2 #include "split-index.h"
5 struct split_index
*init_split_index(struct index_state
*istate
)
7 if (!istate
->split_index
) {
8 istate
->split_index
= xcalloc(1, sizeof(*istate
->split_index
));
9 istate
->split_index
->refcount
= 1;
11 return istate
->split_index
;
14 int read_link_extension(struct index_state
*istate
,
15 const void *data_
, unsigned long sz
)
17 const unsigned char *data
= data_
;
18 struct split_index
*si
;
21 if (sz
< the_hash_algo
->rawsz
)
22 return error("corrupt link extension (too short)");
23 si
= init_split_index(istate
);
24 hashcpy(si
->base_oid
.hash
, data
);
25 data
+= the_hash_algo
->rawsz
;
26 sz
-= the_hash_algo
->rawsz
;
29 si
->delete_bitmap
= ewah_new();
30 ret
= ewah_read_mmap(si
->delete_bitmap
, data
, sz
);
32 return error("corrupt delete bitmap in link extension");
35 si
->replace_bitmap
= ewah_new();
36 ret
= ewah_read_mmap(si
->replace_bitmap
, data
, sz
);
38 return error("corrupt replace bitmap in link extension");
40 return error("garbage at the end of link extension");
44 int write_link_extension(struct strbuf
*sb
,
45 struct index_state
*istate
)
47 struct split_index
*si
= istate
->split_index
;
48 strbuf_add(sb
, si
->base_oid
.hash
, the_hash_algo
->rawsz
);
49 if (!si
->delete_bitmap
&& !si
->replace_bitmap
)
51 ewah_serialize_strbuf(si
->delete_bitmap
, sb
);
52 ewah_serialize_strbuf(si
->replace_bitmap
, sb
);
56 static void mark_base_index_entries(struct index_state
*base
)
60 * To keep track of the shared entries between
61 * istate->base->cache[] and istate->cache[], base entry
62 * position is stored in each base entry. All positions start
63 * from 1 instead of 0, which is reserved to say "this is a new
66 for (i
= 0; i
< base
->cache_nr
; i
++)
67 base
->cache
[i
]->index
= i
+ 1;
70 void move_cache_to_base_index(struct index_state
*istate
)
72 struct split_index
*si
= istate
->split_index
;
76 * If there was a previous base index, then transfer ownership of allocated
77 * entries to the parent index.
80 si
->base
->ce_mem_pool
) {
82 if (!istate
->ce_mem_pool
)
83 mem_pool_init(&istate
->ce_mem_pool
, 0);
85 mem_pool_combine(istate
->ce_mem_pool
, istate
->split_index
->base
->ce_mem_pool
);
88 si
->base
= xcalloc(1, sizeof(*si
->base
));
89 si
->base
->version
= istate
->version
;
90 /* zero timestamp disables racy test in ce_write_index() */
91 si
->base
->timestamp
= istate
->timestamp
;
92 ALLOC_GROW(si
->base
->cache
, istate
->cache_nr
, si
->base
->cache_alloc
);
93 si
->base
->cache_nr
= istate
->cache_nr
;
96 * The mem_pool needs to move with the allocated entries.
98 si
->base
->ce_mem_pool
= istate
->ce_mem_pool
;
99 istate
->ce_mem_pool
= NULL
;
101 COPY_ARRAY(si
->base
->cache
, istate
->cache
, istate
->cache_nr
);
102 mark_base_index_entries(si
->base
);
103 for (i
= 0; i
< si
->base
->cache_nr
; i
++)
104 si
->base
->cache
[i
]->ce_flags
&= ~CE_UPDATE_IN_BASE
;
107 static void mark_entry_for_delete(size_t pos
, void *data
)
109 struct index_state
*istate
= data
;
110 if (pos
>= istate
->cache_nr
)
111 die("position for delete %d exceeds base index size %d",
112 (int)pos
, istate
->cache_nr
);
113 istate
->cache
[pos
]->ce_flags
|= CE_REMOVE
;
114 istate
->split_index
->nr_deletions
++;
117 static void replace_entry(size_t pos
, void *data
)
119 struct index_state
*istate
= data
;
120 struct split_index
*si
= istate
->split_index
;
121 struct cache_entry
*dst
, *src
;
123 if (pos
>= istate
->cache_nr
)
124 die("position for replacement %d exceeds base index size %d",
125 (int)pos
, istate
->cache_nr
);
126 if (si
->nr_replacements
>= si
->saved_cache_nr
)
127 die("too many replacements (%d vs %d)",
128 si
->nr_replacements
, si
->saved_cache_nr
);
129 dst
= istate
->cache
[pos
];
130 if (dst
->ce_flags
& CE_REMOVE
)
131 die("entry %d is marked as both replaced and deleted",
133 src
= si
->saved_cache
[si
->nr_replacements
];
135 die("corrupt link extension, entry %d should have "
136 "zero length name", (int)pos
);
137 src
->index
= pos
+ 1;
138 src
->ce_flags
|= CE_UPDATE_IN_BASE
;
139 src
->ce_namelen
= dst
->ce_namelen
;
140 copy_cache_entry(dst
, src
);
141 discard_cache_entry(src
);
142 si
->nr_replacements
++;
145 void merge_base_index(struct index_state
*istate
)
147 struct split_index
*si
= istate
->split_index
;
150 mark_base_index_entries(si
->base
);
152 si
->saved_cache
= istate
->cache
;
153 si
->saved_cache_nr
= istate
->cache_nr
;
154 istate
->cache_nr
= si
->base
->cache_nr
;
155 istate
->cache
= NULL
;
156 istate
->cache_alloc
= 0;
157 ALLOC_GROW(istate
->cache
, istate
->cache_nr
, istate
->cache_alloc
);
158 COPY_ARRAY(istate
->cache
, si
->base
->cache
, istate
->cache_nr
);
160 si
->nr_deletions
= 0;
161 si
->nr_replacements
= 0;
162 ewah_each_bit(si
->replace_bitmap
, replace_entry
, istate
);
163 ewah_each_bit(si
->delete_bitmap
, mark_entry_for_delete
, istate
);
164 if (si
->nr_deletions
)
165 remove_marked_cache_entries(istate
, 0);
167 for (i
= si
->nr_replacements
; i
< si
->saved_cache_nr
; i
++) {
168 if (!ce_namelen(si
->saved_cache
[i
]))
169 die("corrupt link extension, entry %d should "
170 "have non-zero length name", i
);
171 add_index_entry(istate
, si
->saved_cache
[i
],
172 ADD_CACHE_OK_TO_ADD
|
173 ADD_CACHE_KEEP_CACHE_TREE
|
175 * we may have to replay what
176 * merge-recursive.c:update_stages()
177 * does, which has this flag on
179 ADD_CACHE_SKIP_DFCHECK
);
180 si
->saved_cache
[i
] = NULL
;
183 ewah_free(si
->delete_bitmap
);
184 ewah_free(si
->replace_bitmap
);
185 FREE_AND_NULL(si
->saved_cache
);
186 si
->delete_bitmap
= NULL
;
187 si
->replace_bitmap
= NULL
;
188 si
->saved_cache_nr
= 0;
192 * Compare most of the fields in two cache entries, i.e. all except the
193 * hashmap_entry and the name.
195 static int compare_ce_content(struct cache_entry
*a
, struct cache_entry
*b
)
197 const unsigned int ondisk_flags
= CE_STAGEMASK
| CE_VALID
|
199 unsigned int ce_flags
= a
->ce_flags
;
200 unsigned int base_flags
= b
->ce_flags
;
203 /* only on-disk flags matter */
204 a
->ce_flags
&= ondisk_flags
;
205 b
->ce_flags
&= ondisk_flags
;
206 ret
= memcmp(&a
->ce_stat_data
, &b
->ce_stat_data
,
207 offsetof(struct cache_entry
, name
) -
208 offsetof(struct cache_entry
, ce_stat_data
));
209 a
->ce_flags
= ce_flags
;
210 b
->ce_flags
= base_flags
;
215 void prepare_to_write_split_index(struct index_state
*istate
)
217 struct split_index
*si
= init_split_index(istate
);
218 struct cache_entry
**entries
= NULL
, *ce
;
219 int i
, nr_entries
= 0, nr_alloc
= 0;
221 si
->delete_bitmap
= ewah_new();
222 si
->replace_bitmap
= ewah_new();
225 /* Go through istate->cache[] and mark CE_MATCHED to
226 * entry with positive index. We'll go through
227 * base->cache[] later to delete all entries in base
228 * that are not marked with either CE_MATCHED or
229 * CE_UPDATE_IN_BASE. If istate->cache[i] is a
230 * duplicate, deduplicate it.
232 for (i
= 0; i
< istate
->cache_nr
; i
++) {
233 struct cache_entry
*base
;
234 ce
= istate
->cache
[i
];
237 * During simple update index operations this
238 * is a cache entry that is not present in
239 * the shared index. It will be added to the
242 * However, it might also represent a file
243 * that already has a cache entry in the
244 * shared index, but a new index has just
245 * been constructed by unpack_trees(), and
246 * this entry now refers to different content
247 * than what was recorded in the original
248 * index, e.g. during 'read-tree -m HEAD^' or
249 * 'checkout HEAD^'. In this case the
250 * original entry in the shared index will be
251 * marked as deleted, and this entry will be
252 * added to the split index.
256 if (ce
->index
> si
->base
->cache_nr
) {
257 BUG("ce refers to a shared ce at %d, which is beyond the shared index size %d",
258 ce
->index
, si
->base
->cache_nr
);
260 ce
->ce_flags
|= CE_MATCHED
; /* or "shared" */
261 base
= si
->base
->cache
[ce
->index
- 1];
263 /* The entry is present in the shared index. */
264 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
266 * Already marked for inclusion in
267 * the split index, either because
268 * the corresponding file was
269 * modified and the cached stat data
270 * was refreshed, or because there
271 * is already a replacement entry in
273 * Nothing more to do here.
275 } else if (!ce_uptodate(ce
) &&
276 is_racy_timestamp(istate
, ce
)) {
278 * A racily clean cache entry stored
279 * only in the shared index: it must
280 * be added to the split index, so
281 * the subsequent do_write_index()
282 * can smudge its stat data.
284 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
287 * The entry is only present in the
288 * shared index and it was not
290 * Just leave it there.
295 if (ce
->ce_namelen
!= base
->ce_namelen
||
296 strcmp(ce
->name
, base
->name
)) {
301 * This is the copy of a cache entry that is present
302 * in the shared index, created by unpack_trees()
303 * while it constructed a new index.
305 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
307 * Already marked for inclusion in the split
308 * index, either because the corresponding
309 * file was modified and the cached stat data
310 * was refreshed, or because the original
311 * entry already had a replacement entry in
315 } else if (!ce_uptodate(ce
) &&
316 is_racy_timestamp(istate
, ce
)) {
318 * A copy of a racily clean cache entry from
319 * the shared index. It must be added to
320 * the split index, so the subsequent
321 * do_write_index() can smudge its stat data.
323 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
326 * Thoroughly compare the cached data to see
327 * whether it should be marked for inclusion
328 * in the split index.
330 * This comparison might be unnecessary, as
331 * code paths modifying the cached data do
332 * set CE_UPDATE_IN_BASE as well.
334 if (compare_ce_content(ce
, base
))
335 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
337 discard_cache_entry(base
);
338 si
->base
->cache
[ce
->index
- 1] = ce
;
340 for (i
= 0; i
< si
->base
->cache_nr
; i
++) {
341 ce
= si
->base
->cache
[i
];
342 if ((ce
->ce_flags
& CE_REMOVE
) ||
343 !(ce
->ce_flags
& CE_MATCHED
))
344 ewah_set(si
->delete_bitmap
, i
);
345 else if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
346 ewah_set(si
->replace_bitmap
, i
);
347 ce
->ce_flags
|= CE_STRIP_NAME
;
348 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
349 entries
[nr_entries
++] = ce
;
351 if (is_null_oid(&ce
->oid
))
352 istate
->drop_cache_tree
= 1;
356 for (i
= 0; i
< istate
->cache_nr
; i
++) {
357 ce
= istate
->cache
[i
];
358 if ((!si
->base
|| !ce
->index
) && !(ce
->ce_flags
& CE_REMOVE
)) {
359 assert(!(ce
->ce_flags
& CE_STRIP_NAME
));
360 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
361 entries
[nr_entries
++] = ce
;
363 ce
->ce_flags
&= ~CE_MATCHED
;
367 * take cache[] out temporarily, put entries[] in its place
370 si
->saved_cache
= istate
->cache
;
371 si
->saved_cache_nr
= istate
->cache_nr
;
372 istate
->cache
= entries
;
373 istate
->cache_nr
= nr_entries
;
376 void finish_writing_split_index(struct index_state
*istate
)
378 struct split_index
*si
= init_split_index(istate
);
380 ewah_free(si
->delete_bitmap
);
381 ewah_free(si
->replace_bitmap
);
382 si
->delete_bitmap
= NULL
;
383 si
->replace_bitmap
= NULL
;
385 istate
->cache
= si
->saved_cache
;
386 istate
->cache_nr
= si
->saved_cache_nr
;
389 void discard_split_index(struct index_state
*istate
)
391 struct split_index
*si
= istate
->split_index
;
394 istate
->split_index
= NULL
;
399 discard_index(si
->base
);
405 void save_or_free_index_entry(struct index_state
*istate
, struct cache_entry
*ce
)
408 istate
->split_index
&&
409 istate
->split_index
->base
&&
410 ce
->index
<= istate
->split_index
->base
->cache_nr
&&
411 ce
== istate
->split_index
->base
->cache
[ce
->index
- 1])
412 ce
->ce_flags
|= CE_REMOVE
;
414 discard_cache_entry(ce
);
417 void replace_index_entry_in_base(struct index_state
*istate
,
418 struct cache_entry
*old_entry
,
419 struct cache_entry
*new_entry
)
421 if (old_entry
->index
&&
422 istate
->split_index
&&
423 istate
->split_index
->base
&&
424 old_entry
->index
<= istate
->split_index
->base
->cache_nr
) {
425 new_entry
->index
= old_entry
->index
;
426 if (old_entry
!= istate
->split_index
->base
->cache
[new_entry
->index
- 1])
427 discard_cache_entry(istate
->split_index
->base
->cache
[new_entry
->index
- 1]);
428 istate
->split_index
->base
->cache
[new_entry
->index
- 1] = new_entry
;
432 void add_split_index(struct index_state
*istate
)
434 if (!istate
->split_index
) {
435 init_split_index(istate
);
436 istate
->cache_changed
|= SPLIT_INDEX_ORDERED
;
440 void remove_split_index(struct index_state
*istate
)
442 if (istate
->split_index
) {
443 if (istate
->split_index
->base
) {
445 * When removing the split index, we need to move
446 * ownership of the mem_pool associated with the
447 * base index to the main index. There may be cache entries
448 * allocated from the base's memory pool that are shared with
451 mem_pool_combine(istate
->ce_mem_pool
,
452 istate
->split_index
->base
->ce_mem_pool
);
455 * The split index no longer owns the mem_pool backing
456 * its cache array. As we are discarding this index,
457 * mark the index as having no cache entries, so it
458 * will not attempt to clean up the cache entries or
461 istate
->split_index
->base
->cache_nr
= 0;
465 * We can discard the split index because its
466 * memory pool has been incorporated into the
467 * memory pool associated with the the_index.
469 discard_split_index(istate
);
471 istate
->cache_changed
|= SOMETHING_CHANGED
;