void fuzzy_find_matching_lines_recurse(
753 int start_a
, int start_b
,
754 int length_a
, int length_b
,
755 struct fingerprint
*fingerprints_a
,
756 struct fingerprint
*fingerprints_b
,
759 int *second_best_result
,
761 int max_search_distance_a
,
762 int max_search_distance_b
,
763 const struct line_number_mapping
*map_line_number_in_b_to_a
)
765 int i
, invalidate_min
, invalidate_max
, offset_b
,
766 second_half_start_a
, second_half_start_b
,
767 second_half_length_a
, second_half_length_b
,
768 most_certain_line_a
, most_certain_local_line_b
= -1,
769 most_certain_line_certainty
= -1,
770 closest_local_line_a
;
772 for (i
= 0; i
< length_b
; ++i
) {
773 find_best_line_matches(start_a
,
783 max_search_distance_a
,
784 map_line_number_in_b_to_a
);
786 if (certainties
[i
] > most_certain_line_certainty
) {
787 most_certain_line_certainty
= certainties
[i
];
788 most_certain_local_line_b
= i
;
793 if (most_certain_local_line_b
== -1)
796 most_certain_line_a
= result
[most_certain_local_line_b
];
799 * Subtract the most certain line's fingerprint in B from the matched
800 * fingerprint in A. This means that other lines in B can't also match
801 * the same parts of the line in A.
803 fingerprint_subtract(fingerprints_a
+ most_certain_line_a
- start_a
,
804 fingerprints_b
+ most_certain_local_line_b
);
806 /* Invalidate results that may be affected by the choice of most
809 invalidate_min
= most_certain_local_line_b
- max_search_distance_b
;
810 invalidate_max
= most_certain_local_line_b
+ max_search_distance_b
+ 1;
811 if (invalidate_min
< 0)
813 if (invalidate_max
> length_b
)
814 invalidate_max
= length_b
;
816 /* As the fingerprint in A has changed, discard previously calculated
817 * similarity values with that fingerprint.
819 for (i
= invalidate_min
; i
< invalidate_max
; ++i
) {
820 closest_local_line_a
= map_line_number(
821 i
+ start_b
, map_line_number_in_b_to_a
) - start_a
;
823 /* Check that the lines in A and B are close enough that there
824 * is a similarity value for them.
826 if (abs(most_certain_line_a
- start_a
- closest_local_line_a
) >
827 max_search_distance_a
) {
831 *get_similarity(similarities
, most_certain_line_a
- start_a
,
832 i
, closest_local_line_a
,
833 max_search_distance_a
) = -1;
836 /* More invalidating of results that may be affected by the choice of
838 * Discard the matches for lines in B that are currently matched with a
839 * line in A such that their ordering contradicts the ordering imposed
840 * by the choice of most certain line.
842 for (i
= most_certain_local_line_b
- 1; i
>= invalidate_min
; --i
) {
843 /* In this loop we discard results for lines in B that are
844 * before most-certain-line-B but are matched with a line in A
845 * that is after most-certain-line-A.
847 if (certainties
[i
] >= 0 &&
848 (result
[i
] >= most_certain_line_a
||
849 second_best_result
[i
] >= most_certain_line_a
)) {
850 certainties
[i
] = CERTAINTY_NOT_CALCULATED
;
853 for (i
= most_certain_local_line_b
+ 1; i
< invalidate_max
; ++i
) {
854 /* In this loop we discard results for lines in B that are
855 * after most-certain-line-B but are matched with a line in A
856 * that is before most-certain-line-A.
858 if (certainties
[i
] >= 0 &&
859 (result
[i
] <= most_certain_line_a
||
860 second_best_result
[i
] <= most_certain_line_a
)) {
861 certainties
[i
] = CERTAINTY_NOT_CALCULATED
;
865 /* Repeat the matching process for lines before the most certain line.
867 if (most_certain_local_line_b
> 0) {
868 fuzzy_find_matching_lines_recurse(
870 most_certain_line_a
+ 1 - start_a
,
871 most_certain_local_line_b
,
872 fingerprints_a
, fingerprints_b
, similarities
,
873 certainties
, second_best_result
, result
,
874 max_search_distance_a
,
875 max_search_distance_b
,
876 map_line_number_in_b_to_a
);
878 /* Repeat the matching process for lines after the most certain line.
880 if (most_certain_local_line_b
+ 1 < length_b
) {
881 second_half_start_a
= most_certain_line_a
;
882 offset_b
= most_certain_local_line_b
+ 1;
883 second_half_start_b
= start_b
+ offset_b
;
884 second_half_length_a
=
885 length_a
+ start_a
- second_half_start_a
;
886 second_half_length_b
=
887 length_b
+ start_b
- second_half_start_b
;
888 fuzzy_find_matching_lines_recurse(
889 second_half_start_a
, second_half_start_b
,
890 second_half_length_a
, second_half_length_b
,
891 fingerprints_a
+ second_half_start_a
- start_a
,
892 fingerprints_b
+ offset_b
,
894 offset_b
* (max_search_distance_a
* 2 + 1),
895 certainties
+ offset_b
,
896 second_best_result
+ offset_b
, result
+ offset_b
,
897 max_search_distance_a
,
898 max_search_distance_b
,
899 map_line_number_in_b_to_a
);
903 /* Find the lines in the parent line range that most closely match the lines in
904 * the target line range. This is accomplished by matching fingerprints in each
905 * blame_origin, and choosing the best matches that preserve the line ordering.
906 * See struct fingerprint for details of fingerprint matching, and
907 * fuzzy_find_matching_lines_recurse for details of preserving line ordering.
909 * The performance is believed to be O(n log n) in the typical case and O(n^2)
910 * in a pathological case, where n is the number of lines in the target range.
912 static int *fuzzy_find_matching_lines(struct blame_origin
*parent
,
913 struct blame_origin
*target
,
914 int tlno
, int parent_slno
, int same
,
917 /* We use the terminology "A" for the left hand side of the diff AKA
918 * parent, and "B" for the right hand side of the diff AKA target. */
919 int start_a
= parent_slno
;
920 int length_a
= parent_len
;
922 int length_b
= same
- tlno
;
924 struct line_number_mapping map_line_number_in_b_to_a
= {
925 start_a
, length_a
, start_b
, length_b
928 struct fingerprint
*fingerprints_a
= parent
->fingerprints
;
929 struct fingerprint
*fingerprints_b
= target
->fingerprints
;
931 int i
, *result
, *second_best_result
,
932 *certainties
, *similarities
, similarity_count
;
935 * max_search_distance_a means that given a line in B, compare it to
936 * the line in A that is closest to its position, and the lines in A
937 * that are no greater than max_search_distance_a lines away from the
940 * max_search_distance_b is an upper bound on the greatest possible
941 * distance between lines in B such that they will both be compared
942 * with the same line in A according to max_search_distance_a.
944 int max_search_distance_a
= 10, max_search_distance_b
;
949 if (max_search_distance_a
>= length_a
)
950 max_search_distance_a
= length_a
? length_a
- 1 : 0;
952 max_search_distance_b
= ((2 * max_search_distance_a
+ 1) * length_b
955 CALLOC_ARRAY(result
, length_b
);
956 CALLOC_ARRAY(second_best_result
, length_b
);
957 CALLOC_ARRAY(certainties
, length_b
);
959 /* See get_similarity() for details of similarities. */
960 similarity_count
= length_b
* (max_search_distance_a
* 2 + 1);
961 CALLOC_ARRAY(similarities
, similarity_count
);
963 for (i
= 0; i
< length_b
; ++i
) {
965 second_best_result
[i
] = -1;
966 certainties
[i
] = CERTAINTY_NOT_CALCULATED
;
969 for (i
= 0; i
< similarity_count
; ++i
)
970 similarities
[i
] = -1;
972 fuzzy_find_matching_lines_recurse(start_a
, start_b
,
974 fingerprints_a
+ start_a
,
975 fingerprints_b
+ start_b
,
980 max_search_distance_a
,
981 max_search_distance_b
,
982 &map_line_number_in_b_to_a
);
986 free(second_best_result
);
991 static void fill_origin_fingerprints(struct blame_origin
*o
)
997 o
->num_lines
= find_line_starts(&line_starts
, o
->file
.ptr
,
999 CALLOC_ARRAY(o
->fingerprints
, o
->num_lines
);
1000 get_line_fingerprints(o
->fingerprints
, o
->file
.ptr
, line_starts
,
1005 static void drop_origin_fingerprints(struct blame_origin
*o
)
1007 if (o
->fingerprints
) {
1008 free_line_fingerprints(o
->fingerprints
, o
->num_lines
);
1010 FREE_AND_NULL(o
->fingerprints
);
1015 * Given an origin, prepare mmfile_t structure to be used by the
1018 static void fill_origin_blob(struct diff_options
*opt
,
1019 struct blame_origin
*o
, mmfile_t
*file
,
1020 int *num_read_blob
, int fill_fingerprints
)
1023 enum object_type type
;
1024 unsigned long file_size
;
1027 if (opt
->flags
.allow_textconv
&&
1028 textconv_object(opt
->repo
, o
->path
, o
->mode
,
1029 &o
->blob_oid
, 1, &file
->ptr
, &file_size
))
1032 file
->ptr
= read_object_file(&o
->blob_oid
, &type
,
1034 file
->size
= file_size
;
1037 die("Cannot read blob %s for path %s",
1038 oid_to_hex(&o
->blob_oid
),
1044 if (fill_fingerprints
)
1045 fill_origin_fingerprints(o
);
1048 static void drop_origin_blob(struct blame_origin
*o
)
1050 FREE_AND_NULL(o
->file
.ptr
);
1051 drop_origin_fingerprints(o
);
1055 * Any merge of blames happens on lists of blames that arrived via
1056 * different parents in a single suspect. In this case, we want to
1057 * sort according to the suspect line numbers as opposed to the final
1058 * image line numbers. The function body is somewhat longish because
1059 * it avoids unnecessary writes.
1062 static struct blame_entry
*blame_merge(struct blame_entry
*list1
,
1063 struct blame_entry
*list2
)
1065 struct blame_entry
*p1
= list1
, *p2
= list2
,
1073 if (p1
->s_lno
<= p2
->s_lno
) {
1076 if (!(p1
= *tail
)) {
1080 } while (p1
->s_lno
<= p2
->s_lno
);
1086 if (!(p2
= *tail
)) {
1090 } while (p1
->s_lno
> p2
->s_lno
);
1094 if (!(p1
= *tail
)) {
1098 } while (p1
->s_lno
<= p2
->s_lno
);
1102 DEFINE_LIST_SORT(static, sort_blame_entries
, struct blame_entry
, next
);
1105 * Final image line numbers are all different, so we don't need a
1106 * three-way comparison here.
1109 static int compare_blame_final(const struct blame_entry
*e1
,
1110 const struct blame_entry
*e2
)
1112 return e1
->lno
> e2
->lno
? 1 : -1;
1115 static int compare_blame_suspect(const struct blame_entry
*s1
,
1116 const struct blame_entry
*s2
)
1119 * to allow for collating suspects, we sort according to the
1120 * respective pointer value as the primary sorting criterion.
1121 * The actual relation is pretty unimportant as long as it
1122 * establishes a total order. Comparing as integers gives us
1125 if (s1
->suspect
!= s2
->suspect
)
1126 return (intptr_t)s1
->suspect
> (intptr_t)s2
->suspect
? 1 : -1;
1127 if (s1
->s_lno
== s2
->s_lno
)
1129 return s1
->s_lno
> s2
->s_lno
? 1 : -1;
1132 void blame_sort_final(struct blame_scoreboard
*sb
)
1134 sort_blame_entries(&sb
->ent
, compare_blame_final
);
1137 static int compare_commits_by_reverse_commit_date(const void *a
,
1141 return -compare_commits_by_commit_date(a
, b
, c
);
1145 * For debugging -- origin is refcounted, and this asserts that
1146 * we do not underflow.
1148 static void sanity_check_refcnt(struct blame_scoreboard
*sb
)
1151 struct blame_entry
*ent
;
1153 for (ent
= sb
->ent
; ent
; ent
= ent
->next
) {
1154 /* Nobody should have zero or negative refcnt */
1155 if (ent
->suspect
->refcnt
<= 0) {
1156 fprintf(stderr
, "%s in %s has negative refcnt %d\n",
1158 oid_to_hex(&ent
->suspect
->commit
->object
.oid
),
1159 ent
->suspect
->refcnt
);
1164 sb
->on_sanity_fail(sb
, baa
);
1168 * If two blame entries that are next to each other came from
1169 * contiguous lines in the same origin (i.e. <commit, path> pair),
1170 * merge them together.
1172 void blame_coalesce(struct blame_scoreboard
*sb
)
1174 struct blame_entry
*ent
, *next
;
1176 for (ent
= sb
->ent
; ent
&& (next
= ent
->next
); ent
= next
) {
1177 if (ent
->suspect
== next
->suspect
&&
1178 ent
->s_lno
+ ent
->num_lines
== next
->s_lno
&&
1179 ent
->lno
+ ent
->num_lines
== next
->lno
&&
1180 ent
->ignored
== next
->ignored
&&
1181 ent
->unblamable
== next
->unblamable
) {
1182 ent
->num_lines
+= next
->num_lines
;
1183 ent
->next
= next
->next
;
1184 blame_origin_decref(next
->suspect
);
1187 next
= ent
; /* again */
1191 if (sb
->debug
) /* sanity */
1192 sanity_check_refcnt(sb
);
1196 * Merge the given sorted list of blames into a preexisting origin.
1197 * If there were no previous blames to that commit, it is entered into
1198 * the commit priority queue of the score board.
1201 static void queue_blames(struct blame_scoreboard
*sb
, struct blame_origin
*porigin
,
1202 struct blame_entry
*sorted
)
1204 if (porigin
->suspects
)
1205 porigin
->suspects
= blame_merge(porigin
->suspects
, sorted
);
1207 struct blame_origin
*o
;
1208 for (o
= get_blame_suspects(porigin
->commit
); o
; o
= o
->next
) {
1210 porigin
->suspects
= sorted
;
1214 porigin
->suspects
= sorted
;
1215 prio_queue_put(&sb
->commits
, porigin
->commit
);
1220 * Fill the blob_sha1 field of an origin if it hasn't, so that later
1221 * call to fill_origin_blob() can use it to locate the data. blob_sha1
1222 * for an origin is also used to pass the blame for the entire file to
1223 * the parent to detect the case where a child's blob is identical to
1224 * that of its parent's.
1226 * This also fills origin->mode for corresponding tree path.
1228 static int fill_blob_sha1_and_mode(struct repository
*r
,
1229 struct blame_origin
*origin
)
1231 if (!is_null_oid(&origin
->blob_oid
))
1233 if (get_tree_entry(r
, &origin
->commit
->object
.oid
, origin
->path
, &origin
->blob_oid
, &origin
->mode
))
1235 if (oid_object_info(r
, &origin
->blob_oid
, NULL
) != OBJ_BLOB
)
1239 oidclr(&origin
->blob_oid
);
1240 origin
->mode
= S_IFINVALID
;
1244 struct blame_bloom_data
{
1246 * Changed-path Bloom filter keys. These can help prevent
1247 * computing diffs against first parents, but we need to
1248 * expand the list as code is moved or files are renamed.
1250 struct bloom_filter_settings
*settings
;
1251 struct bloom_key
**keys
;
1256 static int bloom_count_queries
= 0;
1257 static int bloom_count_no
= 0;
1258 static int maybe_changed_path(struct repository
*r
,
1259 struct blame_origin
*origin
,
1260 struct blame_bloom_data
*bd
)
1263 struct bloom_filter
*filter
;
1268 if (commit_graph_generation(origin
->commit
) == GENERATION_NUMBER_INFINITY
)
1271 filter
= get_bloom_filter(r
, origin
->commit
);
1276 bloom_count_queries
++;
1277 for (i
= 0; i
< bd
->nr
; i
++) {
1278 if (bloom_filter_contains(filter
,
1288 static void add_bloom_key(struct blame_bloom_data
*bd
,
1294 if (bd
->nr
>= bd
->alloc
) {
1296 REALLOC_ARRAY(bd
->keys
, bd
->alloc
);
1299 bd
->keys
[bd
->nr
] = xmalloc(sizeof(struct bloom_key
));
1300 fill_bloom_key(path
, strlen(path
), bd
->keys
[bd
->nr
], bd
->settings
);
1305 * We have an origin -- check if the same path exists in the
1306 * parent and return an origin structure to represent it.
1308 static struct blame_origin
*find_origin(struct repository
*r
,
1309 struct commit
*parent
,
1310 struct blame_origin
*origin
,
1311 struct blame_bloom_data
*bd
)
1313 struct blame_origin
*porigin
;
1314 struct diff_options diff_opts
;
1315 const char *paths
[2];
1317 /* First check any existing origins */
1318 for (porigin
= get_blame_suspects(parent
); porigin
; porigin
= porigin
->next
)
1319 if (!strcmp(porigin
->path
, origin
->path
)) {
1321 * The same path between origin and its parent
1322 * without renaming -- the most common case.
1324 return blame_origin_incref (porigin
);
1327 /* See if the origin->path is different between parent
1328 * and origin first. Most of the time they are the
1329 * same and diff-tree is fairly efficient about this.
1331 repo_diff_setup(r
, &diff_opts
);
1332 diff_opts
.flags
.recursive
= 1;
1333 diff_opts
.detect_rename
= 0;
1334 diff_opts
.output_format
= DIFF_FORMAT_NO_OUTPUT
;
1335 paths
[0] = origin
->path
;
1338 parse_pathspec(&diff_opts
.pathspec
,
1339 PATHSPEC_ALL_MAGIC
& ~PATHSPEC_LITERAL
,
1340 PATHSPEC_LITERAL_PATH
, "", paths
);
1341 diff_setup_done(&diff_opts
);
1343 if (is_null_oid(&origin
->commit
->object
.oid
))
1344 do_diff_cache(get_commit_tree_oid(parent
), &diff_opts
);
1346 int compute_diff
= 1;
1347 if (origin
->commit
->parents
&&
1348 oideq(&parent
->object
.oid
,
1349 &origin
->commit
->parents
->item
->object
.oid
))
1350 compute_diff
= maybe_changed_path(r
, origin
, bd
);
1353 diff_tree_oid(get_commit_tree_oid(parent
),
1354 get_commit_tree_oid(origin
->commit
),
1357 diffcore_std(&diff_opts
);
1359 if (!diff_queued_diff
.nr
) {
1360 /* The path is the same as parent */
1361 porigin
= get_origin(parent
, origin
->path
);
1362 oidcpy(&porigin
->blob_oid
, &origin
->blob_oid
);
1363 porigin
->mode
= origin
->mode
;
1366 * Since origin->path is a pathspec, if the parent
1367 * commit had it as a directory, we will see a whole
1368 * bunch of deletion of files in the directory that we
1369 * do not care about.
1372 struct diff_filepair
*p
= NULL
;
1373 for (i
= 0; i
< diff_queued_diff
.nr
; i
++) {
1375 p
= diff_queued_diff
.queue
[i
];
1376 name
= p
->one
->path
? p
->one
->path
: p
->two
->path
;
1377 if (!strcmp(name
, origin
->path
))
1381 die("internal error in blame::find_origin");
1382 switch (p
->status
) {
1384 die("internal error in blame::find_origin (%c)",
1387 porigin
= get_origin(parent
, origin
->path
);
1388 oidcpy(&porigin
->blob_oid
, &p
->one
->oid
);
1389 porigin
->mode
= p
->one
->mode
;
1393 /* Did not exist in parent, or type changed */
1397 diff_flush(&diff_opts
);
1402 * We have an origin -- find the path that corresponds to it in its
1403 * parent and return an origin structure to represent it.
1405 static struct blame_origin
*find_rename(struct repository
*r
,
1406 struct commit
*parent
,
1407 struct blame_origin
*origin
,
1408 struct blame_bloom_data
*bd
)
1410 struct blame_origin
*porigin
= NULL
;
1411 struct diff_options diff_opts
;
1414 repo_diff_setup(r
, &diff_opts
);
1415 diff_opts
.flags
.recursive
= 1;
1416 diff_opts
.detect_rename
= DIFF_DETECT_RENAME
;
1417 diff_opts
.output_format
= DIFF_FORMAT_NO_OUTPUT
;
1418 diff_opts
.single_follow
= origin
->path
;
1419 diff_setup_done(&diff_opts
);
1421 if (is_null_oid(&origin
->commit
->object
.oid
))
1422 do_diff_cache(get_commit_tree_oid(parent
), &diff_opts
);
1424 diff_tree_oid(get_commit_tree_oid(parent
),
1425 get_commit_tree_oid(origin
->commit
),
1427 diffcore_std(&diff_opts
);
1429 for (i
= 0; i
< diff_queued_diff
.nr
; i
++) {
1430 struct diff_filepair
*p
= diff_queued_diff
.queue
[i
];
1431 if ((p
->status
== 'R' || p
->status
== 'C') &&
1432 !strcmp(p
->two
->path
, origin
->path
)) {
1433 add_bloom_key(bd
, p
->one
->path
);
1434 porigin
= get_origin(parent
, p
->one
->path
);
1435 oidcpy(&porigin
->blob_oid
, &p
->one
->oid
);
1436 porigin
->mode
= p
->one
->mode
;
1440 diff_flush(&diff_opts
);
1445 * Append a new blame entry to a given output queue.
1447 static void add_blame_entry(struct blame_entry
***queue
,
1448 const struct blame_entry
*src
)
1450 struct blame_entry
*e
= xmalloc(sizeof(*e
));
1451 memcpy(e
, src
, sizeof(*e
));
1452 blame_origin_incref(e
->suspect
);
1460 * src typically is on-stack; we want to copy the information in it to
1461 * a malloced blame_entry that gets added to the given queue. The
1462 * origin of dst loses a refcnt.
1464 static void dup_entry(struct blame_entry
***queue
,
1465 struct blame_entry
*dst
, struct blame_entry
*src
)
1467 blame_origin_incref(src
->suspect
);
1468 blame_origin_decref(dst
->suspect
);
1469 memcpy(dst
, src
, sizeof(*src
));
1470 dst
->next
= **queue
;
1472 *queue
= &dst
->next
;
1475 const char *blame_nth_line(struct blame_scoreboard
*sb
, long lno
)
1477 return sb
->final_buf
+ sb
->lineno
[lno
];
1481 * It is known that lines between tlno to same came from parent, and e
1482 * has an overlap with that range. it also is known that parent's
1483 * line plno corresponds to e's line tlno.
1489 * <------------------>
1491 * Split e into potentially three parts; before this chunk, the chunk
1492 * to be blamed for the parent, and after that portion.
1494 static void split_overlap(struct blame_entry
*split
,
1495 struct blame_entry
*e
,
1496 int tlno
, int plno
, int same
,
1497 struct blame_origin
*parent
)
1501 memset(split
, 0, sizeof(struct blame_entry
[3]));
1503 for (i
= 0; i
< 3; i
++) {
1504 split
[i
].ignored
= e
->ignored
;
1505 split
[i
].unblamable
= e
->unblamable
;
1508 if (e
->s_lno
< tlno
) {
1509 /* there is a pre-chunk part not blamed on parent */
1510 split
[0].suspect
= blame_origin_incref(e
->suspect
);
1511 split
[0].lno
= e
->lno
;
1512 split
[0].s_lno
= e
->s_lno
;
1513 split
[0].num_lines
= tlno
- e
->s_lno
;
1514 split
[1].lno
= e
->lno
+ tlno
- e
->s_lno
;
1515 split
[1].s_lno
= plno
;
1518 split
[1].lno
= e
->lno
;
1519 split
[1].s_lno
= plno
+ (e
->s_lno
- tlno
);
1522 if (same
< e
->s_lno
+ e
->num_lines
) {
1523 /* there is a post-chunk part not blamed on parent */
1524 split
[2].suspect
= blame_origin_incref(e
->suspect
);
1525 split
[2].lno
= e
->lno
+ (same
- e
->s_lno
);
1526 split
[2].s_lno
= e
->s_lno
+ (same
- e
->s_lno
);
1527 split
[2].num_lines
= e
->s_lno
+ e
->num_lines
- same
;
1528 chunk_end_lno
= split
[2].lno
;
1531 chunk_end_lno
= e
->lno
+ e
->num_lines
;
1532 split
[1].num_lines
= chunk_end_lno
- split
[1].lno
;
1535 * if it turns out there is nothing to blame the parent for,
1536 * forget about the splitting. !split[1].suspect signals this.
1538 if (split
[1].num_lines
< 1)
1540 split
[1].suspect
= blame_origin_incref(parent
);
1544 * split_overlap() divided an existing blame e into up to three parts
1545 * in split. Any assigned blame is moved to queue to
1546 * reflect the split.
1548 static void split_blame(struct blame_entry
***blamed
,
1549 struct blame_entry
***unblamed
,
1550 struct blame_entry
*split
,
1551 struct blame_entry
*e
)
1553 if (split
[0].suspect
&& split
[2].suspect
) {
1554 /* The first part (reuse storage for the existing entry e) */
1555 dup_entry(unblamed
, e
, &split
[0]);
1557 /* The last part -- me */
1558 add_blame_entry(unblamed
, &split
[2]);
1560 /* ... and the middle part -- parent */
1561 add_blame_entry(blamed
, &split
[1]);
1563 else if (!split
[0].suspect
&& !split
[2].suspect
)
1565 * The parent covers the entire area; reuse storage for
1566 * e and replace it with the parent.
1568 dup_entry(blamed
, e
, &split
[1]);
1569 else if (split
[0].suspect
) {
1570 /* me and then parent */
1571 dup_entry(unblamed
, e
, &split
[0]);
1572 add_blame_entry(blamed
, &split
[1]);
1575 /* parent and then me */
1576 dup_entry(blamed
, e
, &split
[1]);
1577 add_blame_entry(unblamed
, &split
[2]);
1582 * After splitting the blame, the origins used by the
1583 * on-stack blame_entry should lose one refcnt each.
1585 static void decref_split(struct blame_entry
*split
)
1589 for (i
= 0; i
< 3; i
++)
1590 blame_origin_decref(split
[i
].suspect
);
1594 * reverse_blame reverses the list given in head, appending tail.
1595 * That allows us to build lists in reverse order, then reverse them
1596 * afterwards. This can be faster than building the list in proper
1597 * order right away. The reason is that building in proper order
1598 * requires writing a link in the _previous_ element, while building
1599 * in reverse order just requires placing the list head into the
1600 * _current_ element.
1603 static struct blame_entry
*reverse_blame(struct blame_entry
*head
,
1604 struct blame_entry
*tail
)
1607 struct blame_entry
*next
= head
->next
;
1616 * Splits a blame entry into two entries at 'len' lines. The original 'e'
1617 * consists of len lines, i.e. [e->lno, e->lno + len), and the second part,
1618 * which is returned, consists of the remainder: [e->lno + len, e->lno +
1619 * e->num_lines). The caller needs to sort out the reference counting for the
1620 * new entry's suspect.
1622 static struct blame_entry
*split_blame_at(struct blame_entry
*e
, int len
,
1623 struct blame_origin
*new_suspect
)
1625 struct blame_entry
*n
= xcalloc(1, sizeof(struct blame_entry
));
1627 n
->suspect
= new_suspect
;
1628 n
->ignored
= e
->ignored
;
1629 n
->unblamable
= e
->unblamable
;
1630 n
->lno
= e
->lno
+ len
;
1631 n
->s_lno
= e
->s_lno
+ len
;
1632 n
->num_lines
= e
->num_lines
- len
;
1638 struct blame_line_tracker
{
1643 static int are_lines_adjacent(struct blame_line_tracker
*first
,
1644 struct blame_line_tracker
*second
)
1646 return first
->is_parent
== second
->is_parent
&&
1647 first
->s_lno
+ 1 == second
->s_lno
;
1650 static int scan_parent_range(struct fingerprint
*p_fps
,
1651 struct fingerprint
*t_fps
, int t_idx
,
1652 int from
, int nr_lines
)
1655 #define FINGERPRINT_FILE_THRESHOLD 10
1656 int best_sim_val
= FINGERPRINT_FILE_THRESHOLD
;
1657 int best_sim_idx
= -1;
1659 for (p_idx
= from
; p_idx
< from
+ nr_lines
; p_idx
++) {
1660 sim
= fingerprint_similarity(&t_fps
[t_idx
], &p_fps
[p_idx
]);
1661 if (sim
< best_sim_val
)
1663 /* Break ties with the closest-to-target line number */
1664 if (sim
== best_sim_val
&& best_sim_idx
!= -1 &&
1665 abs(best_sim_idx
- t_idx
) < abs(p_idx
- t_idx
))
1668 best_sim_idx
= p_idx
;
1670 return best_sim_idx
;
1674 * The first pass checks the blame entry (from the target) against the parent's
1675 * diff chunk. If that fails for a line, the second pass tries to match that
1676 * line to any part of parent file. That catches cases where a change was
1677 * broken into two chunks by 'context.'
1679 static void guess_line_blames(struct blame_origin
*parent
,
1680 struct blame_origin
*target
,
1681 int tlno
, int offset
, int same
, int parent_len
,
1682 struct blame_line_tracker
*line_blames
)
1684 int i
, best_idx
, target_idx
;
1685 int parent_slno
= tlno
+ offset
;
1688 fuzzy_matches
= fuzzy_find_matching_lines(parent
, target
,
1689 tlno
, parent_slno
, same
,
1691 for (i
= 0; i
< same
- tlno
; i
++) {
1692 target_idx
= tlno
+ i
;
1693 if (fuzzy_matches
&& fuzzy_matches
[i
] >= 0) {
1694 best_idx
= fuzzy_matches
[i
];
1696 best_idx
= scan_parent_range(parent
->fingerprints
,
1697 target
->fingerprints
,
1701 if (best_idx
>= 0) {
1702 line_blames
[i
].is_parent
= 1;
1703 line_blames
[i
].s_lno
= best_idx
;
1705 line_blames
[i
].is_parent
= 0;
1706 line_blames
[i
].s_lno
= target_idx
;
1709 free(fuzzy_matches
);
1713 * This decides which parts of a blame entry go to the parent (added to the
1714 * ignoredp list) and which stay with the target (added to the diffp list). The
1715 * actual decision was made in a separate heuristic function, and those answers
1716 * for the lines in 'e' are in line_blames. This consumes e, essentially
1717 * putting it on a list.
1719 * Note that the blame entries on the ignoredp list are not necessarily sorted
1720 * with respect to the parent's line numbers yet.
1722 static void ignore_blame_entry(struct blame_entry
*e
,
1723 struct blame_origin
*parent
,
1724 struct blame_entry
**diffp
,
1725 struct blame_entry
**ignoredp
,
1726 struct blame_line_tracker
*line_blames
)
1728 int entry_len
, nr_lines
, i
;
1731 * We carve new entries off the front of e. Each entry comes from a
1732 * contiguous chunk of lines: adjacent lines from the same origin
1733 * (either the parent or the target).
1736 nr_lines
= e
->num_lines
; /* e changes in the loop */
1737 for (i
= 0; i
< nr_lines
; i
++) {
1738 struct blame_entry
*next
= NULL
;
1741 * We are often adjacent to the next line - only split the blame
1742 * entry when we have to.
1744 if (i
+ 1 < nr_lines
) {
1745 if (are_lines_adjacent(&line_blames
[i
],
1746 &line_blames
[i
+ 1])) {
1750 next
= split_blame_at(e
, entry_len
,
1751 blame_origin_incref(e
->suspect
));
1753 if (line_blames
[i
].is_parent
) {
1755 blame_origin_decref(e
->suspect
);
1756 e
->suspect
= blame_origin_incref(parent
);
1757 e
->s_lno
= line_blames
[i
- entry_len
+ 1].s_lno
;
1758 e
->next
= *ignoredp
;
1762 /* e->s_lno is already in the target's address space. */
1766 assert(e
->num_lines
== entry_len
);
1774 * Process one hunk from the patch between the current suspect for
1775 * blame_entry e and its parent. This first blames any unfinished
1776 * entries before the chunk (which is where target and parent start
1777 * differing) on the parent, and then splits blame entries at the
1778 * start and at the end of the difference region. Since use of -M and
1779 * -C options may lead to overlapping/duplicate source line number
1780 * ranges, all we can rely on from sorting/merging is the order of the
1781 * first suspect line number.
1783 * tlno: line number in the target where this chunk begins
1784 * same: line number in the target where this chunk ends
1785 * offset: add to tlno to get the chunk starting point in the parent
1786 * parent_len: number of lines in the parent chunk
1788 static void blame_chunk(struct blame_entry
***dstq
, struct blame_entry
***srcq
,
1789 int tlno
, int offset
, int same
, int parent_len
,
1790 struct blame_origin
*parent
,
1791 struct blame_origin
*target
, int ignore_diffs
)
1793 struct blame_entry
*e
= **srcq
;
1794 struct blame_entry
*samep
= NULL
, *diffp
= NULL
, *ignoredp
= NULL
;
1795 struct blame_line_tracker
*line_blames
= NULL
;
1797 while (e
&& e
->s_lno
< tlno
) {
1798 struct blame_entry
*next
= e
->next
;
1800 * current record starts before differing portion. If
1801 * it reaches into it, we need to split it up and
1802 * examine the second part separately.
1804 if (e
->s_lno
+ e
->num_lines
> tlno
) {
1805 /* Move second half to a new record */
1806 struct blame_entry
*n
;
1808 n
= split_blame_at(e
, tlno
- e
->s_lno
, e
->suspect
);
1809 /* Push new record to diffp */
1813 blame_origin_decref(e
->suspect
);
1814 /* Pass blame for everything before the differing
1815 * chunk to the parent */
1816 e
->suspect
= blame_origin_incref(parent
);
1823 * As we don't know how much of a common stretch after this
1824 * diff will occur, the currently blamed parts are all that we
1825 * can assign to the parent for now.
1829 **dstq
= reverse_blame(samep
, **dstq
);
1830 *dstq
= &samep
->next
;
1833 * Prepend the split off portions: everything after e starts
1834 * after the blameable portion.
1836 e
= reverse_blame(diffp
, e
);
1839 * Now retain records on the target while parts are different
1845 if (ignore_diffs
&& same
- tlno
> 0) {
1846 CALLOC_ARRAY(line_blames
, same
- tlno
);
1847 guess_line_blames(parent
, target
, tlno
, offset
, same
,
1848 parent_len
, line_blames
);
1851 while (e
&& e
->s_lno
< same
) {
1852 struct blame_entry
*next
= e
->next
;
1855 * If current record extends into sameness, need to split.
1857 if (e
->s_lno
+ e
->num_lines
> same
) {
1859 * Move second half to a new record to be
1860 * processed by later chunks
1862 struct blame_entry
*n
;
1864 n
= split_blame_at(e
, same
- e
->s_lno
,
1865 blame_origin_incref(e
->suspect
));
1866 /* Push new record to samep */
1871 ignore_blame_entry(e
, parent
, &diffp
, &ignoredp
,
1872 line_blames
+ e
->s_lno
- tlno
);
1882 * Note ignoredp is not sorted yet, and thus neither is dstq.
1883 * That list must be sorted before we queue_blames(). We defer
1884 * sorting until after all diff hunks are processed, so that
1885 * guess_line_blames() can pick *any* line in the parent. The
1886 * slight drawback is that we end up sorting all blame entries
1887 * passed to the parent, including those that are unrelated to
1888 * changes made by the ignored commit.
1890 **dstq
= reverse_blame(ignoredp
, **dstq
);
1891 *dstq
= &ignoredp
->next
;
1893 **srcq
= reverse_blame(diffp
, reverse_blame(samep
, e
));
1894 /* Move across elements that are in the unblamable portion */
1896 *srcq
= &diffp
->next
;
1899 struct blame_chunk_cb_data
{
1900 struct blame_origin
*parent
;
1901 struct blame_origin
*target
;
1904 struct blame_entry
**dstq
;
1905 struct blame_entry
**srcq
;
1908 /* diff chunks are from parent to target */
1909 static int blame_chunk_cb(long start_a
, long count_a
,
1910 long start_b
, long count_b
, void *data
)
1912 struct blame_chunk_cb_data
*d
= data
;
1913 if (start_a
- start_b
!= d
->offset
)
1914 die("internal error in blame::blame_chunk_cb");
1915 blame_chunk(&d
->dstq
, &d
->srcq
, start_b
, start_a
- start_b
,
1916 start_b
+ count_b
, count_a
, d
->parent
, d
->target
,
1918 d
->offset
= start_a
+ count_a
- (start_b
+ count_b
);
1923 * We are looking at the origin 'target' and aiming to pass blame
1924 * for the lines it is suspected to its parent. Run diff to find
1925 * which lines came from parent and pass blame for them.
1927 static void pass_blame_to_parent(struct blame_scoreboard
*sb
,
1928 struct blame_origin
*target
,
1929 struct blame_origin
*parent
, int ignore_diffs
)
1931 mmfile_t file_p
, file_o
;
1932 struct blame_chunk_cb_data d
;
1933 struct blame_entry
*newdest
= NULL
;
1935 if (!target
->suspects
)
1936 return; /* nothing remains for this target */
1941 d
.ignore_diffs
= ignore_diffs
;
1942 d
.dstq
= &newdest
; d
.srcq
= &target
->suspects
;
1944 fill_origin_blob(&sb
->revs
->diffopt
, parent
, &file_p
,
1945 &sb
->num_read_blob
, ignore_diffs
);
1946 fill_origin_blob(&sb
->revs
->diffopt
, target
, &file_o
,
1947 &sb
->num_read_blob
, ignore_diffs
);
1948 sb
->num_get_patch
++;
1950 if (diff_hunks(&file_p
, &file_o
, blame_chunk_cb
, &d
, sb
->xdl_opts
))
1951 die("unable to generate diff (%s -> %s)",
1952 oid_to_hex(&parent
->commit
->object
.oid
),
1953 oid_to_hex(&target
->commit
->object
.oid
));
1954 /* The rest are the same as the parent */
1955 blame_chunk(&d
.dstq
, &d
.srcq
, INT_MAX
, d
.offset
, INT_MAX
, 0,
1959 sort_blame_entries(&newdest
, compare_blame_suspect
);
1960 queue_blames(sb
, parent
, newdest
);
1966 * The lines in blame_entry after splitting blames many times can become
1967 * very small and trivial, and at some point it becomes pointless to
1968 * blame the parents. E.g. "\t\t}\n\t}\n\n" appears everywhere in any
1969 * ordinary C program, and it is not worth to say it was copied from
1970 * totally unrelated file in the parent.
1972 * Compute how trivial the lines in the blame_entry are.
1974 unsigned blame_entry_score(struct blame_scoreboard
*sb
, struct blame_entry
*e
)
1977 const char *cp
, *ep
;
1983 cp
= blame_nth_line(sb
, e
->lno
);
1984 ep
= blame_nth_line(sb
, e
->lno
+ e
->num_lines
);
1986 unsigned ch
= *((unsigned char *)cp
);
1996 * best_so_far[] and potential[] are both a split of an existing blame_entry
1997 * that passes blame to the parent. Maintain best_so_far the best split so
1998 * far, by comparing potential and best_so_far and copying potential into
1999 * bst_so_far as needed.
2001 static void copy_split_if_better(struct blame_scoreboard
*sb
,
2002 struct blame_entry
*best_so_far
,
2003 struct blame_entry
*potential
)
2007 if (!potential
[1].suspect
)
2009 if (best_so_far
[1].suspect
) {
2010 if (blame_entry_score(sb
, &potential
[1]) <
2011 blame_entry_score(sb
, &best_so_far
[1]))
2015 for (i
= 0; i
< 3; i
++)
2016 blame_origin_incref(potential
[i
].suspect
);
2017 decref_split(best_so_far
);
2018 memcpy(best_so_far
, potential
, sizeof(struct blame_entry
[3]));
2022 * We are looking at a part of the final image represented by
2023 * ent (tlno and same are offset by ent->s_lno).
2024 * tlno is where we are looking at in the final image.
2025 * up to (but not including) same match preimage.
2026 * plno is where we are looking at in the preimage.
2028 * <-------------- final image ---------------------->
2031 * <---------preimage----->
2034 * All line numbers are 0-based.
2036 static void handle_split(struct blame_scoreboard
*sb
,
2037 struct blame_entry
*ent
,
2038 int tlno
, int plno
, int same
,
2039 struct blame_origin
*parent
,
2040 struct blame_entry
*split
)
2042 if (ent
->num_lines
<= tlno
)
2045 struct blame_entry potential
[3];
2048 split_overlap(potential
, ent
, tlno
, plno
, same
, parent
);
2049 copy_split_if_better(sb
, split
, potential
);
2050 decref_split(potential
);
2054 struct handle_split_cb_data
{
2055 struct blame_scoreboard
*sb
;
2056 struct blame_entry
*ent
;
2057 struct blame_origin
*parent
;
2058 struct blame_entry
*split
;
2063 static int handle_split_cb(long start_a
, long count_a
,
2064 long start_b
, long count_b
, void *data
)
2066 struct handle_split_cb_data
*d
= data
;
2067 handle_split(d
->sb
, d
->ent
, d
->tlno
, d
->plno
, start_b
, d
->parent
,
2069 d
->plno
= start_a
+ count_a
;
2070 d
->tlno
= start_b
+ count_b
;
2075 * Find the lines from parent that are the same as ent so that
2076 * we can pass blames to it. file_p has the blob contents for
2079 static void find_copy_in_blob(struct blame_scoreboard
*sb
,
2080 struct blame_entry
*ent
,
2081 struct blame_origin
*parent
,
2082 struct blame_entry
*split
,
2087 struct handle_split_cb_data d
;
2089 memset(&d
, 0, sizeof(d
));
2090 d
.sb
= sb
; d
.ent
= ent
; d
.parent
= parent
; d
.split
= split
;
2092 * Prepare mmfile that contains only the lines in ent.
2094 cp
= blame_nth_line(sb
, ent
->lno
);
2095 file_o
.ptr
= (char *) cp
;
2096 file_o
.size
= blame_nth_line(sb
, ent
->lno
+ ent
->num_lines
) - cp
;
2099 * file_o is a part of final image we are annotating.
2100 * file_p partially may match that image.
2102 memset(split
, 0, sizeof(struct blame_entry
[3]));
2103 if (diff_hunks(file_p
, &file_o
, handle_split_cb
, &d
, sb
->xdl_opts
))
2104 die("unable to generate diff (%s)",
2105 oid_to_hex(&parent
->commit
->object
.oid
));
2106 /* remainder, if any, all match the preimage */
2107 handle_split(sb
, ent
, d
.tlno
, d
.plno
, ent
->num_lines
, parent
, split
);
2110 /* Move all blame entries from list *source that have a score smaller
2111 * than score_min to the front of list *small.
2112 * Returns a pointer to the link pointing to the old head of the small list.
2115 static struct blame_entry
**filter_small(struct blame_scoreboard
*sb
,
2116 struct blame_entry
**small
,
2117 struct blame_entry
**source
,
2120 struct blame_entry
*p
= *source
;
2121 struct blame_entry
*oldsmall
= *small
;
2123 if (blame_entry_score(sb
, p
) <= score_min
) {
2139 * See if lines currently target is suspected for can be attributed to
2142 static void find_move_in_parent(struct blame_scoreboard
*sb
,
2143 struct blame_entry
***blamed
,
2144 struct blame_entry
**toosmall
,
2145 struct blame_origin
*target
,
2146 struct blame_origin
*parent
)
2148 struct blame_entry
*e
, split
[3];
2149 struct blame_entry
*unblamed
= target
->suspects
;
2150 struct blame_entry
*leftover
= NULL
;
2154 return; /* nothing remains for this target */
2156 fill_origin_blob(&sb
->revs
->diffopt
, parent
, &file_p
,
2157 &sb
->num_read_blob
, 0);
2161 /* At each iteration, unblamed has a NULL-terminated list of
2162 * entries that have not yet been tested for blame. leftover
2163 * contains the reversed list of entries that have been tested
2164 * without being assignable to the parent.
2167 struct blame_entry
**unblamedtail
= &unblamed
;
2168 struct blame_entry
*next
;
2169 for (e
= unblamed
; e
; e
= next
) {
2171 find_copy_in_blob(sb
, e
, parent
, split
, &file_p
);
2172 if (split
[1].suspect
&&
2173 sb
->move_score
< blame_entry_score(sb
, &split
[1])) {
2174 split_blame(blamed
, &unblamedtail
, split
, e
);
2179 decref_split(split
);
2181 *unblamedtail
= NULL
;
2182 toosmall
= filter_small(sb
, toosmall
, &unblamed
, sb
->move_score
);
2184 target
->suspects
= reverse_blame(leftover
, NULL
);
2188 struct blame_entry
*ent
;
2189 struct blame_entry split
[3];
2193 * Count the number of entries the target is suspected for,
2194 * and prepare a list of entry and the best split.
2196 static struct blame_list
*setup_blame_list(struct blame_entry
*unblamed
,
2199 struct blame_entry
*e
;
2201 struct blame_list
*blame_list
= NULL
;
2203 for (e
= unblamed
, num_ents
= 0; e
; e
= e
->next
)
2206 CALLOC_ARRAY(blame_list
, num_ents
);
2207 for (e
= unblamed
, i
= 0; e
; e
= e
->next
)
2208 blame_list
[i
++].ent
= e
;
2210 *num_ents_p
= num_ents
;
2215 * For lines target is suspected for, see if we can find code movement
2216 * across file boundary from the parent commit. porigin is the path
2217 * in the parent we already tried.
2219 static void find_copy_in_parent(struct blame_scoreboard
*sb
,
2220 struct blame_entry
***blamed
,
2221 struct blame_entry
**toosmall
,
2222 struct blame_origin
*target
,
2223 struct commit
*parent
,
2224 struct blame_origin
*porigin
,
2227 struct diff_options diff_opts
;
2229 struct blame_list
*blame_list
;
2231 struct blame_entry
*unblamed
= target
->suspects
;
2232 struct blame_entry
*leftover
= NULL
;
2235 return; /* nothing remains for this target */
2237 repo_diff_setup(sb
->repo
, &diff_opts
);
2238 diff_opts
.flags
.recursive
= 1;
2239 diff_opts
.output_format
= DIFF_FORMAT_NO_OUTPUT
;
2241 diff_setup_done(&diff_opts
);
2243 /* Try "find copies harder" on new path if requested;
2244 * we do not want to use diffcore_rename() actually to
2245 * match things up; find_copies_harder is set only to
2246 * force diff_tree_oid() to feed all filepairs to diff_queue,
2247 * and this code needs to be after diff_setup_done(), which
2248 * usually makes find-copies-harder imply copy detection.
2250 if ((opt
& PICKAXE_BLAME_COPY_HARDEST
)
2251 || ((opt
& PICKAXE_BLAME_COPY_HARDER
)
2252 && (!porigin
|| strcmp(target
->path
, porigin
->path
))))
2253 diff_opts
.flags
.find_copies_harder
= 1;
2255 if (is_null_oid(&target
->commit
->object
.oid
))
2256 do_diff_cache(get_commit_tree_oid(parent
), &diff_opts
);
2258 diff_tree_oid(get_commit_tree_oid(parent
),
2259 get_commit_tree_oid(target
->commit
),
2262 if (!diff_opts
.flags
.find_copies_harder
)
2263 diffcore_std(&diff_opts
);
2266 struct blame_entry
**unblamedtail
= &unblamed
;
2267 blame_list
= setup_blame_list(unblamed
, &num_ents
);
2269 for (i
= 0; i
< diff_queued_diff
.nr
; i
++) {
2270 struct diff_filepair
*p
= diff_queued_diff
.queue
[i
];
2271 struct blame_origin
*norigin
;
2273 struct blame_entry potential
[3];
2275 if (!DIFF_FILE_VALID(p
->one
))
2276 continue; /* does not exist in parent */
2277 if (S_ISGITLINK(p
->one
->mode
))
2278 continue; /* ignore git links */
2279 if (porigin
&& !strcmp(p
->one
->path
, porigin
->path
))
2280 /* find_move already dealt with this path */
2283 norigin
= get_origin(parent
, p
->one
->path
);
2284 oidcpy(&norigin
->blob_oid
, &p
->one
->oid
);
2285 norigin
->mode
= p
->one
->mode
;
2286 fill_origin_blob(&sb
->revs
->diffopt
, norigin
, &file_p
,
2287 &sb
->num_read_blob
, 0);
2291 for (j
= 0; j
< num_ents
; j
++) {
2292 find_copy_in_blob(sb
, blame_list
[j
].ent
,
2293 norigin
, potential
, &file_p
);
2294 copy_split_if_better(sb
, blame_list
[j
].split
,
2296 decref_split(potential
);
2298 blame_origin_decref(norigin
);
2301 for (j
= 0; j
< num_ents
; j
++) {
2302 struct blame_entry
*split
= blame_list
[j
].split
;
2303 if (split
[1].suspect
&&
2304 sb
->copy_score
< blame_entry_score(sb
, &split
[1])) {
2305 split_blame(blamed
, &unblamedtail
, split
,
2308 blame_list
[j
].ent
->next
= leftover
;
2309 leftover
= blame_list
[j
].ent
;
2311 decref_split(split
);
2314 *unblamedtail
= NULL
;
2315 toosmall
= filter_small(sb
, toosmall
, &unblamed
, sb
->copy_score
);
2317 target
->suspects
= reverse_blame(leftover
, NULL
);
2318 diff_flush(&diff_opts
);
2322 * The blobs of origin and porigin exactly match, so everything
2323 * origin is suspected for can be blamed on the parent.
2325 static void pass_whole_blame(struct blame_scoreboard
*sb
,
2326 struct blame_origin
*origin
, struct blame_origin
*porigin
)
2328 struct blame_entry
*e
, *suspects
;
2330 if (!porigin
->file
.ptr
&& origin
->file
.ptr
) {
2331 /* Steal its file */
2332 porigin
->file
= origin
->file
;
2333 origin
->file
.ptr
= NULL
;
2335 suspects
= origin
->suspects
;
2336 origin
->suspects
= NULL
;
2337 for (e
= suspects
; e
; e
= e
->next
) {
2338 blame_origin_incref(porigin
);
2339 blame_origin_decref(e
->suspect
);
2340 e
->suspect
= porigin
;
2342 queue_blames(sb
, porigin
, suspects
);
2346 * We pass blame from the current commit to its parents. We keep saying
2347 * "parent" (and "porigin"), but what we mean is to find scapegoat to
2348 * exonerate ourselves.
2350 static struct commit_list
*first_scapegoat(struct rev_info
*revs
, struct commit
*commit
,
2354 if (revs
->first_parent_only
&&
2356 commit
->parents
->next
) {
2357 free_commit_list(commit
->parents
->next
);
2358 commit
->parents
->next
= NULL
;
2360 return commit
->parents
;
2362 return lookup_decoration(&revs
->children
, &commit
->object
);
2365 static int num_scapegoats(struct rev_info
*revs
, struct commit
*commit
, int reverse
)
2367 struct commit_list
*l
= first_scapegoat(revs
, commit
, reverse
);
2368 return commit_list_count(l
);
2371 /* Distribute collected unsorted blames to the respected sorted lists
2372 * in the various origins.
2374 static void distribute_blame(struct blame_scoreboard
*sb
, struct blame_entry
*blamed
)
2376 sort_blame_entries(&blamed
, compare_blame_suspect
);
2379 struct blame_origin
*porigin
= blamed
->suspect
;
2380 struct blame_entry
*suspects
= NULL
;
2382 struct blame_entry
*next
= blamed
->next
;
2383 blamed
->next
= suspects
;
2386 } while (blamed
&& blamed
->suspect
== porigin
);
2387 suspects
= reverse_blame(suspects
, NULL
);
2388 queue_blames(sb
, porigin
, suspects
);
2394 typedef struct blame_origin
*(*blame_find_alg
)(struct repository
*,
2396 struct blame_origin
*,
2397 struct blame_bloom_data
*);
2399 static void pass_blame(struct blame_scoreboard
*sb
, struct blame_origin
*origin
, int opt
)
2401 struct rev_info
*revs
= sb
->revs
;
2402 int i
, pass
, num_sg
;
2403 struct commit
*commit
= origin
->commit
;
2404 struct commit_list
*sg
;
2405 struct blame_origin
*sg_buf
[MAXSG
];
2406 struct blame_origin
*porigin
, **sg_origin
= sg_buf
;
2407 struct blame_entry
*toosmall
= NULL
;
2408 struct blame_entry
*blames
, **blametail
= &blames
;
2410 num_sg
= num_scapegoats(revs
, commit
, sb
->reverse
);
2413 else if (num_sg
< ARRAY_SIZE(sg_buf
))
2414 memset(sg_buf
, 0, sizeof(sg_buf
));
2416 CALLOC_ARRAY(sg_origin
, num_sg
);
2419 * The first pass looks for unrenamed path to optimize for
2420 * common cases, then we look for renames in the second pass.
2422 for (pass
= 0; pass
< 2 - sb
->no_whole_file_rename
; pass
++) {
2423 blame_find_alg find
= pass
? find_rename
: find_origin
;
2425 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2427 sg
= sg
->next
, i
++) {
2428 struct commit
*p
= sg
->item
;
2433 if (parse_commit(p
))
2435 porigin
= find(sb
->repo
, p
, origin
, sb
->bloom_data
);
2438 if (oideq(&porigin
->blob_oid
, &origin
->blob_oid
)) {
2439 pass_whole_blame(sb
, origin
, porigin
);
2440 blame_origin_decref(porigin
);
2443 for (j
= same
= 0; j
< i
; j
++)
2445 oideq(&sg_origin
[j
]->blob_oid
, &porigin
->blob_oid
)) {
2450 sg_origin
[i
] = porigin
;
2452 blame_origin_decref(porigin
);
2457 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2459 sg
= sg
->next
, i
++) {
2460 struct blame_origin
*porigin
= sg_origin
[i
];
2463 if (!origin
->previous
) {
2464 blame_origin_incref(porigin
);
2465 origin
->previous
= porigin
;
2467 pass_blame_to_parent(sb
, origin
, porigin
, 0);
2468 if (!origin
->suspects
)
2473 * Pass remaining suspects for ignored commits to their parents.
2475 if (oidset_contains(&sb
->ignore_list
, &commit
->object
.oid
)) {
2476 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2478 sg
= sg
->next
, i
++) {
2479 struct blame_origin
*porigin
= sg_origin
[i
];
2483 pass_blame_to_parent(sb
, origin
, porigin
, 1);
2485 * Preemptively drop porigin so we can refresh the
2486 * fingerprints if we use the parent again, which can
2487 * occur if you ignore back-to-back commits.
2489 drop_origin_blob(porigin
);
2490 if (!origin
->suspects
)
2496 * Optionally find moves in parents' files.
2498 if (opt
& PICKAXE_BLAME_MOVE
) {
2499 filter_small(sb
, &toosmall
, &origin
->suspects
, sb
->move_score
);
2500 if (origin
->suspects
) {
2501 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2503 sg
= sg
->next
, i
++) {
2504 struct blame_origin
*porigin
= sg_origin
[i
];
2507 find_move_in_parent(sb
, &blametail
, &toosmall
, origin
, porigin
);
2508 if (!origin
->suspects
)
2515 * Optionally find copies from parents' files.
2517 if (opt
& PICKAXE_BLAME_COPY
) {
2518 if (sb
->copy_score
> sb
->move_score
)
2519 filter_small(sb
, &toosmall
, &origin
->suspects
, sb
->copy_score
);
2520 else if (sb
->copy_score
< sb
->move_score
) {
2521 origin
->suspects
= blame_merge(origin
->suspects
, toosmall
);
2523 filter_small(sb
, &toosmall
, &origin
->suspects
, sb
->copy_score
);
2525 if (!origin
->suspects
)
2528 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2530 sg
= sg
->next
, i
++) {
2531 struct blame_origin
*porigin
= sg_origin
[i
];
2532 find_copy_in_parent(sb
, &blametail
, &toosmall
,
2533 origin
, sg
->item
, porigin
, opt
);
2534 if (!origin
->suspects
)
2541 distribute_blame(sb
, blames
);
2543 * prepend toosmall to origin->suspects
2545 * There is no point in sorting: this ends up on a big
2546 * unsorted list in the caller anyway.
2549 struct blame_entry
**tail
= &toosmall
;
2551 tail
= &(*tail
)->next
;
2552 *tail
= origin
->suspects
;
2553 origin
->suspects
= toosmall
;
2555 for (i
= 0; i
< num_sg
; i
++) {
2557 if (!sg_origin
[i
]->suspects
)
2558 drop_origin_blob(sg_origin
[i
]);
2559 blame_origin_decref(sg_origin
[i
]);
2562 drop_origin_blob(origin
);
2563 if (sg_buf
!= sg_origin
)
2568 * The main loop -- while we have blobs with lines whose true origin
2569 * is still unknown, pick one blob, and allow its lines to pass blames
2570 * to its parents. */
2571 void assign_blame(struct blame_scoreboard
*sb
, int opt
)
2573 struct rev_info
*revs
= sb
->revs
;
2574 struct commit
*commit
= prio_queue_get(&sb
->commits
);
2577 struct blame_entry
*ent
;
2578 struct blame_origin
*suspect
= get_blame_suspects(commit
);
2580 /* find one suspect to break down */
2581 while (suspect
&& !suspect
->suspects
)
2582 suspect
= suspect
->next
;
2585 commit
= prio_queue_get(&sb
->commits
);
2589 assert(commit
== suspect
->commit
);
2592 * We will use this suspect later in the loop,
2593 * so hold onto it in the meantime.
2595 blame_origin_incref(suspect
);
2596 parse_commit(commit
);
2598 (!(commit
->object
.flags
& UNINTERESTING
) &&
2599 !(revs
->max_age
!= -1 && commit
->date
< revs
->max_age
)))
2600 pass_blame(sb
, suspect
, opt
);
2602 commit
->object
.flags
|= UNINTERESTING
;
2603 if (commit
->object
.parsed
)
2604 mark_parents_uninteresting(sb
->revs
, commit
);
2606 /* treat root commit as boundary */
2607 if (!commit
->parents
&& !sb
->show_root
)
2608 commit
->object
.flags
|= UNINTERESTING
;
2610 /* Take responsibility for the remaining entries */
2611 ent
= suspect
->suspects
;
2613 suspect
->guilty
= 1;
2615 struct blame_entry
*next
= ent
->next
;
2616 if (sb
->found_guilty_entry
)
2617 sb
->found_guilty_entry(ent
, sb
->found_guilty_entry_data
);
2622 ent
->next
= sb
->ent
;
2623 sb
->ent
= suspect
->suspects
;
2624 suspect
->suspects
= NULL
;
2628 blame_origin_decref(suspect
);
2630 if (sb
->debug
) /* sanity */
2631 sanity_check_refcnt(sb
);
2636 * To allow quick access to the contents of nth line in the
2637 * final image, prepare an index in the scoreboard.
2639 static int prepare_lines(struct blame_scoreboard
*sb
)
2641 sb
->num_lines
= find_line_starts(&sb
->lineno
, sb
->final_buf
,
2642 sb
->final_buf_size
);
2643 return sb
->num_lines
;
2646 static struct commit
*find_single_final(struct rev_info
*revs
,
2647 const char **name_p
)
2650 struct commit
*found
= NULL
;
2651 const char *name
= NULL
;
2653 for (i
= 0; i
< revs
->pending
.nr
; i
++) {
2654 struct object
*obj
= revs
->pending
.objects
[i
].item
;
2655 if (obj
->flags
& UNINTERESTING
)
2657 obj
= deref_tag(revs
->repo
, obj
, NULL
, 0);
2658 if (!obj
|| obj
->type
!= OBJ_COMMIT
)
2659 die("Non commit %s?", revs
->pending
.objects
[i
].name
);
2661 die("More than one commit to dig from %s and %s?",
2662 revs
->pending
.objects
[i
].name
, name
);
2663 found
= (struct commit
*)obj
;
2664 name
= revs
->pending
.objects
[i
].name
;
2667 *name_p
= xstrdup_or_null(name
);
2671 static struct commit
*dwim_reverse_initial(struct rev_info
*revs
,
2672 const char **name_p
)
2675 * DWIM "git blame --reverse ONE -- PATH" as
2676 * "git blame --reverse ONE..HEAD -- PATH" but only do so
2677 * when it makes sense.
2680 struct commit
*head_commit
;
2681 struct object_id head_oid
;
2683 if (revs
->pending
.nr
!= 1)
2686 /* Is that sole rev a committish? */
2687 obj
= revs
->pending
.objects
[0].item
;
2688 obj
= deref_tag(revs
->repo
, obj
, NULL
, 0);
2689 if (!obj
|| obj
->type
!= OBJ_COMMIT
)
2692 /* Do we have HEAD? */
2693 if (!resolve_ref_unsafe("HEAD", RESOLVE_REF_READING
, &head_oid
, NULL
))
2695 head_commit
= lookup_commit_reference_gently(revs
->repo
,
2700 /* Turn "ONE" into "ONE..HEAD" then */
2701 obj
->flags
|= UNINTERESTING
;
2702 add_pending_object(revs
, &head_commit
->object
, "HEAD");
2705 *name_p
= revs
->pending
.objects
[0].name
;
2706 return (struct commit
*)obj
;
2709 static struct commit
*find_single_initial(struct rev_info
*revs
,
2710 const char **name_p
)
2713 struct commit
*found
= NULL
;
2714 const char *name
= NULL
;
2717 * There must be one and only one negative commit, and it must be
2720 for (i
= 0; i
< revs
->pending
.nr
; i
++) {
2721 struct object
*obj
= revs
->pending
.objects
[i
].item
;
2722 if (!(obj
->flags
& UNINTERESTING
))
2724 obj
= deref_tag(revs
->repo
, obj
, NULL
, 0);
2725 if (!obj
|| obj
->type
!= OBJ_COMMIT
)
2726 die("Non commit %s?", revs
->pending
.objects
[i
].name
);
2728 die("More than one commit to dig up from, %s and %s?",
2729 revs
->pending
.objects
[i
].name
, name
);
2730 found
= (struct commit
*) obj
;
2731 name
= revs
->pending
.objects
[i
].name
;
2735 found
= dwim_reverse_initial(revs
, &name
);
2737 die("No commit to dig up from?");
2740 *name_p
= xstrdup(name
);
2744 void init_scoreboard(struct blame_scoreboard
*sb
)
2746 memset(sb
, 0, sizeof(struct blame_scoreboard
));
2747 sb
->move_score
= BLAME_DEFAULT_MOVE_SCORE
;
2748 sb
->copy_score
= BLAME_DEFAULT_COPY_SCORE
;
2751 void setup_scoreboard(struct blame_scoreboard
*sb
,
2752 struct blame_origin
**orig
)
2754 const char *final_commit_name
= NULL
;
2755 struct blame_origin
*o
;
2756 struct commit
*final_commit
= NULL
;
2757 enum object_type type
;
2759 init_blame_suspects(&blame_suspects
);
2761 if (sb
->reverse
&& sb
->contents_from
)
2762 die(_("--contents and --reverse do not blend well."));
2765 BUG("repo is NULL");
2768 sb
->final
= find_single_final(sb
->revs
, &final_commit_name
);
2769 sb
->commits
.compare
= compare_commits_by_commit_date
;
2771 sb
->final
= find_single_initial(sb
->revs
, &final_commit_name
);
2772 sb
->commits
.compare
= compare_commits_by_reverse_commit_date
;
2775 if (sb
->final
&& sb
->contents_from
)
2776 die(_("cannot use --contents with final commit object name"));
2778 if (sb
->reverse
&& sb
->revs
->first_parent_only
)
2779 sb
->revs
->children
.name
= NULL
;
2783 * "--not A B -- path" without anything positive;
2784 * do not default to HEAD, but use the working tree
2788 sb
->final
= fake_working_tree_commit(sb
->repo
,
2790 sb
->path
, sb
->contents_from
);
2791 add_pending_object(sb
->revs
, &(sb
->final
->object
), ":");
2794 if (sb
->reverse
&& sb
->revs
->first_parent_only
) {
2795 final_commit
= find_single_final(sb
->revs
, NULL
);
2797 die(_("--reverse and --first-parent together require specified latest commit"));
2801 * If we have bottom, this will mark the ancestors of the
2802 * bottom commits we would reach while traversing as
2805 if (prepare_revision_walk(sb
->revs
))
2806 die(_("revision walk setup failed"));
2808 if (sb
->reverse
&& sb
->revs
->first_parent_only
) {
2809 struct commit
*c
= final_commit
;
2811 sb
->revs
->children
.name
= "children";
2812 while (c
->parents
&&
2813 !oideq(&c
->object
.oid
, &sb
->final
->object
.oid
)) {
2814 struct commit_list
*l
= xcalloc(1, sizeof(*l
));
2817 if (add_decoration(&sb
->revs
->children
,
2818 &c
->parents
->item
->object
, l
))
2819 BUG("not unique item in first-parent chain");
2820 c
= c
->parents
->item
;
2823 if (!oideq(&c
->object
.oid
, &sb
->final
->object
.oid
))
2824 die(_("--reverse --first-parent together require range along first-parent chain"));
2827 if (is_null_oid(&sb
->final
->object
.oid
)) {
2828 o
= get_blame_suspects(sb
->final
);
2829 sb
->final_buf
= xmemdupz(o
->file
.ptr
, o
->file
.size
);
2830 sb
->final_buf_size
= o
->file
.size
;
2833 o
= get_origin(sb
->final
, sb
->path
);
2834 if (fill_blob_sha1_and_mode(sb
->repo
, o
))
2835 die(_("no such path %s in %s"), sb
->path
, final_commit_name
);
2837 if (sb
->revs
->diffopt
.flags
.allow_textconv
&&
2838 textconv_object(sb
->repo
, sb
->path
, o
->mode
, &o
->blob_oid
, 1, (char **) &sb
->final_buf
,
2839 &sb
->final_buf_size
))
2842 sb
->final_buf
= read_object_file(&o
->blob_oid
, &type
,
2843 &sb
->final_buf_size
);
2846 die(_("cannot read blob %s for path %s"),
2847 oid_to_hex(&o
->blob_oid
),
2850 sb
->num_read_blob
++;
2856 free((char *)final_commit_name
);
2861 struct blame_entry
*blame_entry_prepend(struct blame_entry
*head
,
2862 long start
, long end
,
2863 struct blame_origin
*o
)
2865 struct blame_entry
*new_head
= xcalloc(1, sizeof(struct blame_entry
));
2866 new_head
->lno
= start
;
2867 new_head
->num_lines
= end
- start
;
2868 new_head
->suspect
= o
;
2869 new_head
->s_lno
= start
;
2870 new_head
->next
= head
;
2871 blame_origin_incref(o
);
2875 void setup_blame_bloom_data(struct blame_scoreboard
*sb
)
2877 struct blame_bloom_data
*bd
;
2878 struct bloom_filter_settings
*bs
;
2880 if (!sb
->repo
->objects
->commit_graph
)
2883 bs
= get_bloom_filter_settings(sb
->repo
);
2887 bd
= xmalloc(sizeof(struct blame_bloom_data
));
2893 ALLOC_ARRAY(bd
->keys
, bd
->alloc
);
2895 add_bloom_key(bd
, sb
->path
);
2897 sb
->bloom_data
= bd
;
2900 void cleanup_scoreboard(struct blame_scoreboard
*sb
)
2902 if (sb
->bloom_data
) {
2904 for (i
= 0; i
< sb
->bloom_data
->nr
; i
++) {
2905 free(sb
->bloom_data
->keys
[i
]->hashes
);
2906 free(sb
->bloom_data
->keys
[i
]);
2908 free(sb
->bloom_data
->keys
);
2909 FREE_AND_NULL(sb
->bloom_data
);
2911 trace2_data_intmax("blame", sb
->repo
,
2912 "bloom/queries", bloom_count_queries
);
2913 trace2_data_intmax("blame", sb
->repo
,
2914 "bloom/response-no", bloom_count_no
);