1 #define USE_THE_REPOSITORY_VARIABLE
3 #include "git-compat-util.h"
7 #include "read-cache-ll.h"
8 #include "split-index.h"
10 #include "ewah/ewok.h"
12 struct split_index
*init_split_index(struct index_state
*istate
)
14 if (!istate
->split_index
) {
15 if (istate
->sparse_index
)
16 die(_("cannot use split index with a sparse index"));
18 CALLOC_ARRAY(istate
->split_index
, 1);
19 istate
->split_index
->refcount
= 1;
21 return istate
->split_index
;
24 int read_link_extension(struct index_state
*istate
,
25 const void *data_
, unsigned long sz
)
27 const unsigned char *data
= data_
;
28 struct split_index
*si
;
31 if (sz
< the_hash_algo
->rawsz
)
32 return error("corrupt link extension (too short)");
33 si
= init_split_index(istate
);
34 oidread(&si
->base_oid
, data
, the_repository
->hash_algo
);
35 data
+= the_hash_algo
->rawsz
;
36 sz
-= the_hash_algo
->rawsz
;
39 si
->delete_bitmap
= ewah_new();
40 ret
= ewah_read_mmap(si
->delete_bitmap
, data
, sz
);
42 return error("corrupt delete bitmap in link extension");
45 si
->replace_bitmap
= ewah_new();
46 ret
= ewah_read_mmap(si
->replace_bitmap
, data
, sz
);
48 return error("corrupt replace bitmap in link extension");
50 return error("garbage at the end of link extension");
54 int write_link_extension(struct strbuf
*sb
,
55 struct index_state
*istate
)
57 struct split_index
*si
= istate
->split_index
;
58 strbuf_add(sb
, si
->base_oid
.hash
, the_hash_algo
->rawsz
);
59 if (!si
->delete_bitmap
&& !si
->replace_bitmap
)
61 ewah_serialize_strbuf(si
->delete_bitmap
, sb
);
62 ewah_serialize_strbuf(si
->replace_bitmap
, sb
);
66 static void mark_base_index_entries(struct index_state
*base
)
70 * To keep track of the shared entries between
71 * istate->base->cache[] and istate->cache[], base entry
72 * position is stored in each base entry. All positions start
73 * from 1 instead of 0, which is reserved to say "this is a new
76 for (i
= 0; i
< base
->cache_nr
; i
++)
77 base
->cache
[i
]->index
= i
+ 1;
80 void move_cache_to_base_index(struct index_state
*istate
)
82 struct split_index
*si
= istate
->split_index
;
86 * If there was a previous base index, then transfer ownership of allocated
87 * entries to the parent index.
90 si
->base
->ce_mem_pool
) {
92 if (!istate
->ce_mem_pool
) {
93 istate
->ce_mem_pool
= xmalloc(sizeof(struct mem_pool
));
94 mem_pool_init(istate
->ce_mem_pool
, 0);
97 mem_pool_combine(istate
->ce_mem_pool
, istate
->split_index
->base
->ce_mem_pool
);
100 ALLOC_ARRAY(si
->base
, 1);
101 index_state_init(si
->base
, istate
->repo
);
102 si
->base
->version
= istate
->version
;
103 /* zero timestamp disables racy test in ce_write_index() */
104 si
->base
->timestamp
= istate
->timestamp
;
105 ALLOC_GROW(si
->base
->cache
, istate
->cache_nr
, si
->base
->cache_alloc
);
106 si
->base
->cache_nr
= istate
->cache_nr
;
109 * The mem_pool needs to move with the allocated entries.
111 si
->base
->ce_mem_pool
= istate
->ce_mem_pool
;
112 istate
->ce_mem_pool
= NULL
;
114 COPY_ARRAY(si
->base
->cache
, istate
->cache
, istate
->cache_nr
);
115 mark_base_index_entries(si
->base
);
116 for (i
= 0; i
< si
->base
->cache_nr
; i
++)
117 si
->base
->cache
[i
]->ce_flags
&= ~CE_UPDATE_IN_BASE
;
120 static void mark_entry_for_delete(size_t pos
, void *data
)
122 struct index_state
*istate
= data
;
123 if (pos
>= istate
->cache_nr
)
124 die("position for delete %d exceeds base index size %d",
125 (int)pos
, istate
->cache_nr
);
126 istate
->cache
[pos
]->ce_flags
|= CE_REMOVE
;
127 istate
->split_index
->nr_deletions
++;
130 static void replace_entry(size_t pos
, void *data
)
132 struct index_state
*istate
= data
;
133 struct split_index
*si
= istate
->split_index
;
134 struct cache_entry
*dst
, *src
;
136 if (pos
>= istate
->cache_nr
)
137 die("position for replacement %d exceeds base index size %d",
138 (int)pos
, istate
->cache_nr
);
139 if (si
->nr_replacements
>= si
->saved_cache_nr
)
140 die("too many replacements (%d vs %d)",
141 si
->nr_replacements
, si
->saved_cache_nr
);
142 dst
= istate
->cache
[pos
];
143 if (dst
->ce_flags
& CE_REMOVE
)
144 die("entry %d is marked as both replaced and deleted",
146 src
= si
->saved_cache
[si
->nr_replacements
];
148 die("corrupt link extension, entry %d should have "
149 "zero length name", (int)pos
);
150 src
->index
= pos
+ 1;
151 src
->ce_flags
|= CE_UPDATE_IN_BASE
;
152 src
->ce_namelen
= dst
->ce_namelen
;
153 copy_cache_entry(dst
, src
);
154 discard_cache_entry(src
);
155 si
->nr_replacements
++;
158 void merge_base_index(struct index_state
*istate
)
160 struct split_index
*si
= istate
->split_index
;
163 mark_base_index_entries(si
->base
);
165 si
->saved_cache
= istate
->cache
;
166 si
->saved_cache_nr
= istate
->cache_nr
;
167 istate
->cache_nr
= si
->base
->cache_nr
;
168 istate
->cache
= NULL
;
169 istate
->cache_alloc
= 0;
170 ALLOC_GROW(istate
->cache
, istate
->cache_nr
, istate
->cache_alloc
);
171 COPY_ARRAY(istate
->cache
, si
->base
->cache
, istate
->cache_nr
);
173 si
->nr_deletions
= 0;
174 si
->nr_replacements
= 0;
175 ewah_each_bit(si
->replace_bitmap
, replace_entry
, istate
);
176 ewah_each_bit(si
->delete_bitmap
, mark_entry_for_delete
, istate
);
177 if (si
->nr_deletions
)
178 remove_marked_cache_entries(istate
, 0);
180 for (i
= si
->nr_replacements
; i
< si
->saved_cache_nr
; i
++) {
181 if (!ce_namelen(si
->saved_cache
[i
]))
182 die("corrupt link extension, entry %d should "
183 "have non-zero length name", i
);
184 add_index_entry(istate
, si
->saved_cache
[i
],
185 ADD_CACHE_OK_TO_ADD
|
186 ADD_CACHE_KEEP_CACHE_TREE
|
188 * we may have to replay what
189 * merge-recursive.c:update_stages()
190 * does, which has this flag on
192 ADD_CACHE_SKIP_DFCHECK
);
193 si
->saved_cache
[i
] = NULL
;
196 ewah_free(si
->delete_bitmap
);
197 ewah_free(si
->replace_bitmap
);
198 FREE_AND_NULL(si
->saved_cache
);
199 si
->delete_bitmap
= NULL
;
200 si
->replace_bitmap
= NULL
;
201 si
->saved_cache_nr
= 0;
205 * Compare most of the fields in two cache entries, i.e. all except the
206 * hashmap_entry and the name.
208 static int compare_ce_content(struct cache_entry
*a
, struct cache_entry
*b
)
210 const unsigned int ondisk_flags
= CE_STAGEMASK
| CE_VALID
|
212 unsigned int ce_flags
= a
->ce_flags
;
213 unsigned int base_flags
= b
->ce_flags
;
216 /* only on-disk flags matter */
217 a
->ce_flags
&= ondisk_flags
;
218 b
->ce_flags
&= ondisk_flags
;
219 ret
= memcmp(&a
->ce_stat_data
, &b
->ce_stat_data
,
220 offsetof(struct cache_entry
, name
) -
221 offsetof(struct cache_entry
, oid
)) ||
222 !oideq(&a
->oid
, &b
->oid
);
223 a
->ce_flags
= ce_flags
;
224 b
->ce_flags
= base_flags
;
229 void prepare_to_write_split_index(struct index_state
*istate
)
231 struct split_index
*si
= init_split_index(istate
);
232 struct cache_entry
**entries
= NULL
, *ce
;
233 int i
, nr_entries
= 0, nr_alloc
= 0;
235 si
->delete_bitmap
= ewah_new();
236 si
->replace_bitmap
= ewah_new();
239 /* Go through istate->cache[] and mark CE_MATCHED to
240 * entry with positive index. We'll go through
241 * base->cache[] later to delete all entries in base
242 * that are not marked with either CE_MATCHED or
243 * CE_UPDATE_IN_BASE. If istate->cache[i] is a
244 * duplicate, deduplicate it.
246 for (i
= 0; i
< istate
->cache_nr
; i
++) {
247 struct cache_entry
*base
;
248 ce
= istate
->cache
[i
];
251 * During simple update index operations this
252 * is a cache entry that is not present in
253 * the shared index. It will be added to the
256 * However, it might also represent a file
257 * that already has a cache entry in the
258 * shared index, but a new index has just
259 * been constructed by unpack_trees(), and
260 * this entry now refers to different content
261 * than what was recorded in the original
262 * index, e.g. during 'read-tree -m HEAD^' or
263 * 'checkout HEAD^'. In this case the
264 * original entry in the shared index will be
265 * marked as deleted, and this entry will be
266 * added to the split index.
270 if (ce
->index
> si
->base
->cache_nr
) {
271 BUG("ce refers to a shared ce at %d, which is beyond the shared index size %d",
272 ce
->index
, si
->base
->cache_nr
);
274 ce
->ce_flags
|= CE_MATCHED
; /* or "shared" */
275 base
= si
->base
->cache
[ce
->index
- 1];
277 /* The entry is present in the shared index. */
278 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
280 * Already marked for inclusion in
281 * the split index, either because
282 * the corresponding file was
283 * modified and the cached stat data
284 * was refreshed, or because there
285 * is already a replacement entry in
287 * Nothing more to do here.
289 } else if (!ce_uptodate(ce
) &&
290 is_racy_timestamp(istate
, ce
)) {
292 * A racily clean cache entry stored
293 * only in the shared index: it must
294 * be added to the split index, so
295 * the subsequent do_write_index()
296 * can smudge its stat data.
298 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
301 * The entry is only present in the
302 * shared index and it was not
304 * Just leave it there.
309 if (ce
->ce_namelen
!= base
->ce_namelen
||
310 strcmp(ce
->name
, base
->name
)) {
315 * This is the copy of a cache entry that is present
316 * in the shared index, created by unpack_trees()
317 * while it constructed a new index.
319 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
321 * Already marked for inclusion in the split
322 * index, either because the corresponding
323 * file was modified and the cached stat data
324 * was refreshed, or because the original
325 * entry already had a replacement entry in
329 } else if (!ce_uptodate(ce
) &&
330 is_racy_timestamp(istate
, ce
)) {
332 * A copy of a racily clean cache entry from
333 * the shared index. It must be added to
334 * the split index, so the subsequent
335 * do_write_index() can smudge its stat data.
337 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
340 * Thoroughly compare the cached data to see
341 * whether it should be marked for inclusion
342 * in the split index.
344 * This comparison might be unnecessary, as
345 * code paths modifying the cached data do
346 * set CE_UPDATE_IN_BASE as well.
348 if (compare_ce_content(ce
, base
))
349 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
351 discard_cache_entry(base
);
352 si
->base
->cache
[ce
->index
- 1] = ce
;
354 for (i
= 0; i
< si
->base
->cache_nr
; i
++) {
355 ce
= si
->base
->cache
[i
];
356 if ((ce
->ce_flags
& CE_REMOVE
) ||
357 !(ce
->ce_flags
& CE_MATCHED
))
358 ewah_set(si
->delete_bitmap
, i
);
359 else if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
360 ewah_set(si
->replace_bitmap
, i
);
361 ce
->ce_flags
|= CE_STRIP_NAME
;
362 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
363 entries
[nr_entries
++] = ce
;
365 if (is_null_oid(&ce
->oid
))
366 istate
->drop_cache_tree
= 1;
370 for (i
= 0; i
< istate
->cache_nr
; i
++) {
371 ce
= istate
->cache
[i
];
372 if ((!si
->base
|| !ce
->index
) && !(ce
->ce_flags
& CE_REMOVE
)) {
373 assert(!(ce
->ce_flags
& CE_STRIP_NAME
));
374 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
375 entries
[nr_entries
++] = ce
;
377 ce
->ce_flags
&= ~CE_MATCHED
;
381 * take cache[] out temporarily, put entries[] in its place
384 si
->saved_cache
= istate
->cache
;
385 si
->saved_cache_nr
= istate
->cache_nr
;
386 istate
->cache
= entries
;
387 istate
->cache_nr
= nr_entries
;
390 void finish_writing_split_index(struct index_state
*istate
)
392 struct split_index
*si
= init_split_index(istate
);
394 ewah_free(si
->delete_bitmap
);
395 ewah_free(si
->replace_bitmap
);
396 si
->delete_bitmap
= NULL
;
397 si
->replace_bitmap
= NULL
;
399 istate
->cache
= si
->saved_cache
;
400 istate
->cache_nr
= si
->saved_cache_nr
;
403 void discard_split_index(struct index_state
*istate
)
405 struct split_index
*si
= istate
->split_index
;
408 istate
->split_index
= NULL
;
413 discard_index(si
->base
);
419 void save_or_free_index_entry(struct index_state
*istate
, struct cache_entry
*ce
)
422 istate
->split_index
&&
423 istate
->split_index
->base
&&
424 ce
->index
<= istate
->split_index
->base
->cache_nr
&&
425 ce
== istate
->split_index
->base
->cache
[ce
->index
- 1])
426 ce
->ce_flags
|= CE_REMOVE
;
428 discard_cache_entry(ce
);
431 void replace_index_entry_in_base(struct index_state
*istate
,
432 struct cache_entry
*old_entry
,
433 struct cache_entry
*new_entry
)
435 if (old_entry
->index
&&
436 istate
->split_index
&&
437 istate
->split_index
->base
&&
438 old_entry
->index
<= istate
->split_index
->base
->cache_nr
) {
439 new_entry
->index
= old_entry
->index
;
440 if (old_entry
!= istate
->split_index
->base
->cache
[new_entry
->index
- 1])
441 discard_cache_entry(istate
->split_index
->base
->cache
[new_entry
->index
- 1]);
442 istate
->split_index
->base
->cache
[new_entry
->index
- 1] = new_entry
;
446 void add_split_index(struct index_state
*istate
)
448 if (!istate
->split_index
) {
449 init_split_index(istate
);
450 istate
->cache_changed
|= SPLIT_INDEX_ORDERED
;
454 void remove_split_index(struct index_state
*istate
)
456 if (istate
->split_index
) {
457 if (istate
->split_index
->base
) {
459 * When removing the split index, we need to move
460 * ownership of the mem_pool associated with the
461 * base index to the main index. There may be cache entries
462 * allocated from the base's memory pool that are shared with
465 mem_pool_combine(istate
->ce_mem_pool
,
466 istate
->split_index
->base
->ce_mem_pool
);
469 * The split index no longer owns the mem_pool backing
470 * its cache array. As we are discarding this index,
471 * mark the index as having no cache entries, so it
472 * will not attempt to clean up the cache entries or
475 istate
->split_index
->base
->cache_nr
= 0;
479 * We can discard the split index because its
480 * memory pool has been incorporated into the
481 * memory pool associated with the the_index.
483 discard_split_index(istate
);
485 istate
->cache_changed
|= SOMETHING_CHANGED
;