1 #define USE_THE_REPOSITORY_VARIABLE
3 #include "git-compat-util.h"
5 #include "object-store-ll.h"
6 #include "cache-tree.h"
15 #include "read-cache.h"
22 #include "commit-slab.h"
24 #include "commit-graph.h"
26 define_commit_slab(blame_suspects
, struct blame_origin
*);
27 static struct blame_suspects blame_suspects
;
29 struct blame_origin
*get_blame_suspects(struct commit
*commit
)
31 struct blame_origin
**result
;
33 result
= blame_suspects_peek(&blame_suspects
, commit
);
35 return result
? *result
: NULL
;
38 static void set_blame_suspects(struct commit
*commit
, struct blame_origin
*origin
)
40 *blame_suspects_at(&blame_suspects
, commit
) = origin
;
43 void blame_origin_decref(struct blame_origin
*o
)
45 if (o
&& --o
->refcnt
<= 0) {
46 struct blame_origin
*p
, *l
= NULL
;
48 blame_origin_decref(o
->previous
);
50 /* Should be present exactly once in commit chain */
51 for (p
= get_blame_suspects(o
->commit
); p
; l
= p
, p
= p
->next
) {
56 set_blame_suspects(o
->commit
, p
->next
);
61 die("internal error in blame_origin_decref");
66 * Given a commit and a path in it, create a new origin structure.
67 * The callers that add blame to the scoreboard should use
68 * get_origin() to obtain shared, refcounted copy instead of calling
69 * this function directly.
71 static struct blame_origin
*make_origin(struct commit
*commit
, const char *path
)
73 struct blame_origin
*o
;
74 FLEX_ALLOC_STR(o
, path
, path
);
77 o
->next
= get_blame_suspects(commit
);
78 set_blame_suspects(commit
, o
);
83 * Locate an existing origin or create a new one.
84 * This moves the origin to front position in the commit util list.
86 static struct blame_origin
*get_origin(struct commit
*commit
, const char *path
)
88 struct blame_origin
*o
, *l
;
90 for (o
= get_blame_suspects(commit
), l
= NULL
; o
; l
= o
, o
= o
->next
) {
91 if (!strcmp(o
->path
, path
)) {
95 o
->next
= get_blame_suspects(commit
);
96 set_blame_suspects(commit
, o
);
98 return blame_origin_incref(o
);
101 return make_origin(commit
, path
);
106 static void verify_working_tree_path(struct repository
*r
,
107 struct commit
*work_tree
, const char *path
)
109 struct commit_list
*parents
;
112 for (parents
= work_tree
->parents
; parents
; parents
= parents
->next
) {
113 const struct object_id
*commit_oid
= &parents
->item
->object
.oid
;
114 struct object_id blob_oid
;
117 if (!get_tree_entry(r
, commit_oid
, path
, &blob_oid
, &mode
) &&
118 oid_object_info(r
, &blob_oid
, NULL
) == OBJ_BLOB
)
122 pos
= index_name_pos(r
->index
, path
, strlen(path
));
124 ; /* path is in the index */
125 else if (-1 - pos
< r
->index
->cache_nr
&&
126 !strcmp(r
->index
->cache
[-1 - pos
]->name
, path
))
127 ; /* path is in the index, unmerged */
129 die("no such path '%s' in HEAD", path
);
132 static struct commit_list
**append_parent(struct repository
*r
,
133 struct commit_list
**tail
,
134 const struct object_id
*oid
)
136 struct commit
*parent
;
138 parent
= lookup_commit_reference(r
, oid
);
140 die("no such commit %s", oid_to_hex(oid
));
141 return &commit_list_insert(parent
, tail
)->next
;
144 static void append_merge_parents(struct repository
*r
,
145 struct commit_list
**tail
)
148 struct strbuf line
= STRBUF_INIT
;
150 merge_head
= open(git_path_merge_head(r
), O_RDONLY
);
151 if (merge_head
< 0) {
154 die("cannot open '%s' for reading",
155 git_path_merge_head(r
));
158 while (!strbuf_getwholeline_fd(&line
, merge_head
, '\n')) {
159 struct object_id oid
;
160 if (get_oid_hex(line
.buf
, &oid
))
161 die("unknown line in '%s': %s",
162 git_path_merge_head(r
), line
.buf
);
163 tail
= append_parent(r
, tail
, &oid
);
166 strbuf_release(&line
);
170 * This isn't as simple as passing sb->buf and sb->len, because we
171 * want to transfer ownership of the buffer to the commit (so we
174 static void set_commit_buffer_from_strbuf(struct repository
*r
,
179 void *buf
= strbuf_detach(sb
, &len
);
180 set_commit_buffer(r
, c
, buf
, len
);
184 * Prepare a dummy commit that represents the work tree (or staged) item.
185 * Note that annotating work tree item never works in the reverse.
187 static struct commit
*fake_working_tree_commit(struct repository
*r
,
188 struct diff_options
*opt
,
190 const char *contents_from
,
191 struct object_id
*oid
)
193 struct commit
*commit
;
194 struct blame_origin
*origin
;
195 struct commit_list
**parent_tail
, *parent
;
196 struct strbuf buf
= STRBUF_INIT
;
200 struct cache_entry
*ce
;
202 struct strbuf msg
= STRBUF_INIT
;
206 commit
= alloc_commit_node(r
);
207 commit
->object
.parsed
= 1;
209 parent_tail
= &commit
->parents
;
211 parent_tail
= append_parent(r
, parent_tail
, oid
);
212 append_merge_parents(r
, parent_tail
);
213 verify_working_tree_path(r
, commit
, path
);
215 origin
= make_origin(commit
, path
);
218 ident
= fmt_ident("External file (--contents)", "external.file",
219 WANT_BLANK_IDENT
, NULL
, 0);
221 ident
= fmt_ident("Not Committed Yet", "not.committed.yet",
222 WANT_BLANK_IDENT
, NULL
, 0);
223 strbuf_addstr(&msg
, "tree 0000000000000000000000000000000000000000\n");
224 for (parent
= commit
->parents
; parent
; parent
= parent
->next
)
225 strbuf_addf(&msg
, "parent %s\n",
226 oid_to_hex(&parent
->item
->object
.oid
));
230 "Version of %s from %s\n",
232 (!contents_from
? path
:
233 (!strcmp(contents_from
, "-") ? "standard input" : contents_from
)));
234 set_commit_buffer_from_strbuf(r
, commit
, &msg
);
236 if (!contents_from
|| strcmp("-", contents_from
)) {
238 const char *read_from
;
240 unsigned long buf_len
;
243 if (stat(contents_from
, &st
) < 0)
244 die_errno("Cannot stat '%s'", contents_from
);
245 read_from
= contents_from
;
248 if (lstat(path
, &st
) < 0)
249 die_errno("Cannot lstat '%s'", path
);
252 mode
= canon_mode(st
.st_mode
);
254 switch (st
.st_mode
& S_IFMT
) {
256 if (opt
->flags
.allow_textconv
&&
257 textconv_object(r
, read_from
, mode
, null_oid(), 0, &buf_ptr
, &buf_len
))
258 strbuf_attach(&buf
, buf_ptr
, buf_len
, buf_len
+ 1);
259 else if (strbuf_read_file(&buf
, read_from
, st
.st_size
) != st
.st_size
)
260 die_errno("cannot open or read '%s'", read_from
);
263 if (strbuf_readlink(&buf
, read_from
, st
.st_size
) < 0)
264 die_errno("cannot readlink '%s'", read_from
);
267 die("unsupported file type %s", read_from
);
271 /* Reading from stdin */
273 if (strbuf_read(&buf
, 0, 0) < 0)
274 die_errno("failed to read from stdin");
276 convert_to_git(r
->index
, path
, buf
.buf
, buf
.len
, &buf
, 0);
277 origin
->file
.ptr
= buf
.buf
;
278 origin
->file
.size
= buf
.len
;
279 pretend_object_file(buf
.buf
, buf
.len
, OBJ_BLOB
, &origin
->blob_oid
);
282 * Read the current index, replace the path entry with
283 * origin->blob_sha1 without mucking with its mode or type
284 * bits; we are not going to write this index out -- we just
285 * want to run "diff-index --cached".
287 discard_index(r
->index
);
292 int pos
= index_name_pos(r
->index
, path
, len
);
294 mode
= r
->index
->cache
[pos
]->ce_mode
;
296 /* Let's not bother reading from HEAD tree */
297 mode
= S_IFREG
| 0644;
299 ce
= make_empty_cache_entry(r
->index
, len
);
300 oidcpy(&ce
->oid
, &origin
->blob_oid
);
301 memcpy(ce
->name
, path
, len
);
302 ce
->ce_flags
= create_ce_flags(0);
303 ce
->ce_namelen
= len
;
304 ce
->ce_mode
= create_ce_mode(mode
);
305 add_index_entry(r
->index
, ce
,
306 ADD_CACHE_OK_TO_ADD
| ADD_CACHE_OK_TO_REPLACE
);
308 cache_tree_invalidate_path(r
->index
, path
);
315 static int diff_hunks(mmfile_t
*file_a
, mmfile_t
*file_b
,
316 xdl_emit_hunk_consume_func_t hunk_func
, void *cb_data
, int xdl_opts
)
319 xdemitconf_t xecfg
= {0};
320 xdemitcb_t ecb
= {NULL
};
322 xpp
.flags
= xdl_opts
;
323 xecfg
.hunk_func
= hunk_func
;
325 return xdi_diff(file_a
, file_b
, &xpp
, &xecfg
, &ecb
);
328 static const char *get_next_line(const char *start
, const char *end
)
330 const char *nl
= memchr(start
, '\n', end
- start
);
332 return nl
? nl
+ 1 : end
;
335 static int find_line_starts(int **line_starts
, const char *buf
,
338 const char *end
= buf
+ len
;
343 for (p
= buf
; p
< end
; p
= get_next_line(p
, end
))
346 ALLOC_ARRAY(*line_starts
, num
+ 1);
347 lineno
= *line_starts
;
349 for (p
= buf
; p
< end
; p
= get_next_line(p
, end
))
357 struct fingerprint_entry
;
359 /* A fingerprint is intended to loosely represent a string, such that two
360 * fingerprints can be quickly compared to give an indication of the similarity
361 * of the strings that they represent.
363 * A fingerprint is represented as a multiset of the lower-cased byte pairs in
364 * the string that it represents. Whitespace is added at each end of the
365 * string. Whitespace pairs are ignored. Whitespace is converted to '\0'.
366 * For example, the string "Darth Radar" will be converted to the following
368 * {"\0d", "da", "da", "ar", "ar", "rt", "th", "h\0", "\0r", "ra", "ad", "r\0"}
370 * The similarity between two fingerprints is the size of the intersection of
371 * their multisets, including repeated elements. See fingerprint_similarity for
374 * For ease of implementation, the fingerprint is implemented as a map
375 * of byte pairs to the count of that byte pair in the string, instead of
376 * allowing repeated elements in a set.
380 /* As we know the maximum number of entries in advance, it's
381 * convenient to store the entries in a single array instead of having
382 * the hashmap manage the memory.
384 struct fingerprint_entry
*entries
;
387 /* A byte pair in a fingerprint. Stores the number of times the byte pair
388 * occurs in the string that the fingerprint represents.
390 struct fingerprint_entry
{
391 /* The hashmap entry - the hash represents the byte pair in its
392 * entirety so we don't need to store the byte pair separately.
394 struct hashmap_entry entry
;
395 /* The number of times the byte pair occurs in the string that the
396 * fingerprint represents.
401 /* See `struct fingerprint` for an explanation of what a fingerprint is.
402 * \param result the fingerprint of the string is stored here. This must be
403 * freed later using free_fingerprint.
404 * \param line_begin the start of the string
405 * \param line_end the end of the string
407 static void get_fingerprint(struct fingerprint
*result
,
408 const char *line_begin
,
409 const char *line_end
)
411 unsigned int hash
, c0
= 0, c1
;
413 int max_map_entry_count
= 1 + line_end
- line_begin
;
414 struct fingerprint_entry
*entry
= xcalloc(max_map_entry_count
,
415 sizeof(struct fingerprint_entry
));
416 struct fingerprint_entry
*found_entry
;
418 hashmap_init(&result
->map
, NULL
, NULL
, max_map_entry_count
);
419 result
->entries
= entry
;
420 for (p
= line_begin
; p
<= line_end
; ++p
, c0
= c1
) {
421 /* Always terminate the string with whitespace.
422 * Normalise whitespace to 0, and normalise letters to
423 * lower case. This won't work for multibyte characters but at
424 * worst will match some unrelated characters.
426 if ((p
== line_end
) || isspace(*p
))
430 hash
= c0
| (c1
<< 8);
431 /* Ignore whitespace pairs */
434 hashmap_entry_init(&entry
->entry
, hash
);
436 found_entry
= hashmap_get_entry(&result
->map
, entry
,
437 /* member name */ entry
, NULL
);
439 found_entry
->count
+= 1;
442 hashmap_add(&result
->map
, &entry
->entry
);
448 static void free_fingerprint(struct fingerprint
*f
)
450 hashmap_clear(&f
->map
);
454 /* Calculates the similarity between two fingerprints as the size of the
455 * intersection of their multisets, including repeated elements. See
456 * `struct fingerprint` for an explanation of the fingerprint representation.
457 * The similarity between "cat mat" and "father rather" is 2 because "at" is
458 * present twice in both strings while the similarity between "tim" and "mit"
461 static int fingerprint_similarity(struct fingerprint
*a
, struct fingerprint
*b
)
463 int intersection
= 0;
464 struct hashmap_iter iter
;
465 const struct fingerprint_entry
*entry_a
, *entry_b
;
467 hashmap_for_each_entry(&b
->map
, &iter
, entry_b
,
468 entry
/* member name */) {
469 entry_a
= hashmap_get_entry(&a
->map
, entry_b
, entry
, NULL
);
471 intersection
+= entry_a
->count
< entry_b
->count
?
472 entry_a
->count
: entry_b
->count
;
478 /* Subtracts byte-pair elements in B from A, modifying A in place.
480 static void fingerprint_subtract(struct fingerprint
*a
, struct fingerprint
*b
)
482 struct hashmap_iter iter
;
483 struct fingerprint_entry
*entry_a
;
484 const struct fingerprint_entry
*entry_b
;
486 hashmap_iter_init(&b
->map
, &iter
);
488 hashmap_for_each_entry(&b
->map
, &iter
, entry_b
,
489 entry
/* member name */) {
490 entry_a
= hashmap_get_entry(&a
->map
, entry_b
, entry
, NULL
);
492 if (entry_a
->count
<= entry_b
->count
)
493 hashmap_remove(&a
->map
, &entry_b
->entry
, NULL
);
495 entry_a
->count
-= entry_b
->count
;
500 /* Calculate fingerprints for a series of lines.
501 * Puts the fingerprints in the fingerprints array, which must have been
502 * preallocated to allow storing line_count elements.
504 static void get_line_fingerprints(struct fingerprint
*fingerprints
,
505 const char *content
, const int *line_starts
,
506 long first_line
, long line_count
)
509 const char *linestart
, *lineend
;
511 line_starts
+= first_line
;
512 for (i
= 0; i
< line_count
; ++i
) {
513 linestart
= content
+ line_starts
[i
];
514 lineend
= content
+ line_starts
[i
+ 1];
515 get_fingerprint(fingerprints
+ i
, linestart
, lineend
);
519 static void free_line_fingerprints(struct fingerprint
*fingerprints
,
524 for (i
= 0; i
< nr_fingerprints
; i
++)
525 free_fingerprint(&fingerprints
[i
]);
528 /* This contains the data necessary to linearly map a line number in one half
529 * of a diff chunk to the line in the other half of the diff chunk that is
530 * closest in terms of its position as a fraction of the length of the chunk.
532 struct line_number_mapping
{
533 int destination_start
, destination_length
,
534 source_start
, source_length
;
537 /* Given a line number in one range, offset and scale it to map it onto the
539 * Essentially this mapping is a simple linear equation but the calculation is
540 * more complicated to allow performing it with integer operations.
541 * Another complication is that if a line could map onto many lines in the
542 * destination range then we want to choose the line at the center of those
544 * Example: if the chunk is 2 lines long in A and 10 lines long in B then the
545 * first 5 lines in B will map onto the first line in the A chunk, while the
546 * last 5 lines will all map onto the second line in the A chunk.
547 * Example: if the chunk is 10 lines long in A and 2 lines long in B then line
548 * 0 in B will map onto line 2 in A, and line 1 in B will map onto line 7 in A.
550 static int map_line_number(int line_number
,
551 const struct line_number_mapping
*mapping
)
553 return ((line_number
- mapping
->source_start
) * 2 + 1) *
554 mapping
->destination_length
/
555 (mapping
->source_length
* 2) +
556 mapping
->destination_start
;
559 /* Get a pointer to the element storing the similarity between a line in A
562 * The similarities are stored in a 2-dimensional array. Each "row" in the
563 * array contains the similarities for a line in B. The similarities stored in
564 * a row are the similarities between the line in B and the nearby lines in A.
565 * To keep the length of each row the same, it is padded out with values of -1
566 * where the search range extends beyond the lines in A.
567 * For example, if max_search_distance_a is 2 and the two sides of a diff chunk
574 * Then the similarity array will contain:
575 * [-1, -1, am, bm, cm,
576 * -1, an, bn, cn, dn,
577 * ao, bo, co, do, eo,
578 * bp, cp, dp, ep, -1,
579 * cq, dq, eq, -1, -1]
580 * Where similarities are denoted either by -1 for invalid, or the
581 * concatenation of the two lines in the diff being compared.
583 * \param similarities array of similarities between lines in A and B
584 * \param line_a the index of the line in A, in the same frame of reference as
586 * \param local_line_b the index of the line in B, relative to the first line
587 * in B that similarities represents.
588 * \param closest_line_a the index of the line in A that is deemed to be
589 * closest to local_line_b. This must be in the same
590 * frame of reference as line_a. This value defines
591 * where similarities is centered for the line in B.
592 * \param max_search_distance_a maximum distance in lines from the closest line
593 * in A for other lines in A for which
594 * similarities may be calculated.
596 static int *get_similarity(int *similarities
,
597 int line_a
, int local_line_b
,
598 int closest_line_a
, int max_search_distance_a
)
600 assert(abs(line_a
- closest_line_a
) <=
601 max_search_distance_a
);
602 return similarities
+ line_a
- closest_line_a
+
603 max_search_distance_a
+
604 local_line_b
* (max_search_distance_a
* 2 + 1);
607 #define CERTAIN_NOTHING_MATCHES -2
608 #define CERTAINTY_NOT_CALCULATED -1
610 /* Given a line in B, first calculate its similarities with nearby lines in A
611 * if not already calculated, then identify the most similar and second most
612 * similar lines. The "certainty" is calculated based on those two
615 * \param start_a the index of the first line of the chunk in A
616 * \param length_a the length in lines of the chunk in A
617 * \param local_line_b the index of the line in B, relative to the first line
619 * \param fingerprints_a array of fingerprints for the chunk in A
620 * \param fingerprints_b array of fingerprints for the chunk in B
621 * \param similarities 2-dimensional array of similarities between lines in A
622 * and B. See get_similarity() for more details.
623 * \param certainties array of values indicating how strongly a line in B is
624 * matched with some line in A.
625 * \param second_best_result array of absolute indices in A for the second
626 * closest match of a line in B.
627 * \param result array of absolute indices in A for the closest match of a line
629 * \param max_search_distance_a maximum distance in lines from the closest line
630 * in A for other lines in A for which
631 * similarities may be calculated.
632 * \param map_line_number_in_b_to_a parameter to map_line_number().
634 static void find_best_line_matches(
639 struct fingerprint
*fingerprints_a
,
640 struct fingerprint
*fingerprints_b
,
643 int *second_best_result
,
645 const int max_search_distance_a
,
646 const struct line_number_mapping
*map_line_number_in_b_to_a
)
649 int i
, search_start
, search_end
, closest_local_line_a
, *similarity
,
650 best_similarity
= 0, second_best_similarity
= 0,
651 best_similarity_index
= 0, second_best_similarity_index
= 0;
653 /* certainty has already been calculated so no need to redo the work */
654 if (certainties
[local_line_b
] != CERTAINTY_NOT_CALCULATED
)
657 closest_local_line_a
= map_line_number(
658 local_line_b
+ start_b
, map_line_number_in_b_to_a
) - start_a
;
660 search_start
= closest_local_line_a
- max_search_distance_a
;
661 if (search_start
< 0)
664 search_end
= closest_local_line_a
+ max_search_distance_a
+ 1;
665 if (search_end
> length_a
)
666 search_end
= length_a
;
668 for (i
= search_start
; i
< search_end
; ++i
) {
669 similarity
= get_similarity(similarities
,
671 closest_local_line_a
,
672 max_search_distance_a
);
673 if (*similarity
== -1) {
674 /* This value will never exceed 10 but assert just in
677 assert(abs(i
- closest_local_line_a
) < 1000);
678 /* scale the similarity by (1000 - distance from
679 * closest line) to act as a tie break between lines
680 * that otherwise are equally similar.
682 *similarity
= fingerprint_similarity(
683 fingerprints_b
+ local_line_b
,
684 fingerprints_a
+ i
) *
685 (1000 - abs(i
- closest_local_line_a
));
687 if (*similarity
> best_similarity
) {
688 second_best_similarity
= best_similarity
;
689 second_best_similarity_index
= best_similarity_index
;
690 best_similarity
= *similarity
;
691 best_similarity_index
= i
;
692 } else if (*similarity
> second_best_similarity
) {
693 second_best_similarity
= *similarity
;
694 second_best_similarity_index
= i
;
698 if (best_similarity
== 0) {
699 /* this line definitely doesn't match with anything. Mark it
700 * with this special value so it doesn't get invalidated and
701 * won't be recalculated.
703 certainties
[local_line_b
] = CERTAIN_NOTHING_MATCHES
;
704 result
[local_line_b
] = -1;
706 /* Calculate the certainty with which this line matches.
707 * If the line matches well with two lines then that reduces
708 * the certainty. However we still want to prioritise matching
709 * a line that matches very well with two lines over matching a
710 * line that matches poorly with one line, hence doubling
712 * This means that if we have
713 * line X that matches only one line with a score of 3,
714 * line Y that matches two lines equally with a score of 5,
715 * and line Z that matches only one line with a score or 2,
716 * then the lines in order of certainty are X, Y, Z.
718 certainties
[local_line_b
] = best_similarity
* 2 -
719 second_best_similarity
;
721 /* We keep both the best and second best results to allow us to
722 * check at a later stage of the matching process whether the
723 * result needs to be invalidated.
725 result
[local_line_b
] = start_a
+ best_similarity_index
;
726 second_best_result
[local_line_b
] =
727 start_a
+ second_best_similarity_index
;
732 * This finds the line that we can match with the most confidence, and
733 * uses it as a partition. It then calls itself on the lines on either side of
734 * that partition. In this way we avoid lines appearing out of order, and
735 * retain a sensible line ordering.
736 * \param start_a index of the first line in A with which lines in B may be
738 * \param start_b index of the first line in B for which matching should be
740 * \param length_a number of lines in A with which lines in B may be compared.
741 * \param length_b number of lines in B for which matching should be done.
742 * \param fingerprints_a mutable array of fingerprints in A. The first element
743 * corresponds to the line at start_a.
744 * \param fingerprints_b array of fingerprints in B. The first element
745 * corresponds to the line at start_b.
746 * \param similarities 2-dimensional array of similarities between lines in A
747 * and B. See get_similarity() for more details.
748 * \param certainties array of values indicating how strongly a line in B is
749 * matched with some line in A.
750 * \param second_best_result array of absolute indices in A for the second
751 * closest match of a line in B.
752 * \param result array of absolute indices in A for the closest match of a line
754 * \param max_search_distance_a maximum distance in lines from the closest line
755 * in A for other lines in A for which
756 * similarities may be calculated.
757 * \param max_search_distance_b an upper bound on the greatest possible
758 * distance between lines in B such that they will
759 * both be compared with the same line in A
760 * according to max_search_distance_a.
761 * \param map_line_number_in_b_to_a parameter to map_line_number().
763 static void fuzzy_find_matching_lines_recurse(
764 int start_a
, int start_b
,
765 int length_a
, int length_b
,
766 struct fingerprint
*fingerprints_a
,
767 struct fingerprint
*fingerprints_b
,
770 int *second_best_result
,
772 int max_search_distance_a
,
773 int max_search_distance_b
,
774 const struct line_number_mapping
*map_line_number_in_b_to_a
)
776 int i
, invalidate_min
, invalidate_max
, offset_b
,
777 second_half_start_a
, second_half_start_b
,
778 second_half_length_a
, second_half_length_b
,
779 most_certain_line_a
, most_certain_local_line_b
= -1,
780 most_certain_line_certainty
= -1,
781 closest_local_line_a
;
783 for (i
= 0; i
< length_b
; ++i
) {
784 find_best_line_matches(start_a
,
794 max_search_distance_a
,
795 map_line_number_in_b_to_a
);
797 if (certainties
[i
] > most_certain_line_certainty
) {
798 most_certain_line_certainty
= certainties
[i
];
799 most_certain_local_line_b
= i
;
804 if (most_certain_local_line_b
== -1)
807 most_certain_line_a
= result
[most_certain_local_line_b
];
810 * Subtract the most certain line's fingerprint in B from the matched
811 * fingerprint in A. This means that other lines in B can't also match
812 * the same parts of the line in A.
814 fingerprint_subtract(fingerprints_a
+ most_certain_line_a
- start_a
,
815 fingerprints_b
+ most_certain_local_line_b
);
817 /* Invalidate results that may be affected by the choice of most
820 invalidate_min
= most_certain_local_line_b
- max_search_distance_b
;
821 invalidate_max
= most_certain_local_line_b
+ max_search_distance_b
+ 1;
822 if (invalidate_min
< 0)
824 if (invalidate_max
> length_b
)
825 invalidate_max
= length_b
;
827 /* As the fingerprint in A has changed, discard previously calculated
828 * similarity values with that fingerprint.
830 for (i
= invalidate_min
; i
< invalidate_max
; ++i
) {
831 closest_local_line_a
= map_line_number(
832 i
+ start_b
, map_line_number_in_b_to_a
) - start_a
;
834 /* Check that the lines in A and B are close enough that there
835 * is a similarity value for them.
837 if (abs(most_certain_line_a
- start_a
- closest_local_line_a
) >
838 max_search_distance_a
) {
842 *get_similarity(similarities
, most_certain_line_a
- start_a
,
843 i
, closest_local_line_a
,
844 max_search_distance_a
) = -1;
847 /* More invalidating of results that may be affected by the choice of
849 * Discard the matches for lines in B that are currently matched with a
850 * line in A such that their ordering contradicts the ordering imposed
851 * by the choice of most certain line.
853 for (i
= most_certain_local_line_b
- 1; i
>= invalidate_min
; --i
) {
854 /* In this loop we discard results for lines in B that are
855 * before most-certain-line-B but are matched with a line in A
856 * that is after most-certain-line-A.
858 if (certainties
[i
] >= 0 &&
859 (result
[i
] >= most_certain_line_a
||
860 second_best_result
[i
] >= most_certain_line_a
)) {
861 certainties
[i
] = CERTAINTY_NOT_CALCULATED
;
864 for (i
= most_certain_local_line_b
+ 1; i
< invalidate_max
; ++i
) {
865 /* In this loop we discard results for lines in B that are
866 * after most-certain-line-B but are matched with a line in A
867 * that is before most-certain-line-A.
869 if (certainties
[i
] >= 0 &&
870 (result
[i
] <= most_certain_line_a
||
871 second_best_result
[i
] <= most_certain_line_a
)) {
872 certainties
[i
] = CERTAINTY_NOT_CALCULATED
;
876 /* Repeat the matching process for lines before the most certain line.
878 if (most_certain_local_line_b
> 0) {
879 fuzzy_find_matching_lines_recurse(
881 most_certain_line_a
+ 1 - start_a
,
882 most_certain_local_line_b
,
883 fingerprints_a
, fingerprints_b
, similarities
,
884 certainties
, second_best_result
, result
,
885 max_search_distance_a
,
886 max_search_distance_b
,
887 map_line_number_in_b_to_a
);
889 /* Repeat the matching process for lines after the most certain line.
891 if (most_certain_local_line_b
+ 1 < length_b
) {
892 second_half_start_a
= most_certain_line_a
;
893 offset_b
= most_certain_local_line_b
+ 1;
894 second_half_start_b
= start_b
+ offset_b
;
895 second_half_length_a
=
896 length_a
+ start_a
- second_half_start_a
;
897 second_half_length_b
=
898 length_b
+ start_b
- second_half_start_b
;
899 fuzzy_find_matching_lines_recurse(
900 second_half_start_a
, second_half_start_b
,
901 second_half_length_a
, second_half_length_b
,
902 fingerprints_a
+ second_half_start_a
- start_a
,
903 fingerprints_b
+ offset_b
,
905 offset_b
* (max_search_distance_a
* 2 + 1),
906 certainties
+ offset_b
,
907 second_best_result
+ offset_b
, result
+ offset_b
,
908 max_search_distance_a
,
909 max_search_distance_b
,
910 map_line_number_in_b_to_a
);
914 /* Find the lines in the parent line range that most closely match the lines in
915 * the target line range. This is accomplished by matching fingerprints in each
916 * blame_origin, and choosing the best matches that preserve the line ordering.
917 * See struct fingerprint for details of fingerprint matching, and
918 * fuzzy_find_matching_lines_recurse for details of preserving line ordering.
920 * The performance is believed to be O(n log n) in the typical case and O(n^2)
921 * in a pathological case, where n is the number of lines in the target range.
923 static int *fuzzy_find_matching_lines(struct blame_origin
*parent
,
924 struct blame_origin
*target
,
925 int tlno
, int parent_slno
, int same
,
928 /* We use the terminology "A" for the left hand side of the diff AKA
929 * parent, and "B" for the right hand side of the diff AKA target. */
930 int start_a
= parent_slno
;
931 int length_a
= parent_len
;
933 int length_b
= same
- tlno
;
935 struct line_number_mapping map_line_number_in_b_to_a
= {
936 start_a
, length_a
, start_b
, length_b
939 struct fingerprint
*fingerprints_a
= parent
->fingerprints
;
940 struct fingerprint
*fingerprints_b
= target
->fingerprints
;
942 int i
, *result
, *second_best_result
,
943 *certainties
, *similarities
, similarity_count
;
946 * max_search_distance_a means that given a line in B, compare it to
947 * the line in A that is closest to its position, and the lines in A
948 * that are no greater than max_search_distance_a lines away from the
951 * max_search_distance_b is an upper bound on the greatest possible
952 * distance between lines in B such that they will both be compared
953 * with the same line in A according to max_search_distance_a.
955 int max_search_distance_a
= 10, max_search_distance_b
;
960 if (max_search_distance_a
>= length_a
)
961 max_search_distance_a
= length_a
? length_a
- 1 : 0;
963 max_search_distance_b
= ((2 * max_search_distance_a
+ 1) * length_b
966 CALLOC_ARRAY(result
, length_b
);
967 CALLOC_ARRAY(second_best_result
, length_b
);
968 CALLOC_ARRAY(certainties
, length_b
);
970 /* See get_similarity() for details of similarities. */
971 similarity_count
= length_b
* (max_search_distance_a
* 2 + 1);
972 CALLOC_ARRAY(similarities
, similarity_count
);
974 for (i
= 0; i
< length_b
; ++i
) {
976 second_best_result
[i
] = -1;
977 certainties
[i
] = CERTAINTY_NOT_CALCULATED
;
980 for (i
= 0; i
< similarity_count
; ++i
)
981 similarities
[i
] = -1;
983 fuzzy_find_matching_lines_recurse(start_a
, start_b
,
985 fingerprints_a
+ start_a
,
986 fingerprints_b
+ start_b
,
991 max_search_distance_a
,
992 max_search_distance_b
,
993 &map_line_number_in_b_to_a
);
997 free(second_best_result
);
1002 static void fill_origin_fingerprints(struct blame_origin
*o
)
1006 if (o
->fingerprints
)
1008 o
->num_lines
= find_line_starts(&line_starts
, o
->file
.ptr
,
1010 CALLOC_ARRAY(o
->fingerprints
, o
->num_lines
);
1011 get_line_fingerprints(o
->fingerprints
, o
->file
.ptr
, line_starts
,
1016 static void drop_origin_fingerprints(struct blame_origin
*o
)
1018 if (o
->fingerprints
) {
1019 free_line_fingerprints(o
->fingerprints
, o
->num_lines
);
1021 FREE_AND_NULL(o
->fingerprints
);
1026 * Given an origin, prepare mmfile_t structure to be used by the
1029 static void fill_origin_blob(struct diff_options
*opt
,
1030 struct blame_origin
*o
, mmfile_t
*file
,
1031 int *num_read_blob
, int fill_fingerprints
)
1034 enum object_type type
;
1035 unsigned long file_size
;
1038 if (opt
->flags
.allow_textconv
&&
1039 textconv_object(opt
->repo
, o
->path
, o
->mode
,
1040 &o
->blob_oid
, 1, &file
->ptr
, &file_size
))
1043 file
->ptr
= repo_read_object_file(the_repository
,
1044 &o
->blob_oid
, &type
,
1046 file
->size
= file_size
;
1049 die("Cannot read blob %s for path %s",
1050 oid_to_hex(&o
->blob_oid
),
1056 if (fill_fingerprints
)
1057 fill_origin_fingerprints(o
);
1060 static void drop_origin_blob(struct blame_origin
*o
)
1062 FREE_AND_NULL(o
->file
.ptr
);
1063 drop_origin_fingerprints(o
);
1067 * Any merge of blames happens on lists of blames that arrived via
1068 * different parents in a single suspect. In this case, we want to
1069 * sort according to the suspect line numbers as opposed to the final
1070 * image line numbers. The function body is somewhat longish because
1071 * it avoids unnecessary writes.
1074 static struct blame_entry
*blame_merge(struct blame_entry
*list1
,
1075 struct blame_entry
*list2
)
1077 struct blame_entry
*p1
= list1
, *p2
= list2
,
1085 if (p1
->s_lno
<= p2
->s_lno
) {
1088 if (!(p1
= *tail
)) {
1092 } while (p1
->s_lno
<= p2
->s_lno
);
1098 if (!(p2
= *tail
)) {
1102 } while (p1
->s_lno
> p2
->s_lno
);
1106 if (!(p1
= *tail
)) {
1110 } while (p1
->s_lno
<= p2
->s_lno
);
1114 DEFINE_LIST_SORT(static, sort_blame_entries
, struct blame_entry
, next
);
1117 * Final image line numbers are all different, so we don't need a
1118 * three-way comparison here.
1121 static int compare_blame_final(const struct blame_entry
*e1
,
1122 const struct blame_entry
*e2
)
1124 return e1
->lno
> e2
->lno
? 1 : -1;
1127 static int compare_blame_suspect(const struct blame_entry
*s1
,
1128 const struct blame_entry
*s2
)
1131 * to allow for collating suspects, we sort according to the
1132 * respective pointer value as the primary sorting criterion.
1133 * The actual relation is pretty unimportant as long as it
1134 * establishes a total order. Comparing as integers gives us
1137 if (s1
->suspect
!= s2
->suspect
)
1138 return (intptr_t)s1
->suspect
> (intptr_t)s2
->suspect
? 1 : -1;
1139 if (s1
->s_lno
== s2
->s_lno
)
1141 return s1
->s_lno
> s2
->s_lno
? 1 : -1;
1144 void blame_sort_final(struct blame_scoreboard
*sb
)
1146 sort_blame_entries(&sb
->ent
, compare_blame_final
);
1149 static int compare_commits_by_reverse_commit_date(const void *a
,
1153 return -compare_commits_by_commit_date(a
, b
, c
);
1157 * For debugging -- origin is refcounted, and this asserts that
1158 * we do not underflow.
1160 static void sanity_check_refcnt(struct blame_scoreboard
*sb
)
1163 struct blame_entry
*ent
;
1165 for (ent
= sb
->ent
; ent
; ent
= ent
->next
) {
1166 /* Nobody should have zero or negative refcnt */
1167 if (ent
->suspect
->refcnt
<= 0) {
1168 fprintf(stderr
, "%s in %s has negative refcnt %d\n",
1170 oid_to_hex(&ent
->suspect
->commit
->object
.oid
),
1171 ent
->suspect
->refcnt
);
1176 sb
->on_sanity_fail(sb
, baa
);
1180 * If two blame entries that are next to each other came from
1181 * contiguous lines in the same origin (i.e. <commit, path> pair),
1182 * merge them together.
1184 void blame_coalesce(struct blame_scoreboard
*sb
)
1186 struct blame_entry
*ent
, *next
;
1188 for (ent
= sb
->ent
; ent
&& (next
= ent
->next
); ent
= next
) {
1189 if (ent
->suspect
== next
->suspect
&&
1190 ent
->s_lno
+ ent
->num_lines
== next
->s_lno
&&
1191 ent
->lno
+ ent
->num_lines
== next
->lno
&&
1192 ent
->ignored
== next
->ignored
&&
1193 ent
->unblamable
== next
->unblamable
) {
1194 ent
->num_lines
+= next
->num_lines
;
1195 ent
->next
= next
->next
;
1196 blame_origin_decref(next
->suspect
);
1199 next
= ent
; /* again */
1203 if (sb
->debug
) /* sanity */
1204 sanity_check_refcnt(sb
);
1208 * Merge the given sorted list of blames into a preexisting origin.
1209 * If there were no previous blames to that commit, it is entered into
1210 * the commit priority queue of the score board.
1213 static void queue_blames(struct blame_scoreboard
*sb
, struct blame_origin
*porigin
,
1214 struct blame_entry
*sorted
)
1216 if (porigin
->suspects
)
1217 porigin
->suspects
= blame_merge(porigin
->suspects
, sorted
);
1219 struct blame_origin
*o
;
1220 for (o
= get_blame_suspects(porigin
->commit
); o
; o
= o
->next
) {
1222 porigin
->suspects
= sorted
;
1226 porigin
->suspects
= sorted
;
1227 prio_queue_put(&sb
->commits
, porigin
->commit
);
1232 * Fill the blob_sha1 field of an origin if it hasn't, so that later
1233 * call to fill_origin_blob() can use it to locate the data. blob_sha1
1234 * for an origin is also used to pass the blame for the entire file to
1235 * the parent to detect the case where a child's blob is identical to
1236 * that of its parent's.
1238 * This also fills origin->mode for corresponding tree path.
1240 static int fill_blob_sha1_and_mode(struct repository
*r
,
1241 struct blame_origin
*origin
)
1243 if (!is_null_oid(&origin
->blob_oid
))
1245 if (get_tree_entry(r
, &origin
->commit
->object
.oid
, origin
->path
, &origin
->blob_oid
, &origin
->mode
))
1247 if (oid_object_info(r
, &origin
->blob_oid
, NULL
) != OBJ_BLOB
)
1251 oidclr(&origin
->blob_oid
, the_repository
->hash_algo
);
1252 origin
->mode
= S_IFINVALID
;
1256 struct blame_bloom_data
{
1258 * Changed-path Bloom filter keys. These can help prevent
1259 * computing diffs against first parents, but we need to
1260 * expand the list as code is moved or files are renamed.
1262 struct bloom_filter_settings
*settings
;
1263 struct bloom_key
**keys
;
1268 static int bloom_count_queries
= 0;
1269 static int bloom_count_no
= 0;
1270 static int maybe_changed_path(struct repository
*r
,
1271 struct blame_origin
*origin
,
1272 struct blame_bloom_data
*bd
)
1275 struct bloom_filter
*filter
;
1280 if (commit_graph_generation(origin
->commit
) == GENERATION_NUMBER_INFINITY
)
1283 filter
= get_bloom_filter(r
, origin
->commit
);
1288 bloom_count_queries
++;
1289 for (i
= 0; i
< bd
->nr
; i
++) {
1290 if (bloom_filter_contains(filter
,
1300 static void add_bloom_key(struct blame_bloom_data
*bd
,
1306 if (bd
->nr
>= bd
->alloc
) {
1308 REALLOC_ARRAY(bd
->keys
, bd
->alloc
);
1311 bd
->keys
[bd
->nr
] = xmalloc(sizeof(struct bloom_key
));
1312 fill_bloom_key(path
, strlen(path
), bd
->keys
[bd
->nr
], bd
->settings
);
1317 * We have an origin -- check if the same path exists in the
1318 * parent and return an origin structure to represent it.
1320 static struct blame_origin
*find_origin(struct repository
*r
,
1321 struct commit
*parent
,
1322 struct blame_origin
*origin
,
1323 struct blame_bloom_data
*bd
)
1325 struct blame_origin
*porigin
;
1326 struct diff_options diff_opts
;
1327 const char *paths
[2];
1329 /* First check any existing origins */
1330 for (porigin
= get_blame_suspects(parent
); porigin
; porigin
= porigin
->next
)
1331 if (!strcmp(porigin
->path
, origin
->path
)) {
1333 * The same path between origin and its parent
1334 * without renaming -- the most common case.
1336 return blame_origin_incref (porigin
);
1339 /* See if the origin->path is different between parent
1340 * and origin first. Most of the time they are the
1341 * same and diff-tree is fairly efficient about this.
1343 repo_diff_setup(r
, &diff_opts
);
1344 diff_opts
.flags
.recursive
= 1;
1345 diff_opts
.detect_rename
= 0;
1346 diff_opts
.output_format
= DIFF_FORMAT_NO_OUTPUT
;
1347 paths
[0] = origin
->path
;
1350 parse_pathspec(&diff_opts
.pathspec
,
1351 PATHSPEC_ALL_MAGIC
& ~PATHSPEC_LITERAL
,
1352 PATHSPEC_LITERAL_PATH
, "", paths
);
1353 diff_setup_done(&diff_opts
);
1355 if (is_null_oid(&origin
->commit
->object
.oid
))
1356 do_diff_cache(get_commit_tree_oid(parent
), &diff_opts
);
1358 int compute_diff
= 1;
1359 if (origin
->commit
->parents
&&
1360 oideq(&parent
->object
.oid
,
1361 &origin
->commit
->parents
->item
->object
.oid
))
1362 compute_diff
= maybe_changed_path(r
, origin
, bd
);
1365 diff_tree_oid(get_commit_tree_oid(parent
),
1366 get_commit_tree_oid(origin
->commit
),
1369 diffcore_std(&diff_opts
);
1371 if (!diff_queued_diff
.nr
) {
1372 /* The path is the same as parent */
1373 porigin
= get_origin(parent
, origin
->path
);
1374 oidcpy(&porigin
->blob_oid
, &origin
->blob_oid
);
1375 porigin
->mode
= origin
->mode
;
1378 * Since origin->path is a pathspec, if the parent
1379 * commit had it as a directory, we will see a whole
1380 * bunch of deletion of files in the directory that we
1381 * do not care about.
1384 struct diff_filepair
*p
= NULL
;
1385 for (i
= 0; i
< diff_queued_diff
.nr
; i
++) {
1387 p
= diff_queued_diff
.queue
[i
];
1388 name
= p
->one
->path
? p
->one
->path
: p
->two
->path
;
1389 if (!strcmp(name
, origin
->path
))
1393 die("internal error in blame::find_origin");
1394 switch (p
->status
) {
1396 die("internal error in blame::find_origin (%c)",
1399 porigin
= get_origin(parent
, origin
->path
);
1400 oidcpy(&porigin
->blob_oid
, &p
->one
->oid
);
1401 porigin
->mode
= p
->one
->mode
;
1405 /* Did not exist in parent, or type changed */
1409 diff_flush(&diff_opts
);
1414 * We have an origin -- find the path that corresponds to it in its
1415 * parent and return an origin structure to represent it.
1417 static struct blame_origin
*find_rename(struct repository
*r
,
1418 struct commit
*parent
,
1419 struct blame_origin
*origin
,
1420 struct blame_bloom_data
*bd
)
1422 struct blame_origin
*porigin
= NULL
;
1423 struct diff_options diff_opts
;
1426 repo_diff_setup(r
, &diff_opts
);
1427 diff_opts
.flags
.recursive
= 1;
1428 diff_opts
.detect_rename
= DIFF_DETECT_RENAME
;
1429 diff_opts
.output_format
= DIFF_FORMAT_NO_OUTPUT
;
1430 diff_opts
.single_follow
= origin
->path
;
1431 diff_setup_done(&diff_opts
);
1433 if (is_null_oid(&origin
->commit
->object
.oid
))
1434 do_diff_cache(get_commit_tree_oid(parent
), &diff_opts
);
1436 diff_tree_oid(get_commit_tree_oid(parent
),
1437 get_commit_tree_oid(origin
->commit
),
1439 diffcore_std(&diff_opts
);
1441 for (i
= 0; i
< diff_queued_diff
.nr
; i
++) {
1442 struct diff_filepair
*p
= diff_queued_diff
.queue
[i
];
1443 if ((p
->status
== 'R' || p
->status
== 'C') &&
1444 !strcmp(p
->two
->path
, origin
->path
)) {
1445 add_bloom_key(bd
, p
->one
->path
);
1446 porigin
= get_origin(parent
, p
->one
->path
);
1447 oidcpy(&porigin
->blob_oid
, &p
->one
->oid
);
1448 porigin
->mode
= p
->one
->mode
;
1452 diff_flush(&diff_opts
);
1457 * Append a new blame entry to a given output queue.
1459 static void add_blame_entry(struct blame_entry
***queue
,
1460 const struct blame_entry
*src
)
1462 struct blame_entry
*e
= xmalloc(sizeof(*e
));
1463 memcpy(e
, src
, sizeof(*e
));
1464 blame_origin_incref(e
->suspect
);
1472 * src typically is on-stack; we want to copy the information in it to
1473 * a malloced blame_entry that gets added to the given queue. The
1474 * origin of dst loses a refcnt.
1476 static void dup_entry(struct blame_entry
***queue
,
1477 struct blame_entry
*dst
, struct blame_entry
*src
)
1479 blame_origin_incref(src
->suspect
);
1480 blame_origin_decref(dst
->suspect
);
1481 memcpy(dst
, src
, sizeof(*src
));
1482 dst
->next
= **queue
;
1484 *queue
= &dst
->next
;
1487 const char *blame_nth_line(struct blame_scoreboard
*sb
, long lno
)
1489 return sb
->final_buf
+ sb
->lineno
[lno
];
1493 * It is known that lines between tlno to same came from parent, and e
1494 * has an overlap with that range. it also is known that parent's
1495 * line plno corresponds to e's line tlno.
1501 * <------------------>
1503 * Split e into potentially three parts; before this chunk, the chunk
1504 * to be blamed for the parent, and after that portion.
1506 static void split_overlap(struct blame_entry
*split
,
1507 struct blame_entry
*e
,
1508 int tlno
, int plno
, int same
,
1509 struct blame_origin
*parent
)
1513 memset(split
, 0, sizeof(struct blame_entry
[3]));
1515 for (i
= 0; i
< 3; i
++) {
1516 split
[i
].ignored
= e
->ignored
;
1517 split
[i
].unblamable
= e
->unblamable
;
1520 if (e
->s_lno
< tlno
) {
1521 /* there is a pre-chunk part not blamed on parent */
1522 split
[0].suspect
= blame_origin_incref(e
->suspect
);
1523 split
[0].lno
= e
->lno
;
1524 split
[0].s_lno
= e
->s_lno
;
1525 split
[0].num_lines
= tlno
- e
->s_lno
;
1526 split
[1].lno
= e
->lno
+ tlno
- e
->s_lno
;
1527 split
[1].s_lno
= plno
;
1530 split
[1].lno
= e
->lno
;
1531 split
[1].s_lno
= plno
+ (e
->s_lno
- tlno
);
1534 if (same
< e
->s_lno
+ e
->num_lines
) {
1535 /* there is a post-chunk part not blamed on parent */
1536 split
[2].suspect
= blame_origin_incref(e
->suspect
);
1537 split
[2].lno
= e
->lno
+ (same
- e
->s_lno
);
1538 split
[2].s_lno
= e
->s_lno
+ (same
- e
->s_lno
);
1539 split
[2].num_lines
= e
->s_lno
+ e
->num_lines
- same
;
1540 chunk_end_lno
= split
[2].lno
;
1543 chunk_end_lno
= e
->lno
+ e
->num_lines
;
1544 split
[1].num_lines
= chunk_end_lno
- split
[1].lno
;
1547 * if it turns out there is nothing to blame the parent for,
1548 * forget about the splitting. !split[1].suspect signals this.
1550 if (split
[1].num_lines
< 1)
1552 split
[1].suspect
= blame_origin_incref(parent
);
1556 * split_overlap() divided an existing blame e into up to three parts
1557 * in split. Any assigned blame is moved to queue to
1558 * reflect the split.
1560 static void split_blame(struct blame_entry
***blamed
,
1561 struct blame_entry
***unblamed
,
1562 struct blame_entry
*split
,
1563 struct blame_entry
*e
)
1565 if (split
[0].suspect
&& split
[2].suspect
) {
1566 /* The first part (reuse storage for the existing entry e) */
1567 dup_entry(unblamed
, e
, &split
[0]);
1569 /* The last part -- me */
1570 add_blame_entry(unblamed
, &split
[2]);
1572 /* ... and the middle part -- parent */
1573 add_blame_entry(blamed
, &split
[1]);
1575 else if (!split
[0].suspect
&& !split
[2].suspect
)
1577 * The parent covers the entire area; reuse storage for
1578 * e and replace it with the parent.
1580 dup_entry(blamed
, e
, &split
[1]);
1581 else if (split
[0].suspect
) {
1582 /* me and then parent */
1583 dup_entry(unblamed
, e
, &split
[0]);
1584 add_blame_entry(blamed
, &split
[1]);
1587 /* parent and then me */
1588 dup_entry(blamed
, e
, &split
[1]);
1589 add_blame_entry(unblamed
, &split
[2]);
1594 * After splitting the blame, the origins used by the
1595 * on-stack blame_entry should lose one refcnt each.
1597 static void decref_split(struct blame_entry
*split
)
1601 for (i
= 0; i
< 3; i
++)
1602 blame_origin_decref(split
[i
].suspect
);
1606 * reverse_blame reverses the list given in head, appending tail.
1607 * That allows us to build lists in reverse order, then reverse them
1608 * afterwards. This can be faster than building the list in proper
1609 * order right away. The reason is that building in proper order
1610 * requires writing a link in the _previous_ element, while building
1611 * in reverse order just requires placing the list head into the
1612 * _current_ element.
1615 static struct blame_entry
*reverse_blame(struct blame_entry
*head
,
1616 struct blame_entry
*tail
)
1619 struct blame_entry
*next
= head
->next
;
1628 * Splits a blame entry into two entries at 'len' lines. The original 'e'
1629 * consists of len lines, i.e. [e->lno, e->lno + len), and the second part,
1630 * which is returned, consists of the remainder: [e->lno + len, e->lno +
1631 * e->num_lines). The caller needs to sort out the reference counting for the
1632 * new entry's suspect.
1634 static struct blame_entry
*split_blame_at(struct blame_entry
*e
, int len
,
1635 struct blame_origin
*new_suspect
)
1637 struct blame_entry
*n
= xcalloc(1, sizeof(struct blame_entry
));
1639 n
->suspect
= new_suspect
;
1640 n
->ignored
= e
->ignored
;
1641 n
->unblamable
= e
->unblamable
;
1642 n
->lno
= e
->lno
+ len
;
1643 n
->s_lno
= e
->s_lno
+ len
;
1644 n
->num_lines
= e
->num_lines
- len
;
1650 struct blame_line_tracker
{
1655 static int are_lines_adjacent(struct blame_line_tracker
*first
,
1656 struct blame_line_tracker
*second
)
1658 return first
->is_parent
== second
->is_parent
&&
1659 first
->s_lno
+ 1 == second
->s_lno
;
1662 static int scan_parent_range(struct fingerprint
*p_fps
,
1663 struct fingerprint
*t_fps
, int t_idx
,
1664 int from
, int nr_lines
)
1667 #define FINGERPRINT_FILE_THRESHOLD 10
1668 int best_sim_val
= FINGERPRINT_FILE_THRESHOLD
;
1669 int best_sim_idx
= -1;
1671 for (p_idx
= from
; p_idx
< from
+ nr_lines
; p_idx
++) {
1672 sim
= fingerprint_similarity(&t_fps
[t_idx
], &p_fps
[p_idx
]);
1673 if (sim
< best_sim_val
)
1675 /* Break ties with the closest-to-target line number */
1676 if (sim
== best_sim_val
&& best_sim_idx
!= -1 &&
1677 abs(best_sim_idx
- t_idx
) < abs(p_idx
- t_idx
))
1680 best_sim_idx
= p_idx
;
1682 return best_sim_idx
;
1686 * The first pass checks the blame entry (from the target) against the parent's
1687 * diff chunk. If that fails for a line, the second pass tries to match that
1688 * line to any part of parent file. That catches cases where a change was
1689 * broken into two chunks by 'context.'
1691 static void guess_line_blames(struct blame_origin
*parent
,
1692 struct blame_origin
*target
,
1693 int tlno
, int offset
, int same
, int parent_len
,
1694 struct blame_line_tracker
*line_blames
)
1696 int i
, best_idx
, target_idx
;
1697 int parent_slno
= tlno
+ offset
;
1700 fuzzy_matches
= fuzzy_find_matching_lines(parent
, target
,
1701 tlno
, parent_slno
, same
,
1703 for (i
= 0; i
< same
- tlno
; i
++) {
1704 target_idx
= tlno
+ i
;
1705 if (fuzzy_matches
&& fuzzy_matches
[i
] >= 0) {
1706 best_idx
= fuzzy_matches
[i
];
1708 best_idx
= scan_parent_range(parent
->fingerprints
,
1709 target
->fingerprints
,
1713 if (best_idx
>= 0) {
1714 line_blames
[i
].is_parent
= 1;
1715 line_blames
[i
].s_lno
= best_idx
;
1717 line_blames
[i
].is_parent
= 0;
1718 line_blames
[i
].s_lno
= target_idx
;
1721 free(fuzzy_matches
);
1725 * This decides which parts of a blame entry go to the parent (added to the
1726 * ignoredp list) and which stay with the target (added to the diffp list). The
1727 * actual decision was made in a separate heuristic function, and those answers
1728 * for the lines in 'e' are in line_blames. This consumes e, essentially
1729 * putting it on a list.
1731 * Note that the blame entries on the ignoredp list are not necessarily sorted
1732 * with respect to the parent's line numbers yet.
1734 static void ignore_blame_entry(struct blame_entry
*e
,
1735 struct blame_origin
*parent
,
1736 struct blame_entry
**diffp
,
1737 struct blame_entry
**ignoredp
,
1738 struct blame_line_tracker
*line_blames
)
1740 int entry_len
, nr_lines
, i
;
1743 * We carve new entries off the front of e. Each entry comes from a
1744 * contiguous chunk of lines: adjacent lines from the same origin
1745 * (either the parent or the target).
1748 nr_lines
= e
->num_lines
; /* e changes in the loop */
1749 for (i
= 0; i
< nr_lines
; i
++) {
1750 struct blame_entry
*next
= NULL
;
1753 * We are often adjacent to the next line - only split the blame
1754 * entry when we have to.
1756 if (i
+ 1 < nr_lines
) {
1757 if (are_lines_adjacent(&line_blames
[i
],
1758 &line_blames
[i
+ 1])) {
1762 next
= split_blame_at(e
, entry_len
,
1763 blame_origin_incref(e
->suspect
));
1765 if (line_blames
[i
].is_parent
) {
1767 blame_origin_decref(e
->suspect
);
1768 e
->suspect
= blame_origin_incref(parent
);
1769 e
->s_lno
= line_blames
[i
- entry_len
+ 1].s_lno
;
1770 e
->next
= *ignoredp
;
1774 /* e->s_lno is already in the target's address space. */
1778 assert(e
->num_lines
== entry_len
);
1786 * Process one hunk from the patch between the current suspect for
1787 * blame_entry e and its parent. This first blames any unfinished
1788 * entries before the chunk (which is where target and parent start
1789 * differing) on the parent, and then splits blame entries at the
1790 * start and at the end of the difference region. Since use of -M and
1791 * -C options may lead to overlapping/duplicate source line number
1792 * ranges, all we can rely on from sorting/merging is the order of the
1793 * first suspect line number.
1795 * tlno: line number in the target where this chunk begins
1796 * same: line number in the target where this chunk ends
1797 * offset: add to tlno to get the chunk starting point in the parent
1798 * parent_len: number of lines in the parent chunk
1800 static void blame_chunk(struct blame_entry
***dstq
, struct blame_entry
***srcq
,
1801 int tlno
, int offset
, int same
, int parent_len
,
1802 struct blame_origin
*parent
,
1803 struct blame_origin
*target
, int ignore_diffs
)
1805 struct blame_entry
*e
= **srcq
;
1806 struct blame_entry
*samep
= NULL
, *diffp
= NULL
, *ignoredp
= NULL
;
1807 struct blame_line_tracker
*line_blames
= NULL
;
1809 while (e
&& e
->s_lno
< tlno
) {
1810 struct blame_entry
*next
= e
->next
;
1812 * current record starts before differing portion. If
1813 * it reaches into it, we need to split it up and
1814 * examine the second part separately.
1816 if (e
->s_lno
+ e
->num_lines
> tlno
) {
1817 /* Move second half to a new record */
1818 struct blame_entry
*n
;
1820 n
= split_blame_at(e
, tlno
- e
->s_lno
, e
->suspect
);
1821 /* Push new record to diffp */
1825 blame_origin_decref(e
->suspect
);
1826 /* Pass blame for everything before the differing
1827 * chunk to the parent */
1828 e
->suspect
= blame_origin_incref(parent
);
1835 * As we don't know how much of a common stretch after this
1836 * diff will occur, the currently blamed parts are all that we
1837 * can assign to the parent for now.
1841 **dstq
= reverse_blame(samep
, **dstq
);
1842 *dstq
= &samep
->next
;
1845 * Prepend the split off portions: everything after e starts
1846 * after the blameable portion.
1848 e
= reverse_blame(diffp
, e
);
1851 * Now retain records on the target while parts are different
1857 if (ignore_diffs
&& same
- tlno
> 0) {
1858 CALLOC_ARRAY(line_blames
, same
- tlno
);
1859 guess_line_blames(parent
, target
, tlno
, offset
, same
,
1860 parent_len
, line_blames
);
1863 while (e
&& e
->s_lno
< same
) {
1864 struct blame_entry
*next
= e
->next
;
1867 * If current record extends into sameness, need to split.
1869 if (e
->s_lno
+ e
->num_lines
> same
) {
1871 * Move second half to a new record to be
1872 * processed by later chunks
1874 struct blame_entry
*n
;
1876 n
= split_blame_at(e
, same
- e
->s_lno
,
1877 blame_origin_incref(e
->suspect
));
1878 /* Push new record to samep */
1883 ignore_blame_entry(e
, parent
, &diffp
, &ignoredp
,
1884 line_blames
+ e
->s_lno
- tlno
);
1894 * Note ignoredp is not sorted yet, and thus neither is dstq.
1895 * That list must be sorted before we queue_blames(). We defer
1896 * sorting until after all diff hunks are processed, so that
1897 * guess_line_blames() can pick *any* line in the parent. The
1898 * slight drawback is that we end up sorting all blame entries
1899 * passed to the parent, including those that are unrelated to
1900 * changes made by the ignored commit.
1902 **dstq
= reverse_blame(ignoredp
, **dstq
);
1903 *dstq
= &ignoredp
->next
;
1905 **srcq
= reverse_blame(diffp
, reverse_blame(samep
, e
));
1906 /* Move across elements that are in the unblamable portion */
1908 *srcq
= &diffp
->next
;
1911 struct blame_chunk_cb_data
{
1912 struct blame_origin
*parent
;
1913 struct blame_origin
*target
;
1916 struct blame_entry
**dstq
;
1917 struct blame_entry
**srcq
;
1920 /* diff chunks are from parent to target */
1921 static int blame_chunk_cb(long start_a
, long count_a
,
1922 long start_b
, long count_b
, void *data
)
1924 struct blame_chunk_cb_data
*d
= data
;
1925 if (start_a
- start_b
!= d
->offset
)
1926 die("internal error in blame::blame_chunk_cb");
1927 blame_chunk(&d
->dstq
, &d
->srcq
, start_b
, start_a
- start_b
,
1928 start_b
+ count_b
, count_a
, d
->parent
, d
->target
,
1930 d
->offset
= start_a
+ count_a
- (start_b
+ count_b
);
1935 * We are looking at the origin 'target' and aiming to pass blame
1936 * for the lines it is suspected to its parent. Run diff to find
1937 * which lines came from parent and pass blame for them.
1939 static void pass_blame_to_parent(struct blame_scoreboard
*sb
,
1940 struct blame_origin
*target
,
1941 struct blame_origin
*parent
, int ignore_diffs
)
1943 mmfile_t file_p
, file_o
;
1944 struct blame_chunk_cb_data d
;
1945 struct blame_entry
*newdest
= NULL
;
1947 if (!target
->suspects
)
1948 return; /* nothing remains for this target */
1953 d
.ignore_diffs
= ignore_diffs
;
1954 d
.dstq
= &newdest
; d
.srcq
= &target
->suspects
;
1956 fill_origin_blob(&sb
->revs
->diffopt
, parent
, &file_p
,
1957 &sb
->num_read_blob
, ignore_diffs
);
1958 fill_origin_blob(&sb
->revs
->diffopt
, target
, &file_o
,
1959 &sb
->num_read_blob
, ignore_diffs
);
1960 sb
->num_get_patch
++;
1962 if (diff_hunks(&file_p
, &file_o
, blame_chunk_cb
, &d
, sb
->xdl_opts
))
1963 die("unable to generate diff (%s -> %s)",
1964 oid_to_hex(&parent
->commit
->object
.oid
),
1965 oid_to_hex(&target
->commit
->object
.oid
));
1966 /* The rest are the same as the parent */
1967 blame_chunk(&d
.dstq
, &d
.srcq
, INT_MAX
, d
.offset
, INT_MAX
, 0,
1971 sort_blame_entries(&newdest
, compare_blame_suspect
);
1972 queue_blames(sb
, parent
, newdest
);
1978 * The lines in blame_entry after splitting blames many times can become
1979 * very small and trivial, and at some point it becomes pointless to
1980 * blame the parents. E.g. "\t\t}\n\t}\n\n" appears everywhere in any
1981 * ordinary C program, and it is not worth to say it was copied from
1982 * totally unrelated file in the parent.
1984 * Compute how trivial the lines in the blame_entry are.
1986 unsigned blame_entry_score(struct blame_scoreboard
*sb
, struct blame_entry
*e
)
1989 const char *cp
, *ep
;
1995 cp
= blame_nth_line(sb
, e
->lno
);
1996 ep
= blame_nth_line(sb
, e
->lno
+ e
->num_lines
);
1998 unsigned ch
= *((unsigned char *)cp
);
2008 * best_so_far[] and potential[] are both a split of an existing blame_entry
2009 * that passes blame to the parent. Maintain best_so_far the best split so
2010 * far, by comparing potential and best_so_far and copying potential into
2011 * bst_so_far as needed.
2013 static void copy_split_if_better(struct blame_scoreboard
*sb
,
2014 struct blame_entry
*best_so_far
,
2015 struct blame_entry
*potential
)
2019 if (!potential
[1].suspect
)
2021 if (best_so_far
[1].suspect
) {
2022 if (blame_entry_score(sb
, &potential
[1]) <
2023 blame_entry_score(sb
, &best_so_far
[1]))
2027 for (i
= 0; i
< 3; i
++)
2028 blame_origin_incref(potential
[i
].suspect
);
2029 decref_split(best_so_far
);
2030 memcpy(best_so_far
, potential
, sizeof(struct blame_entry
[3]));
2034 * We are looking at a part of the final image represented by
2035 * ent (tlno and same are offset by ent->s_lno).
2036 * tlno is where we are looking at in the final image.
2037 * up to (but not including) same match preimage.
2038 * plno is where we are looking at in the preimage.
2040 * <-------------- final image ---------------------->
2043 * <---------preimage----->
2046 * All line numbers are 0-based.
2048 static void handle_split(struct blame_scoreboard
*sb
,
2049 struct blame_entry
*ent
,
2050 int tlno
, int plno
, int same
,
2051 struct blame_origin
*parent
,
2052 struct blame_entry
*split
)
2054 if (ent
->num_lines
<= tlno
)
2057 struct blame_entry potential
[3];
2060 split_overlap(potential
, ent
, tlno
, plno
, same
, parent
);
2061 copy_split_if_better(sb
, split
, potential
);
2062 decref_split(potential
);
2066 struct handle_split_cb_data
{
2067 struct blame_scoreboard
*sb
;
2068 struct blame_entry
*ent
;
2069 struct blame_origin
*parent
;
2070 struct blame_entry
*split
;
2075 static int handle_split_cb(long start_a
, long count_a
,
2076 long start_b
, long count_b
, void *data
)
2078 struct handle_split_cb_data
*d
= data
;
2079 handle_split(d
->sb
, d
->ent
, d
->tlno
, d
->plno
, start_b
, d
->parent
,
2081 d
->plno
= start_a
+ count_a
;
2082 d
->tlno
= start_b
+ count_b
;
2087 * Find the lines from parent that are the same as ent so that
2088 * we can pass blames to it. file_p has the blob contents for
2091 static void find_copy_in_blob(struct blame_scoreboard
*sb
,
2092 struct blame_entry
*ent
,
2093 struct blame_origin
*parent
,
2094 struct blame_entry
*split
,
2099 struct handle_split_cb_data d
;
2101 memset(&d
, 0, sizeof(d
));
2102 d
.sb
= sb
; d
.ent
= ent
; d
.parent
= parent
; d
.split
= split
;
2104 * Prepare mmfile that contains only the lines in ent.
2106 cp
= blame_nth_line(sb
, ent
->lno
);
2107 file_o
.ptr
= (char *) cp
;
2108 file_o
.size
= blame_nth_line(sb
, ent
->lno
+ ent
->num_lines
) - cp
;
2111 * file_o is a part of final image we are annotating.
2112 * file_p partially may match that image.
2114 memset(split
, 0, sizeof(struct blame_entry
[3]));
2115 if (diff_hunks(file_p
, &file_o
, handle_split_cb
, &d
, sb
->xdl_opts
))
2116 die("unable to generate diff (%s)",
2117 oid_to_hex(&parent
->commit
->object
.oid
));
2118 /* remainder, if any, all match the preimage */
2119 handle_split(sb
, ent
, d
.tlno
, d
.plno
, ent
->num_lines
, parent
, split
);
2122 /* Move all blame entries from list *source that have a score smaller
2123 * than score_min to the front of list *small.
2124 * Returns a pointer to the link pointing to the old head of the small list.
2127 static struct blame_entry
**filter_small(struct blame_scoreboard
*sb
,
2128 struct blame_entry
**small
,
2129 struct blame_entry
**source
,
2132 struct blame_entry
*p
= *source
;
2133 struct blame_entry
*oldsmall
= *small
;
2135 if (blame_entry_score(sb
, p
) <= score_min
) {
2151 * See if lines currently target is suspected for can be attributed to
2154 static void find_move_in_parent(struct blame_scoreboard
*sb
,
2155 struct blame_entry
***blamed
,
2156 struct blame_entry
**toosmall
,
2157 struct blame_origin
*target
,
2158 struct blame_origin
*parent
)
2160 struct blame_entry
*e
, split
[3];
2161 struct blame_entry
*unblamed
= target
->suspects
;
2162 struct blame_entry
*leftover
= NULL
;
2166 return; /* nothing remains for this target */
2168 fill_origin_blob(&sb
->revs
->diffopt
, parent
, &file_p
,
2169 &sb
->num_read_blob
, 0);
2173 /* At each iteration, unblamed has a NULL-terminated list of
2174 * entries that have not yet been tested for blame. leftover
2175 * contains the reversed list of entries that have been tested
2176 * without being assignable to the parent.
2179 struct blame_entry
**unblamedtail
= &unblamed
;
2180 struct blame_entry
*next
;
2181 for (e
= unblamed
; e
; e
= next
) {
2183 find_copy_in_blob(sb
, e
, parent
, split
, &file_p
);
2184 if (split
[1].suspect
&&
2185 sb
->move_score
< blame_entry_score(sb
, &split
[1])) {
2186 split_blame(blamed
, &unblamedtail
, split
, e
);
2191 decref_split(split
);
2193 *unblamedtail
= NULL
;
2194 toosmall
= filter_small(sb
, toosmall
, &unblamed
, sb
->move_score
);
2196 target
->suspects
= reverse_blame(leftover
, NULL
);
2200 struct blame_entry
*ent
;
2201 struct blame_entry split
[3];
2205 * Count the number of entries the target is suspected for,
2206 * and prepare a list of entry and the best split.
2208 static struct blame_list
*setup_blame_list(struct blame_entry
*unblamed
,
2211 struct blame_entry
*e
;
2213 struct blame_list
*blame_list
= NULL
;
2215 for (e
= unblamed
, num_ents
= 0; e
; e
= e
->next
)
2218 CALLOC_ARRAY(blame_list
, num_ents
);
2219 for (e
= unblamed
, i
= 0; e
; e
= e
->next
)
2220 blame_list
[i
++].ent
= e
;
2222 *num_ents_p
= num_ents
;
2227 * For lines target is suspected for, see if we can find code movement
2228 * across file boundary from the parent commit. porigin is the path
2229 * in the parent we already tried.
2231 static void find_copy_in_parent(struct blame_scoreboard
*sb
,
2232 struct blame_entry
***blamed
,
2233 struct blame_entry
**toosmall
,
2234 struct blame_origin
*target
,
2235 struct commit
*parent
,
2236 struct blame_origin
*porigin
,
2239 struct diff_options diff_opts
;
2241 struct blame_list
*blame_list
;
2243 struct blame_entry
*unblamed
= target
->suspects
;
2244 struct blame_entry
*leftover
= NULL
;
2247 return; /* nothing remains for this target */
2249 repo_diff_setup(sb
->repo
, &diff_opts
);
2250 diff_opts
.flags
.recursive
= 1;
2251 diff_opts
.output_format
= DIFF_FORMAT_NO_OUTPUT
;
2253 diff_setup_done(&diff_opts
);
2255 /* Try "find copies harder" on new path if requested;
2256 * we do not want to use diffcore_rename() actually to
2257 * match things up; find_copies_harder is set only to
2258 * force diff_tree_oid() to feed all filepairs to diff_queue,
2259 * and this code needs to be after diff_setup_done(), which
2260 * usually makes find-copies-harder imply copy detection.
2262 if ((opt
& PICKAXE_BLAME_COPY_HARDEST
)
2263 || ((opt
& PICKAXE_BLAME_COPY_HARDER
)
2264 && (!porigin
|| strcmp(target
->path
, porigin
->path
))))
2265 diff_opts
.flags
.find_copies_harder
= 1;
2267 if (is_null_oid(&target
->commit
->object
.oid
))
2268 do_diff_cache(get_commit_tree_oid(parent
), &diff_opts
);
2270 diff_tree_oid(get_commit_tree_oid(parent
),
2271 get_commit_tree_oid(target
->commit
),
2274 if (!diff_opts
.flags
.find_copies_harder
)
2275 diffcore_std(&diff_opts
);
2278 struct blame_entry
**unblamedtail
= &unblamed
;
2279 blame_list
= setup_blame_list(unblamed
, &num_ents
);
2281 for (i
= 0; i
< diff_queued_diff
.nr
; i
++) {
2282 struct diff_filepair
*p
= diff_queued_diff
.queue
[i
];
2283 struct blame_origin
*norigin
;
2285 struct blame_entry potential
[3];
2287 if (!DIFF_FILE_VALID(p
->one
))
2288 continue; /* does not exist in parent */
2289 if (S_ISGITLINK(p
->one
->mode
))
2290 continue; /* ignore git links */
2291 if (porigin
&& !strcmp(p
->one
->path
, porigin
->path
))
2292 /* find_move already dealt with this path */
2295 norigin
= get_origin(parent
, p
->one
->path
);
2296 oidcpy(&norigin
->blob_oid
, &p
->one
->oid
);
2297 norigin
->mode
= p
->one
->mode
;
2298 fill_origin_blob(&sb
->revs
->diffopt
, norigin
, &file_p
,
2299 &sb
->num_read_blob
, 0);
2303 for (j
= 0; j
< num_ents
; j
++) {
2304 find_copy_in_blob(sb
, blame_list
[j
].ent
,
2305 norigin
, potential
, &file_p
);
2306 copy_split_if_better(sb
, blame_list
[j
].split
,
2308 decref_split(potential
);
2310 blame_origin_decref(norigin
);
2313 for (j
= 0; j
< num_ents
; j
++) {
2314 struct blame_entry
*split
= blame_list
[j
].split
;
2315 if (split
[1].suspect
&&
2316 sb
->copy_score
< blame_entry_score(sb
, &split
[1])) {
2317 split_blame(blamed
, &unblamedtail
, split
,
2320 blame_list
[j
].ent
->next
= leftover
;
2321 leftover
= blame_list
[j
].ent
;
2323 decref_split(split
);
2326 *unblamedtail
= NULL
;
2327 toosmall
= filter_small(sb
, toosmall
, &unblamed
, sb
->copy_score
);
2329 target
->suspects
= reverse_blame(leftover
, NULL
);
2330 diff_flush(&diff_opts
);
2334 * The blobs of origin and porigin exactly match, so everything
2335 * origin is suspected for can be blamed on the parent.
2337 static void pass_whole_blame(struct blame_scoreboard
*sb
,
2338 struct blame_origin
*origin
, struct blame_origin
*porigin
)
2340 struct blame_entry
*e
, *suspects
;
2342 if (!porigin
->file
.ptr
&& origin
->file
.ptr
) {
2343 /* Steal its file */
2344 porigin
->file
= origin
->file
;
2345 origin
->file
.ptr
= NULL
;
2347 suspects
= origin
->suspects
;
2348 origin
->suspects
= NULL
;
2349 for (e
= suspects
; e
; e
= e
->next
) {
2350 blame_origin_incref(porigin
);
2351 blame_origin_decref(e
->suspect
);
2352 e
->suspect
= porigin
;
2354 queue_blames(sb
, porigin
, suspects
);
2358 * We pass blame from the current commit to its parents. We keep saying
2359 * "parent" (and "porigin"), but what we mean is to find scapegoat to
2360 * exonerate ourselves.
2362 static struct commit_list
*first_scapegoat(struct rev_info
*revs
, struct commit
*commit
,
2366 if (revs
->first_parent_only
&&
2368 commit
->parents
->next
) {
2369 free_commit_list(commit
->parents
->next
);
2370 commit
->parents
->next
= NULL
;
2372 return commit
->parents
;
2374 return lookup_decoration(&revs
->children
, &commit
->object
);
2377 static int num_scapegoats(struct rev_info
*revs
, struct commit
*commit
, int reverse
)
2379 struct commit_list
*l
= first_scapegoat(revs
, commit
, reverse
);
2380 return commit_list_count(l
);
2383 /* Distribute collected unsorted blames to the respected sorted lists
2384 * in the various origins.
2386 static void distribute_blame(struct blame_scoreboard
*sb
, struct blame_entry
*blamed
)
2388 sort_blame_entries(&blamed
, compare_blame_suspect
);
2391 struct blame_origin
*porigin
= blamed
->suspect
;
2392 struct blame_entry
*suspects
= NULL
;
2394 struct blame_entry
*next
= blamed
->next
;
2395 blamed
->next
= suspects
;
2398 } while (blamed
&& blamed
->suspect
== porigin
);
2399 suspects
= reverse_blame(suspects
, NULL
);
2400 queue_blames(sb
, porigin
, suspects
);
2406 typedef struct blame_origin
*(*blame_find_alg
)(struct repository
*,
2408 struct blame_origin
*,
2409 struct blame_bloom_data
*);
2411 static void pass_blame(struct blame_scoreboard
*sb
, struct blame_origin
*origin
, int opt
)
2413 struct rev_info
*revs
= sb
->revs
;
2414 int i
, pass
, num_sg
;
2415 struct commit
*commit
= origin
->commit
;
2416 struct commit_list
*sg
;
2417 struct blame_origin
*sg_buf
[MAXSG
];
2418 struct blame_origin
*porigin
, **sg_origin
= sg_buf
;
2419 struct blame_entry
*toosmall
= NULL
;
2420 struct blame_entry
*blames
, **blametail
= &blames
;
2422 num_sg
= num_scapegoats(revs
, commit
, sb
->reverse
);
2425 else if (num_sg
< ARRAY_SIZE(sg_buf
))
2426 memset(sg_buf
, 0, sizeof(sg_buf
));
2428 CALLOC_ARRAY(sg_origin
, num_sg
);
2431 * The first pass looks for unrenamed path to optimize for
2432 * common cases, then we look for renames in the second pass.
2434 for (pass
= 0; pass
< 2 - sb
->no_whole_file_rename
; pass
++) {
2435 blame_find_alg find
= pass
? find_rename
: find_origin
;
2437 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2439 sg
= sg
->next
, i
++) {
2440 struct commit
*p
= sg
->item
;
2445 if (repo_parse_commit(the_repository
, p
))
2447 porigin
= find(sb
->repo
, p
, origin
, sb
->bloom_data
);
2450 if (oideq(&porigin
->blob_oid
, &origin
->blob_oid
)) {
2451 pass_whole_blame(sb
, origin
, porigin
);
2452 blame_origin_decref(porigin
);
2455 for (j
= same
= 0; j
< i
; j
++)
2457 oideq(&sg_origin
[j
]->blob_oid
, &porigin
->blob_oid
)) {
2462 sg_origin
[i
] = porigin
;
2464 blame_origin_decref(porigin
);
2469 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2471 sg
= sg
->next
, i
++) {
2472 struct blame_origin
*porigin
= sg_origin
[i
];
2475 if (!origin
->previous
) {
2476 blame_origin_incref(porigin
);
2477 origin
->previous
= porigin
;
2479 pass_blame_to_parent(sb
, origin
, porigin
, 0);
2480 if (!origin
->suspects
)
2485 * Pass remaining suspects for ignored commits to their parents.
2487 if (oidset_contains(&sb
->ignore_list
, &commit
->object
.oid
)) {
2488 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2490 sg
= sg
->next
, i
++) {
2491 struct blame_origin
*porigin
= sg_origin
[i
];
2495 pass_blame_to_parent(sb
, origin
, porigin
, 1);
2497 * Preemptively drop porigin so we can refresh the
2498 * fingerprints if we use the parent again, which can
2499 * occur if you ignore back-to-back commits.
2501 drop_origin_blob(porigin
);
2502 if (!origin
->suspects
)
2508 * Optionally find moves in parents' files.
2510 if (opt
& PICKAXE_BLAME_MOVE
) {
2511 filter_small(sb
, &toosmall
, &origin
->suspects
, sb
->move_score
);
2512 if (origin
->suspects
) {
2513 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2515 sg
= sg
->next
, i
++) {
2516 struct blame_origin
*porigin
= sg_origin
[i
];
2519 find_move_in_parent(sb
, &blametail
, &toosmall
, origin
, porigin
);
2520 if (!origin
->suspects
)
2527 * Optionally find copies from parents' files.
2529 if (opt
& PICKAXE_BLAME_COPY
) {
2530 if (sb
->copy_score
> sb
->move_score
)
2531 filter_small(sb
, &toosmall
, &origin
->suspects
, sb
->copy_score
);
2532 else if (sb
->copy_score
< sb
->move_score
) {
2533 origin
->suspects
= blame_merge(origin
->suspects
, toosmall
);
2535 filter_small(sb
, &toosmall
, &origin
->suspects
, sb
->copy_score
);
2537 if (!origin
->suspects
)
2540 for (i
= 0, sg
= first_scapegoat(revs
, commit
, sb
->reverse
);
2542 sg
= sg
->next
, i
++) {
2543 struct blame_origin
*porigin
= sg_origin
[i
];
2544 find_copy_in_parent(sb
, &blametail
, &toosmall
,
2545 origin
, sg
->item
, porigin
, opt
);
2546 if (!origin
->suspects
)
2553 distribute_blame(sb
, blames
);
2555 * prepend toosmall to origin->suspects
2557 * There is no point in sorting: this ends up on a big
2558 * unsorted list in the caller anyway.
2561 struct blame_entry
**tail
= &toosmall
;
2563 tail
= &(*tail
)->next
;
2564 *tail
= origin
->suspects
;
2565 origin
->suspects
= toosmall
;
2567 for (i
= 0; i
< num_sg
; i
++) {
2569 if (!sg_origin
[i
]->suspects
)
2570 drop_origin_blob(sg_origin
[i
]);
2571 blame_origin_decref(sg_origin
[i
]);
2574 drop_origin_blob(origin
);
2575 if (sg_buf
!= sg_origin
)
2580 * The main loop -- while we have blobs with lines whose true origin
2581 * is still unknown, pick one blob, and allow its lines to pass blames
2582 * to its parents. */
2583 void assign_blame(struct blame_scoreboard
*sb
, int opt
)
2585 struct rev_info
*revs
= sb
->revs
;
2586 struct commit
*commit
= prio_queue_get(&sb
->commits
);
2589 struct blame_entry
*ent
;
2590 struct blame_origin
*suspect
= get_blame_suspects(commit
);
2592 /* find one suspect to break down */
2593 while (suspect
&& !suspect
->suspects
)
2594 suspect
= suspect
->next
;
2597 commit
= prio_queue_get(&sb
->commits
);
2601 assert(commit
== suspect
->commit
);
2604 * We will use this suspect later in the loop,
2605 * so hold onto it in the meantime.
2607 blame_origin_incref(suspect
);
2608 repo_parse_commit(the_repository
, commit
);
2610 (!(commit
->object
.flags
& UNINTERESTING
) &&
2611 !(revs
->max_age
!= -1 && commit
->date
< revs
->max_age
)))
2612 pass_blame(sb
, suspect
, opt
);
2614 commit
->object
.flags
|= UNINTERESTING
;
2615 if (commit
->object
.parsed
)
2616 mark_parents_uninteresting(sb
->revs
, commit
);
2618 /* treat root commit as boundary */
2619 if (!commit
->parents
&& !sb
->show_root
)
2620 commit
->object
.flags
|= UNINTERESTING
;
2622 /* Take responsibility for the remaining entries */
2623 ent
= suspect
->suspects
;
2625 suspect
->guilty
= 1;
2627 struct blame_entry
*next
= ent
->next
;
2628 if (sb
->found_guilty_entry
)
2629 sb
->found_guilty_entry(ent
, sb
->found_guilty_entry_data
);
2634 ent
->next
= sb
->ent
;
2635 sb
->ent
= suspect
->suspects
;
2636 suspect
->suspects
= NULL
;
2640 blame_origin_decref(suspect
);
2642 if (sb
->debug
) /* sanity */
2643 sanity_check_refcnt(sb
);
2648 * To allow quick access to the contents of nth line in the
2649 * final image, prepare an index in the scoreboard.
2651 static int prepare_lines(struct blame_scoreboard
*sb
)
2653 sb
->num_lines
= find_line_starts(&sb
->lineno
, sb
->final_buf
,
2654 sb
->final_buf_size
);
2655 return sb
->num_lines
;
2658 static struct commit
*find_single_final(struct rev_info
*revs
,
2659 const char **name_p
)
2662 struct commit
*found
= NULL
;
2663 const char *name
= NULL
;
2665 for (i
= 0; i
< revs
->pending
.nr
; i
++) {
2666 struct object
*obj
= revs
->pending
.objects
[i
].item
;
2667 if (obj
->flags
& UNINTERESTING
)
2669 obj
= deref_tag(revs
->repo
, obj
, NULL
, 0);
2670 if (!obj
|| obj
->type
!= OBJ_COMMIT
)
2671 die("Non commit %s?", revs
->pending
.objects
[i
].name
);
2673 die("More than one commit to dig from %s and %s?",
2674 revs
->pending
.objects
[i
].name
, name
);
2675 found
= (struct commit
*)obj
;
2676 name
= revs
->pending
.objects
[i
].name
;
2679 *name_p
= xstrdup_or_null(name
);
2683 static struct commit
*dwim_reverse_initial(struct rev_info
*revs
,
2684 const char **name_p
)
2687 * DWIM "git blame --reverse ONE -- PATH" as
2688 * "git blame --reverse ONE..HEAD -- PATH" but only do so
2689 * when it makes sense.
2692 struct commit
*head_commit
;
2693 struct object_id head_oid
;
2695 if (revs
->pending
.nr
!= 1)
2698 /* Is that sole rev a committish? */
2699 obj
= revs
->pending
.objects
[0].item
;
2700 obj
= deref_tag(revs
->repo
, obj
, NULL
, 0);
2701 if (!obj
|| obj
->type
!= OBJ_COMMIT
)
2704 /* Do we have HEAD? */
2705 if (!refs_resolve_ref_unsafe(get_main_ref_store(the_repository
), "HEAD", RESOLVE_REF_READING
, &head_oid
, NULL
))
2707 head_commit
= lookup_commit_reference_gently(revs
->repo
,
2712 /* Turn "ONE" into "ONE..HEAD" then */
2713 obj
->flags
|= UNINTERESTING
;
2714 add_pending_object(revs
, &head_commit
->object
, "HEAD");
2717 *name_p
= revs
->pending
.objects
[0].name
;
2718 return (struct commit
*)obj
;
2721 static struct commit
*find_single_initial(struct rev_info
*revs
,
2722 const char **name_p
)
2725 struct commit
*found
= NULL
;
2726 const char *name
= NULL
;
2729 * There must be one and only one negative commit, and it must be
2732 for (i
= 0; i
< revs
->pending
.nr
; i
++) {
2733 struct object
*obj
= revs
->pending
.objects
[i
].item
;
2734 if (!(obj
->flags
& UNINTERESTING
))
2736 obj
= deref_tag(revs
->repo
, obj
, NULL
, 0);
2737 if (!obj
|| obj
->type
!= OBJ_COMMIT
)
2738 die("Non commit %s?", revs
->pending
.objects
[i
].name
);
2740 die("More than one commit to dig up from, %s and %s?",
2741 revs
->pending
.objects
[i
].name
, name
);
2742 found
= (struct commit
*) obj
;
2743 name
= revs
->pending
.objects
[i
].name
;
2747 found
= dwim_reverse_initial(revs
, &name
);
2749 die("No commit to dig up from?");
2752 *name_p
= xstrdup(name
);
2756 void init_scoreboard(struct blame_scoreboard
*sb
)
2758 memset(sb
, 0, sizeof(struct blame_scoreboard
));
2759 sb
->move_score
= BLAME_DEFAULT_MOVE_SCORE
;
2760 sb
->copy_score
= BLAME_DEFAULT_COPY_SCORE
;
2763 void setup_scoreboard(struct blame_scoreboard
*sb
,
2764 struct blame_origin
**orig
)
2766 const char *final_commit_name
= NULL
;
2767 struct blame_origin
*o
;
2768 struct commit
*final_commit
= NULL
;
2769 enum object_type type
;
2771 init_blame_suspects(&blame_suspects
);
2773 if (sb
->reverse
&& sb
->contents_from
)
2774 die(_("--contents and --reverse do not blend well."));
2777 BUG("repo is NULL");
2780 sb
->final
= find_single_final(sb
->revs
, &final_commit_name
);
2781 sb
->commits
.compare
= compare_commits_by_commit_date
;
2783 sb
->final
= find_single_initial(sb
->revs
, &final_commit_name
);
2784 sb
->commits
.compare
= compare_commits_by_reverse_commit_date
;
2787 if (sb
->reverse
&& sb
->revs
->first_parent_only
)
2788 sb
->revs
->children
.name
= NULL
;
2790 if (sb
->contents_from
|| !sb
->final
) {
2791 struct object_id head_oid
, *parent_oid
;
2794 * Build a fake commit at the top of the history, when
2795 * (1) "git blame [^A] --path", i.e. with no positive end
2796 * of the history range, in which case we build such
2797 * a fake commit on top of the HEAD to blame in-tree
2799 * (2) "git blame --contents=file [A] -- path", with or
2800 * without positive end of the history range but with
2801 * --contents, in which case we pretend that there is
2802 * a fake commit on top of the positive end (defaulting to
2803 * HEAD) that has the given contents in the path.
2806 parent_oid
= &sb
->final
->object
.oid
;
2808 if (!refs_resolve_ref_unsafe(get_main_ref_store(the_repository
), "HEAD", RESOLVE_REF_READING
, &head_oid
, NULL
))
2809 die("no such ref: HEAD");
2810 parent_oid
= &head_oid
;
2813 if (!sb
->contents_from
)
2816 sb
->final
= fake_working_tree_commit(sb
->repo
,
2818 sb
->path
, sb
->contents_from
,
2820 add_pending_object(sb
->revs
, &(sb
->final
->object
), ":");
2823 if (sb
->reverse
&& sb
->revs
->first_parent_only
) {
2824 final_commit
= find_single_final(sb
->revs
, NULL
);
2826 die(_("--reverse and --first-parent together require specified latest commit"));
2830 * If we have bottom, this will mark the ancestors of the
2831 * bottom commits we would reach while traversing as
2834 if (prepare_revision_walk(sb
->revs
))
2835 die(_("revision walk setup failed"));
2837 if (sb
->reverse
&& sb
->revs
->first_parent_only
) {
2838 struct commit
*c
= final_commit
;
2840 sb
->revs
->children
.name
= "children";
2841 while (c
->parents
&&
2842 !oideq(&c
->object
.oid
, &sb
->final
->object
.oid
)) {
2843 struct commit_list
*l
= xcalloc(1, sizeof(*l
));
2846 if (add_decoration(&sb
->revs
->children
,
2847 &c
->parents
->item
->object
, l
))
2848 BUG("not unique item in first-parent chain");
2849 c
= c
->parents
->item
;
2852 if (!oideq(&c
->object
.oid
, &sb
->final
->object
.oid
))
2853 die(_("--reverse --first-parent together require range along first-parent chain"));
2856 if (is_null_oid(&sb
->final
->object
.oid
)) {
2857 o
= get_blame_suspects(sb
->final
);
2858 sb
->final_buf
= xmemdupz(o
->file
.ptr
, o
->file
.size
);
2859 sb
->final_buf_size
= o
->file
.size
;
2862 o
= get_origin(sb
->final
, sb
->path
);
2863 if (fill_blob_sha1_and_mode(sb
->repo
, o
))
2864 die(_("no such path %s in %s"), sb
->path
, final_commit_name
);
2866 if (sb
->revs
->diffopt
.flags
.allow_textconv
&&
2867 textconv_object(sb
->repo
, sb
->path
, o
->mode
, &o
->blob_oid
, 1, (char **) &sb
->final_buf
,
2868 &sb
->final_buf_size
))
2871 sb
->final_buf
= repo_read_object_file(the_repository
,
2874 &sb
->final_buf_size
);
2877 die(_("cannot read blob %s for path %s"),
2878 oid_to_hex(&o
->blob_oid
),
2881 sb
->num_read_blob
++;
2887 free((char *)final_commit_name
);
2892 struct blame_entry
*blame_entry_prepend(struct blame_entry
*head
,
2893 long start
, long end
,
2894 struct blame_origin
*o
)
2896 struct blame_entry
*new_head
= xcalloc(1, sizeof(struct blame_entry
));
2897 new_head
->lno
= start
;
2898 new_head
->num_lines
= end
- start
;
2899 new_head
->suspect
= o
;
2900 new_head
->s_lno
= start
;
2901 new_head
->next
= head
;
2902 blame_origin_incref(o
);
2906 void setup_blame_bloom_data(struct blame_scoreboard
*sb
)
2908 struct blame_bloom_data
*bd
;
2909 struct bloom_filter_settings
*bs
;
2911 if (!sb
->repo
->objects
->commit_graph
)
2914 bs
= get_bloom_filter_settings(sb
->repo
);
2918 bd
= xmalloc(sizeof(struct blame_bloom_data
));
2924 ALLOC_ARRAY(bd
->keys
, bd
->alloc
);
2926 add_bloom_key(bd
, sb
->path
);
2928 sb
->bloom_data
= bd
;
2931 void cleanup_scoreboard(struct blame_scoreboard
*sb
)
2934 clear_prio_queue(&sb
->commits
);
2935 oidset_clear(&sb
->ignore_list
);
2937 if (sb
->bloom_data
) {
2939 for (i
= 0; i
< sb
->bloom_data
->nr
; i
++) {
2940 free(sb
->bloom_data
->keys
[i
]->hashes
);
2941 free(sb
->bloom_data
->keys
[i
]);
2943 free(sb
->bloom_data
->keys
);
2944 FREE_AND_NULL(sb
->bloom_data
);
2946 trace2_data_intmax("blame", sb
->repo
,
2947 "bloom/queries", bloom_count_queries
);
2948 trace2_data_intmax("blame", sb
->repo
,
2949 "bloom/response-no", bloom_count_no
);