treewide: reduce includes of cache.h in other headers
[git.git] / run-command.c
blobe64bb08a5bf890b1afddfede3519536a714debec
1 #include "cache.h"
2 #include "run-command.h"
3 #include "environment.h"
4 #include "exec-cmd.h"
5 #include "gettext.h"
6 #include "sigchain.h"
7 #include "strvec.h"
8 #include "thread-utils.h"
9 #include "strbuf.h"
10 #include "string-list.h"
11 #include "trace.h"
12 #include "trace2.h"
13 #include "quote.h"
14 #include "config.h"
15 #include "packfile.h"
16 #include "hook.h"
17 #include "compat/nonblock.h"
19 void child_process_init(struct child_process *child)
21 struct child_process blank = CHILD_PROCESS_INIT;
22 memcpy(child, &blank, sizeof(*child));
25 void child_process_clear(struct child_process *child)
27 strvec_clear(&child->args);
28 strvec_clear(&child->env);
31 struct child_to_clean {
32 pid_t pid;
33 struct child_process *process;
34 struct child_to_clean *next;
36 static struct child_to_clean *children_to_clean;
37 static int installed_child_cleanup_handler;
39 static void cleanup_children(int sig, int in_signal)
41 struct child_to_clean *children_to_wait_for = NULL;
43 while (children_to_clean) {
44 struct child_to_clean *p = children_to_clean;
45 children_to_clean = p->next;
47 if (p->process && !in_signal) {
48 struct child_process *process = p->process;
49 if (process->clean_on_exit_handler) {
50 trace_printf(
51 "trace: run_command: running exit handler for pid %"
52 PRIuMAX, (uintmax_t)p->pid
54 process->clean_on_exit_handler(process);
58 kill(p->pid, sig);
60 if (p->process && p->process->wait_after_clean) {
61 p->next = children_to_wait_for;
62 children_to_wait_for = p;
63 } else {
64 if (!in_signal)
65 free(p);
69 while (children_to_wait_for) {
70 struct child_to_clean *p = children_to_wait_for;
71 children_to_wait_for = p->next;
73 while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
74 ; /* spin waiting for process exit or error */
76 if (!in_signal)
77 free(p);
81 static void cleanup_children_on_signal(int sig)
83 cleanup_children(sig, 1);
84 sigchain_pop(sig);
85 raise(sig);
88 static void cleanup_children_on_exit(void)
90 cleanup_children(SIGTERM, 0);
93 static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
95 struct child_to_clean *p = xmalloc(sizeof(*p));
96 p->pid = pid;
97 p->process = process;
98 p->next = children_to_clean;
99 children_to_clean = p;
101 if (!installed_child_cleanup_handler) {
102 atexit(cleanup_children_on_exit);
103 sigchain_push_common(cleanup_children_on_signal);
104 installed_child_cleanup_handler = 1;
108 static void clear_child_for_cleanup(pid_t pid)
110 struct child_to_clean **pp;
112 for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
113 struct child_to_clean *clean_me = *pp;
115 if (clean_me->pid == pid) {
116 *pp = clean_me->next;
117 free(clean_me);
118 return;
123 static inline void close_pair(int fd[2])
125 close(fd[0]);
126 close(fd[1]);
129 int is_executable(const char *name)
131 struct stat st;
133 if (stat(name, &st) || /* stat, not lstat */
134 !S_ISREG(st.st_mode))
135 return 0;
137 #if defined(GIT_WINDOWS_NATIVE)
139 * On Windows there is no executable bit. The file extension
140 * indicates whether it can be run as an executable, and Git
141 * has special-handling to detect scripts and launch them
142 * through the indicated script interpreter. We test for the
143 * file extension first because virus scanners may make
144 * it quite expensive to open many files.
146 if (ends_with(name, ".exe"))
147 return S_IXUSR;
151 * Now that we know it does not have an executable extension,
152 * peek into the file instead.
154 char buf[3] = { 0 };
155 int n;
156 int fd = open(name, O_RDONLY);
157 st.st_mode &= ~S_IXUSR;
158 if (fd >= 0) {
159 n = read(fd, buf, 2);
160 if (n == 2)
161 /* look for a she-bang */
162 if (!strcmp(buf, "#!"))
163 st.st_mode |= S_IXUSR;
164 close(fd);
167 #endif
168 return st.st_mode & S_IXUSR;
172 * Search $PATH for a command. This emulates the path search that
173 * execvp would perform, without actually executing the command so it
174 * can be used before fork() to prepare to run a command using
175 * execve() or after execvp() to diagnose why it failed.
177 * The caller should ensure that file contains no directory
178 * separators.
180 * Returns the path to the command, as found in $PATH or NULL if the
181 * command could not be found. The caller inherits ownership of the memory
182 * used to store the resultant path.
184 * This should not be used on Windows, where the $PATH search rules
185 * are more complicated (e.g., a search for "foo" should find
186 * "foo.exe").
188 static char *locate_in_PATH(const char *file)
190 const char *p = getenv("PATH");
191 struct strbuf buf = STRBUF_INIT;
193 if (!p || !*p)
194 return NULL;
196 while (1) {
197 const char *end = strchrnul(p, ':');
199 strbuf_reset(&buf);
201 /* POSIX specifies an empty entry as the current directory. */
202 if (end != p) {
203 strbuf_add(&buf, p, end - p);
204 strbuf_addch(&buf, '/');
206 strbuf_addstr(&buf, file);
208 if (is_executable(buf.buf))
209 return strbuf_detach(&buf, NULL);
211 if (!*end)
212 break;
213 p = end + 1;
216 strbuf_release(&buf);
217 return NULL;
220 int exists_in_PATH(const char *command)
222 char *r = locate_in_PATH(command);
223 int found = r != NULL;
224 free(r);
225 return found;
228 int sane_execvp(const char *file, char * const argv[])
230 #ifndef GIT_WINDOWS_NATIVE
232 * execvp() doesn't return, so we all we can do is tell trace2
233 * what we are about to do and let it leave a hint in the log
234 * (unless of course the execvp() fails).
236 * we skip this for Windows because the compat layer already
237 * has to emulate the execvp() call anyway.
239 int exec_id = trace2_exec(file, (const char **)argv);
240 #endif
242 if (!execvp(file, argv))
243 return 0; /* cannot happen ;-) */
245 #ifndef GIT_WINDOWS_NATIVE
247 int ec = errno;
248 trace2_exec_result(exec_id, ec);
249 errno = ec;
251 #endif
254 * When a command can't be found because one of the directories
255 * listed in $PATH is unsearchable, execvp reports EACCES, but
256 * careful usability testing (read: analysis of occasional bug
257 * reports) reveals that "No such file or directory" is more
258 * intuitive.
260 * We avoid commands with "/", because execvp will not do $PATH
261 * lookups in that case.
263 * The reassignment of EACCES to errno looks like a no-op below,
264 * but we need to protect against exists_in_PATH overwriting errno.
266 if (errno == EACCES && !strchr(file, '/'))
267 errno = exists_in_PATH(file) ? EACCES : ENOENT;
268 else if (errno == ENOTDIR && !strchr(file, '/'))
269 errno = ENOENT;
270 return -1;
273 static const char **prepare_shell_cmd(struct strvec *out, const char **argv)
275 if (!argv[0])
276 BUG("shell command is empty");
278 if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
279 #ifndef GIT_WINDOWS_NATIVE
280 strvec_push(out, SHELL_PATH);
281 #else
282 strvec_push(out, "sh");
283 #endif
284 strvec_push(out, "-c");
287 * If we have no extra arguments, we do not even need to
288 * bother with the "$@" magic.
290 if (!argv[1])
291 strvec_push(out, argv[0]);
292 else
293 strvec_pushf(out, "%s \"$@\"", argv[0]);
296 strvec_pushv(out, argv);
297 return out->v;
300 #ifndef GIT_WINDOWS_NATIVE
301 static int child_notifier = -1;
303 enum child_errcode {
304 CHILD_ERR_CHDIR,
305 CHILD_ERR_DUP2,
306 CHILD_ERR_CLOSE,
307 CHILD_ERR_SIGPROCMASK,
308 CHILD_ERR_ENOENT,
309 CHILD_ERR_SILENT,
310 CHILD_ERR_ERRNO
313 struct child_err {
314 enum child_errcode err;
315 int syserr; /* errno */
318 static void child_die(enum child_errcode err)
320 struct child_err buf;
322 buf.err = err;
323 buf.syserr = errno;
325 /* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
326 xwrite(child_notifier, &buf, sizeof(buf));
327 _exit(1);
330 static void child_dup2(int fd, int to)
332 if (dup2(fd, to) < 0)
333 child_die(CHILD_ERR_DUP2);
336 static void child_close(int fd)
338 if (close(fd))
339 child_die(CHILD_ERR_CLOSE);
342 static void child_close_pair(int fd[2])
344 child_close(fd[0]);
345 child_close(fd[1]);
348 static void child_error_fn(const char *err UNUSED, va_list params UNUSED)
350 const char msg[] = "error() should not be called in child\n";
351 xwrite(2, msg, sizeof(msg) - 1);
354 static void child_warn_fn(const char *err UNUSED, va_list params UNUSED)
356 const char msg[] = "warn() should not be called in child\n";
357 xwrite(2, msg, sizeof(msg) - 1);
360 static void NORETURN child_die_fn(const char *err UNUSED, va_list params UNUSED)
362 const char msg[] = "die() should not be called in child\n";
363 xwrite(2, msg, sizeof(msg) - 1);
364 _exit(2);
367 /* this runs in the parent process */
368 static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
370 static void (*old_errfn)(const char *err, va_list params);
371 report_fn die_message_routine = get_die_message_routine();
373 old_errfn = get_error_routine();
374 set_error_routine(die_message_routine);
375 errno = cerr->syserr;
377 switch (cerr->err) {
378 case CHILD_ERR_CHDIR:
379 error_errno("exec '%s': cd to '%s' failed",
380 cmd->args.v[0], cmd->dir);
381 break;
382 case CHILD_ERR_DUP2:
383 error_errno("dup2() in child failed");
384 break;
385 case CHILD_ERR_CLOSE:
386 error_errno("close() in child failed");
387 break;
388 case CHILD_ERR_SIGPROCMASK:
389 error_errno("sigprocmask failed restoring signals");
390 break;
391 case CHILD_ERR_ENOENT:
392 error_errno("cannot run %s", cmd->args.v[0]);
393 break;
394 case CHILD_ERR_SILENT:
395 break;
396 case CHILD_ERR_ERRNO:
397 error_errno("cannot exec '%s'", cmd->args.v[0]);
398 break;
400 set_error_routine(old_errfn);
403 static int prepare_cmd(struct strvec *out, const struct child_process *cmd)
405 if (!cmd->args.v[0])
406 BUG("command is empty");
409 * Add SHELL_PATH so in the event exec fails with ENOEXEC we can
410 * attempt to interpret the command with 'sh'.
412 strvec_push(out, SHELL_PATH);
414 if (cmd->git_cmd) {
415 prepare_git_cmd(out, cmd->args.v);
416 } else if (cmd->use_shell) {
417 prepare_shell_cmd(out, cmd->args.v);
418 } else {
419 strvec_pushv(out, cmd->args.v);
423 * If there are no dir separator characters in the command then perform
424 * a path lookup and use the resolved path as the command to exec. If
425 * there are dir separator characters, we have exec attempt to invoke
426 * the command directly.
428 if (!has_dir_sep(out->v[1])) {
429 char *program = locate_in_PATH(out->v[1]);
430 if (program) {
431 free((char *)out->v[1]);
432 out->v[1] = program;
433 } else {
434 strvec_clear(out);
435 errno = ENOENT;
436 return -1;
440 return 0;
443 static char **prep_childenv(const char *const *deltaenv)
445 extern char **environ;
446 char **childenv;
447 struct string_list env = STRING_LIST_INIT_DUP;
448 struct strbuf key = STRBUF_INIT;
449 const char *const *p;
450 int i;
452 /* Construct a sorted string list consisting of the current environ */
453 for (p = (const char *const *) environ; p && *p; p++) {
454 const char *equals = strchr(*p, '=');
456 if (equals) {
457 strbuf_reset(&key);
458 strbuf_add(&key, *p, equals - *p);
459 string_list_append(&env, key.buf)->util = (void *) *p;
460 } else {
461 string_list_append(&env, *p)->util = (void *) *p;
464 string_list_sort(&env);
466 /* Merge in 'deltaenv' with the current environ */
467 for (p = deltaenv; p && *p; p++) {
468 const char *equals = strchr(*p, '=');
470 if (equals) {
471 /* ('key=value'), insert or replace entry */
472 strbuf_reset(&key);
473 strbuf_add(&key, *p, equals - *p);
474 string_list_insert(&env, key.buf)->util = (void *) *p;
475 } else {
476 /* otherwise ('key') remove existing entry */
477 string_list_remove(&env, *p, 0);
481 /* Create an array of 'char *' to be used as the childenv */
482 ALLOC_ARRAY(childenv, env.nr + 1);
483 for (i = 0; i < env.nr; i++)
484 childenv[i] = env.items[i].util;
485 childenv[env.nr] = NULL;
487 string_list_clear(&env, 0);
488 strbuf_release(&key);
489 return childenv;
492 struct atfork_state {
493 #ifndef NO_PTHREADS
494 int cs;
495 #endif
496 sigset_t old;
499 #define CHECK_BUG(err, msg) \
500 do { \
501 int e = (err); \
502 if (e) \
503 BUG("%s: %s", msg, strerror(e)); \
504 } while(0)
506 static void atfork_prepare(struct atfork_state *as)
508 sigset_t all;
510 if (sigfillset(&all))
511 die_errno("sigfillset");
512 #ifdef NO_PTHREADS
513 if (sigprocmask(SIG_SETMASK, &all, &as->old))
514 die_errno("sigprocmask");
515 #else
516 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
517 "blocking all signals");
518 CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
519 "disabling cancellation");
520 #endif
523 static void atfork_parent(struct atfork_state *as)
525 #ifdef NO_PTHREADS
526 if (sigprocmask(SIG_SETMASK, &as->old, NULL))
527 die_errno("sigprocmask");
528 #else
529 CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
530 "re-enabling cancellation");
531 CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
532 "restoring signal mask");
533 #endif
535 #endif /* GIT_WINDOWS_NATIVE */
537 static inline void set_cloexec(int fd)
539 int flags = fcntl(fd, F_GETFD);
540 if (flags >= 0)
541 fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
544 static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
546 int status, code = -1;
547 pid_t waiting;
548 int failed_errno = 0;
550 while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
551 ; /* nothing */
553 if (waiting < 0) {
554 failed_errno = errno;
555 if (!in_signal)
556 error_errno("waitpid for %s failed", argv0);
557 } else if (waiting != pid) {
558 if (!in_signal)
559 error("waitpid is confused (%s)", argv0);
560 } else if (WIFSIGNALED(status)) {
561 code = WTERMSIG(status);
562 if (!in_signal && code != SIGINT && code != SIGQUIT && code != SIGPIPE)
563 error("%s died of signal %d", argv0, code);
565 * This return value is chosen so that code & 0xff
566 * mimics the exit code that a POSIX shell would report for
567 * a program that died from this signal.
569 code += 128;
570 } else if (WIFEXITED(status)) {
571 code = WEXITSTATUS(status);
572 } else {
573 if (!in_signal)
574 error("waitpid is confused (%s)", argv0);
577 if (!in_signal)
578 clear_child_for_cleanup(pid);
580 errno = failed_errno;
581 return code;
584 static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
586 struct string_list envs = STRING_LIST_INIT_DUP;
587 const char *const *e;
588 int i;
589 int printed_unset = 0;
591 /* Last one wins, see run-command.c:prep_childenv() for context */
592 for (e = deltaenv; e && *e; e++) {
593 struct strbuf key = STRBUF_INIT;
594 char *equals = strchr(*e, '=');
596 if (equals) {
597 strbuf_add(&key, *e, equals - *e);
598 string_list_insert(&envs, key.buf)->util = equals + 1;
599 } else {
600 string_list_insert(&envs, *e)->util = NULL;
602 strbuf_release(&key);
605 /* "unset X Y...;" */
606 for (i = 0; i < envs.nr; i++) {
607 const char *var = envs.items[i].string;
608 const char *val = envs.items[i].util;
610 if (val || !getenv(var))
611 continue;
613 if (!printed_unset) {
614 strbuf_addstr(dst, " unset");
615 printed_unset = 1;
617 strbuf_addf(dst, " %s", var);
619 if (printed_unset)
620 strbuf_addch(dst, ';');
622 /* ... followed by "A=B C=D ..." */
623 for (i = 0; i < envs.nr; i++) {
624 const char *var = envs.items[i].string;
625 const char *val = envs.items[i].util;
626 const char *oldval;
628 if (!val)
629 continue;
631 oldval = getenv(var);
632 if (oldval && !strcmp(val, oldval))
633 continue;
635 strbuf_addf(dst, " %s=", var);
636 sq_quote_buf_pretty(dst, val);
638 string_list_clear(&envs, 0);
641 static void trace_run_command(const struct child_process *cp)
643 struct strbuf buf = STRBUF_INIT;
645 if (!trace_want(&trace_default_key))
646 return;
648 strbuf_addstr(&buf, "trace: run_command:");
649 if (cp->dir) {
650 strbuf_addstr(&buf, " cd ");
651 sq_quote_buf_pretty(&buf, cp->dir);
652 strbuf_addch(&buf, ';');
654 trace_add_env(&buf, cp->env.v);
655 if (cp->git_cmd)
656 strbuf_addstr(&buf, " git");
657 sq_quote_argv_pretty(&buf, cp->args.v);
659 trace_printf("%s", buf.buf);
660 strbuf_release(&buf);
663 int start_command(struct child_process *cmd)
665 int need_in, need_out, need_err;
666 int fdin[2], fdout[2], fderr[2];
667 int failed_errno;
668 char *str;
671 * In case of errors we must keep the promise to close FDs
672 * that have been passed in via ->in and ->out.
675 need_in = !cmd->no_stdin && cmd->in < 0;
676 if (need_in) {
677 if (pipe(fdin) < 0) {
678 failed_errno = errno;
679 if (cmd->out > 0)
680 close(cmd->out);
681 str = "standard input";
682 goto fail_pipe;
684 cmd->in = fdin[1];
687 need_out = !cmd->no_stdout
688 && !cmd->stdout_to_stderr
689 && cmd->out < 0;
690 if (need_out) {
691 if (pipe(fdout) < 0) {
692 failed_errno = errno;
693 if (need_in)
694 close_pair(fdin);
695 else if (cmd->in)
696 close(cmd->in);
697 str = "standard output";
698 goto fail_pipe;
700 cmd->out = fdout[0];
703 need_err = !cmd->no_stderr && cmd->err < 0;
704 if (need_err) {
705 if (pipe(fderr) < 0) {
706 failed_errno = errno;
707 if (need_in)
708 close_pair(fdin);
709 else if (cmd->in)
710 close(cmd->in);
711 if (need_out)
712 close_pair(fdout);
713 else if (cmd->out)
714 close(cmd->out);
715 str = "standard error";
716 fail_pipe:
717 error("cannot create %s pipe for %s: %s",
718 str, cmd->args.v[0], strerror(failed_errno));
719 child_process_clear(cmd);
720 errno = failed_errno;
721 return -1;
723 cmd->err = fderr[0];
726 trace2_child_start(cmd);
727 trace_run_command(cmd);
729 fflush(NULL);
731 if (cmd->close_object_store)
732 close_object_store(the_repository->objects);
734 #ifndef GIT_WINDOWS_NATIVE
736 int notify_pipe[2];
737 int null_fd = -1;
738 char **childenv;
739 struct strvec argv = STRVEC_INIT;
740 struct child_err cerr;
741 struct atfork_state as;
743 if (prepare_cmd(&argv, cmd) < 0) {
744 failed_errno = errno;
745 cmd->pid = -1;
746 if (!cmd->silent_exec_failure)
747 error_errno("cannot run %s", cmd->args.v[0]);
748 goto end_of_spawn;
751 if (pipe(notify_pipe))
752 notify_pipe[0] = notify_pipe[1] = -1;
754 if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
755 null_fd = xopen("/dev/null", O_RDWR | O_CLOEXEC);
756 set_cloexec(null_fd);
759 childenv = prep_childenv(cmd->env.v);
760 atfork_prepare(&as);
763 * NOTE: In order to prevent deadlocking when using threads special
764 * care should be taken with the function calls made in between the
765 * fork() and exec() calls. No calls should be made to functions which
766 * require acquiring a lock (e.g. malloc) as the lock could have been
767 * held by another thread at the time of forking, causing the lock to
768 * never be released in the child process. This means only
769 * Async-Signal-Safe functions are permitted in the child.
771 cmd->pid = fork();
772 failed_errno = errno;
773 if (!cmd->pid) {
774 int sig;
776 * Ensure the default die/error/warn routines do not get
777 * called, they can take stdio locks and malloc.
779 set_die_routine(child_die_fn);
780 set_error_routine(child_error_fn);
781 set_warn_routine(child_warn_fn);
783 close(notify_pipe[0]);
784 set_cloexec(notify_pipe[1]);
785 child_notifier = notify_pipe[1];
787 if (cmd->no_stdin)
788 child_dup2(null_fd, 0);
789 else if (need_in) {
790 child_dup2(fdin[0], 0);
791 child_close_pair(fdin);
792 } else if (cmd->in) {
793 child_dup2(cmd->in, 0);
794 child_close(cmd->in);
797 if (cmd->no_stderr)
798 child_dup2(null_fd, 2);
799 else if (need_err) {
800 child_dup2(fderr[1], 2);
801 child_close_pair(fderr);
802 } else if (cmd->err > 1) {
803 child_dup2(cmd->err, 2);
804 child_close(cmd->err);
807 if (cmd->no_stdout)
808 child_dup2(null_fd, 1);
809 else if (cmd->stdout_to_stderr)
810 child_dup2(2, 1);
811 else if (need_out) {
812 child_dup2(fdout[1], 1);
813 child_close_pair(fdout);
814 } else if (cmd->out > 1) {
815 child_dup2(cmd->out, 1);
816 child_close(cmd->out);
819 if (cmd->dir && chdir(cmd->dir))
820 child_die(CHILD_ERR_CHDIR);
823 * restore default signal handlers here, in case
824 * we catch a signal right before execve below
826 for (sig = 1; sig < NSIG; sig++) {
827 /* ignored signals get reset to SIG_DFL on execve */
828 if (signal(sig, SIG_DFL) == SIG_IGN)
829 signal(sig, SIG_IGN);
832 if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
833 child_die(CHILD_ERR_SIGPROCMASK);
836 * Attempt to exec using the command and arguments starting at
837 * argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
838 * be used in the event exec failed with ENOEXEC at which point
839 * we will try to interpret the command using 'sh'.
841 execve(argv.v[1], (char *const *) argv.v + 1,
842 (char *const *) childenv);
843 if (errno == ENOEXEC)
844 execve(argv.v[0], (char *const *) argv.v,
845 (char *const *) childenv);
847 if (errno == ENOENT) {
848 if (cmd->silent_exec_failure)
849 child_die(CHILD_ERR_SILENT);
850 child_die(CHILD_ERR_ENOENT);
851 } else {
852 child_die(CHILD_ERR_ERRNO);
855 atfork_parent(&as);
856 if (cmd->pid < 0)
857 error_errno("cannot fork() for %s", cmd->args.v[0]);
858 else if (cmd->clean_on_exit)
859 mark_child_for_cleanup(cmd->pid, cmd);
862 * Wait for child's exec. If the exec succeeds (or if fork()
863 * failed), EOF is seen immediately by the parent. Otherwise, the
864 * child process sends a child_err struct.
865 * Note that use of this infrastructure is completely advisory,
866 * therefore, we keep error checks minimal.
868 close(notify_pipe[1]);
869 if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
871 * At this point we know that fork() succeeded, but exec()
872 * failed. Errors have been reported to our stderr.
874 wait_or_whine(cmd->pid, cmd->args.v[0], 0);
875 child_err_spew(cmd, &cerr);
876 failed_errno = errno;
877 cmd->pid = -1;
879 close(notify_pipe[0]);
881 if (null_fd >= 0)
882 close(null_fd);
883 strvec_clear(&argv);
884 free(childenv);
886 end_of_spawn:
888 #else
890 int fhin = 0, fhout = 1, fherr = 2;
891 const char **sargv = cmd->args.v;
892 struct strvec nargv = STRVEC_INIT;
894 if (cmd->no_stdin)
895 fhin = open("/dev/null", O_RDWR);
896 else if (need_in)
897 fhin = dup(fdin[0]);
898 else if (cmd->in)
899 fhin = dup(cmd->in);
901 if (cmd->no_stderr)
902 fherr = open("/dev/null", O_RDWR);
903 else if (need_err)
904 fherr = dup(fderr[1]);
905 else if (cmd->err > 2)
906 fherr = dup(cmd->err);
908 if (cmd->no_stdout)
909 fhout = open("/dev/null", O_RDWR);
910 else if (cmd->stdout_to_stderr)
911 fhout = dup(fherr);
912 else if (need_out)
913 fhout = dup(fdout[1]);
914 else if (cmd->out > 1)
915 fhout = dup(cmd->out);
917 if (cmd->git_cmd)
918 cmd->args.v = prepare_git_cmd(&nargv, sargv);
919 else if (cmd->use_shell)
920 cmd->args.v = prepare_shell_cmd(&nargv, sargv);
922 cmd->pid = mingw_spawnvpe(cmd->args.v[0], cmd->args.v,
923 (char**) cmd->env.v,
924 cmd->dir, fhin, fhout, fherr);
925 failed_errno = errno;
926 if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
927 error_errno("cannot spawn %s", cmd->args.v[0]);
928 if (cmd->clean_on_exit && cmd->pid >= 0)
929 mark_child_for_cleanup(cmd->pid, cmd);
931 strvec_clear(&nargv);
932 cmd->args.v = sargv;
933 if (fhin != 0)
934 close(fhin);
935 if (fhout != 1)
936 close(fhout);
937 if (fherr != 2)
938 close(fherr);
940 #endif
942 if (cmd->pid < 0) {
943 trace2_child_exit(cmd, -1);
945 if (need_in)
946 close_pair(fdin);
947 else if (cmd->in)
948 close(cmd->in);
949 if (need_out)
950 close_pair(fdout);
951 else if (cmd->out)
952 close(cmd->out);
953 if (need_err)
954 close_pair(fderr);
955 else if (cmd->err)
956 close(cmd->err);
957 child_process_clear(cmd);
958 errno = failed_errno;
959 return -1;
962 if (need_in)
963 close(fdin[0]);
964 else if (cmd->in)
965 close(cmd->in);
967 if (need_out)
968 close(fdout[1]);
969 else if (cmd->out)
970 close(cmd->out);
972 if (need_err)
973 close(fderr[1]);
974 else if (cmd->err)
975 close(cmd->err);
977 return 0;
980 int finish_command(struct child_process *cmd)
982 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 0);
983 trace2_child_exit(cmd, ret);
984 child_process_clear(cmd);
985 invalidate_lstat_cache();
986 return ret;
989 int finish_command_in_signal(struct child_process *cmd)
991 int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 1);
992 if (ret != -1)
993 trace2_child_exit(cmd, ret);
994 return ret;
998 int run_command(struct child_process *cmd)
1000 int code;
1002 if (cmd->out < 0 || cmd->err < 0)
1003 BUG("run_command with a pipe can cause deadlock");
1005 code = start_command(cmd);
1006 if (code)
1007 return code;
1008 return finish_command(cmd);
1011 #ifndef NO_PTHREADS
1012 static pthread_t main_thread;
1013 static int main_thread_set;
1014 static pthread_key_t async_key;
1015 static pthread_key_t async_die_counter;
1017 static void *run_thread(void *data)
1019 struct async *async = data;
1020 intptr_t ret;
1022 if (async->isolate_sigpipe) {
1023 sigset_t mask;
1024 sigemptyset(&mask);
1025 sigaddset(&mask, SIGPIPE);
1026 if (pthread_sigmask(SIG_BLOCK, &mask, NULL)) {
1027 ret = error("unable to block SIGPIPE in async thread");
1028 return (void *)ret;
1032 pthread_setspecific(async_key, async);
1033 ret = async->proc(async->proc_in, async->proc_out, async->data);
1034 return (void *)ret;
1037 static NORETURN void die_async(const char *err, va_list params)
1039 report_fn die_message_fn = get_die_message_routine();
1041 die_message_fn(err, params);
1043 if (in_async()) {
1044 struct async *async = pthread_getspecific(async_key);
1045 if (async->proc_in >= 0)
1046 close(async->proc_in);
1047 if (async->proc_out >= 0)
1048 close(async->proc_out);
1049 pthread_exit((void *)128);
1052 exit(128);
1055 static int async_die_is_recursing(void)
1057 void *ret = pthread_getspecific(async_die_counter);
1058 pthread_setspecific(async_die_counter, &async_die_counter); /* set to any non-NULL valid pointer */
1059 return ret != NULL;
1062 int in_async(void)
1064 if (!main_thread_set)
1065 return 0; /* no asyncs started yet */
1066 return !pthread_equal(main_thread, pthread_self());
1069 static void NORETURN async_exit(int code)
1071 pthread_exit((void *)(intptr_t)code);
1074 #else
1076 static struct {
1077 void (**handlers)(void);
1078 size_t nr;
1079 size_t alloc;
1080 } git_atexit_hdlrs;
1082 static int git_atexit_installed;
1084 static void git_atexit_dispatch(void)
1086 size_t i;
1088 for (i=git_atexit_hdlrs.nr ; i ; i--)
1089 git_atexit_hdlrs.handlers[i-1]();
1092 static void git_atexit_clear(void)
1094 free(git_atexit_hdlrs.handlers);
1095 memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
1096 git_atexit_installed = 0;
1099 #undef atexit
1100 int git_atexit(void (*handler)(void))
1102 ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
1103 git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
1104 if (!git_atexit_installed) {
1105 if (atexit(&git_atexit_dispatch))
1106 return -1;
1107 git_atexit_installed = 1;
1109 return 0;
1111 #define atexit git_atexit
1113 static int process_is_async;
1114 int in_async(void)
1116 return process_is_async;
1119 static void NORETURN async_exit(int code)
1121 exit(code);
1124 #endif
1126 void check_pipe(int err)
1128 if (err == EPIPE) {
1129 if (in_async())
1130 async_exit(141);
1132 signal(SIGPIPE, SIG_DFL);
1133 raise(SIGPIPE);
1134 /* Should never happen, but just in case... */
1135 exit(141);
1139 int start_async(struct async *async)
1141 int need_in, need_out;
1142 int fdin[2], fdout[2];
1143 int proc_in, proc_out;
1145 need_in = async->in < 0;
1146 if (need_in) {
1147 if (pipe(fdin) < 0) {
1148 if (async->out > 0)
1149 close(async->out);
1150 return error_errno("cannot create pipe");
1152 async->in = fdin[1];
1155 need_out = async->out < 0;
1156 if (need_out) {
1157 if (pipe(fdout) < 0) {
1158 if (need_in)
1159 close_pair(fdin);
1160 else if (async->in)
1161 close(async->in);
1162 return error_errno("cannot create pipe");
1164 async->out = fdout[0];
1167 if (need_in)
1168 proc_in = fdin[0];
1169 else if (async->in)
1170 proc_in = async->in;
1171 else
1172 proc_in = -1;
1174 if (need_out)
1175 proc_out = fdout[1];
1176 else if (async->out)
1177 proc_out = async->out;
1178 else
1179 proc_out = -1;
1181 #ifdef NO_PTHREADS
1182 /* Flush stdio before fork() to avoid cloning buffers */
1183 fflush(NULL);
1185 async->pid = fork();
1186 if (async->pid < 0) {
1187 error_errno("fork (async) failed");
1188 goto error;
1190 if (!async->pid) {
1191 if (need_in)
1192 close(fdin[1]);
1193 if (need_out)
1194 close(fdout[0]);
1195 git_atexit_clear();
1196 process_is_async = 1;
1197 exit(!!async->proc(proc_in, proc_out, async->data));
1200 mark_child_for_cleanup(async->pid, NULL);
1202 if (need_in)
1203 close(fdin[0]);
1204 else if (async->in)
1205 close(async->in);
1207 if (need_out)
1208 close(fdout[1]);
1209 else if (async->out)
1210 close(async->out);
1211 #else
1212 if (!main_thread_set) {
1214 * We assume that the first time that start_async is called
1215 * it is from the main thread.
1217 main_thread_set = 1;
1218 main_thread = pthread_self();
1219 pthread_key_create(&async_key, NULL);
1220 pthread_key_create(&async_die_counter, NULL);
1221 set_die_routine(die_async);
1222 set_die_is_recursing_routine(async_die_is_recursing);
1225 if (proc_in >= 0)
1226 set_cloexec(proc_in);
1227 if (proc_out >= 0)
1228 set_cloexec(proc_out);
1229 async->proc_in = proc_in;
1230 async->proc_out = proc_out;
1232 int err = pthread_create(&async->tid, NULL, run_thread, async);
1233 if (err) {
1234 error(_("cannot create async thread: %s"), strerror(err));
1235 goto error;
1238 #endif
1239 return 0;
1241 error:
1242 if (need_in)
1243 close_pair(fdin);
1244 else if (async->in)
1245 close(async->in);
1247 if (need_out)
1248 close_pair(fdout);
1249 else if (async->out)
1250 close(async->out);
1251 return -1;
1254 int finish_async(struct async *async)
1256 #ifdef NO_PTHREADS
1257 int ret = wait_or_whine(async->pid, "child process", 0);
1259 invalidate_lstat_cache();
1261 return ret;
1262 #else
1263 void *ret = (void *)(intptr_t)(-1);
1265 if (pthread_join(async->tid, &ret))
1266 error("pthread_join failed");
1267 invalidate_lstat_cache();
1268 return (int)(intptr_t)ret;
1270 #endif
1273 int async_with_fork(void)
1275 #ifdef NO_PTHREADS
1276 return 1;
1277 #else
1278 return 0;
1279 #endif
1282 struct io_pump {
1283 /* initialized by caller */
1284 int fd;
1285 int type; /* POLLOUT or POLLIN */
1286 union {
1287 struct {
1288 const char *buf;
1289 size_t len;
1290 } out;
1291 struct {
1292 struct strbuf *buf;
1293 size_t hint;
1294 } in;
1295 } u;
1297 /* returned by pump_io */
1298 int error; /* 0 for success, otherwise errno */
1300 /* internal use */
1301 struct pollfd *pfd;
1304 static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
1306 int pollsize = 0;
1307 int i;
1309 for (i = 0; i < nr; i++) {
1310 struct io_pump *io = &slots[i];
1311 if (io->fd < 0)
1312 continue;
1313 pfd[pollsize].fd = io->fd;
1314 pfd[pollsize].events = io->type;
1315 io->pfd = &pfd[pollsize++];
1318 if (!pollsize)
1319 return 0;
1321 if (poll(pfd, pollsize, -1) < 0) {
1322 if (errno == EINTR)
1323 return 1;
1324 die_errno("poll failed");
1327 for (i = 0; i < nr; i++) {
1328 struct io_pump *io = &slots[i];
1330 if (io->fd < 0)
1331 continue;
1333 if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
1334 continue;
1336 if (io->type == POLLOUT) {
1337 ssize_t len;
1340 * Don't use xwrite() here. It loops forever on EAGAIN,
1341 * and we're in our own poll() loop here.
1343 * Note that we lose xwrite()'s handling of MAX_IO_SIZE
1344 * and EINTR, so we have to implement those ourselves.
1346 len = write(io->fd, io->u.out.buf,
1347 io->u.out.len <= MAX_IO_SIZE ?
1348 io->u.out.len : MAX_IO_SIZE);
1349 if (len < 0) {
1350 if (errno != EINTR && errno != EAGAIN &&
1351 errno != ENOSPC) {
1352 io->error = errno;
1353 close(io->fd);
1354 io->fd = -1;
1356 } else {
1357 io->u.out.buf += len;
1358 io->u.out.len -= len;
1359 if (!io->u.out.len) {
1360 close(io->fd);
1361 io->fd = -1;
1366 if (io->type == POLLIN) {
1367 ssize_t len = strbuf_read_once(io->u.in.buf,
1368 io->fd, io->u.in.hint);
1369 if (len < 0)
1370 io->error = errno;
1371 if (len <= 0) {
1372 close(io->fd);
1373 io->fd = -1;
1378 return 1;
1381 static int pump_io(struct io_pump *slots, int nr)
1383 struct pollfd *pfd;
1384 int i;
1386 for (i = 0; i < nr; i++)
1387 slots[i].error = 0;
1389 ALLOC_ARRAY(pfd, nr);
1390 while (pump_io_round(slots, nr, pfd))
1391 ; /* nothing */
1392 free(pfd);
1394 /* There may be multiple errno values, so just pick the first. */
1395 for (i = 0; i < nr; i++) {
1396 if (slots[i].error) {
1397 errno = slots[i].error;
1398 return -1;
1401 return 0;
1405 int pipe_command(struct child_process *cmd,
1406 const char *in, size_t in_len,
1407 struct strbuf *out, size_t out_hint,
1408 struct strbuf *err, size_t err_hint)
1410 struct io_pump io[3];
1411 int nr = 0;
1413 if (in)
1414 cmd->in = -1;
1415 if (out)
1416 cmd->out = -1;
1417 if (err)
1418 cmd->err = -1;
1420 if (start_command(cmd) < 0)
1421 return -1;
1423 if (in) {
1424 if (enable_pipe_nonblock(cmd->in) < 0) {
1425 error_errno("unable to make pipe non-blocking");
1426 close(cmd->in);
1427 if (out)
1428 close(cmd->out);
1429 if (err)
1430 close(cmd->err);
1431 return -1;
1433 io[nr].fd = cmd->in;
1434 io[nr].type = POLLOUT;
1435 io[nr].u.out.buf = in;
1436 io[nr].u.out.len = in_len;
1437 nr++;
1439 if (out) {
1440 io[nr].fd = cmd->out;
1441 io[nr].type = POLLIN;
1442 io[nr].u.in.buf = out;
1443 io[nr].u.in.hint = out_hint;
1444 nr++;
1446 if (err) {
1447 io[nr].fd = cmd->err;
1448 io[nr].type = POLLIN;
1449 io[nr].u.in.buf = err;
1450 io[nr].u.in.hint = err_hint;
1451 nr++;
1454 if (pump_io(io, nr) < 0) {
1455 finish_command(cmd); /* throw away exit code */
1456 return -1;
1459 return finish_command(cmd);
1462 enum child_state {
1463 GIT_CP_FREE,
1464 GIT_CP_WORKING,
1465 GIT_CP_WAIT_CLEANUP,
1468 struct parallel_processes {
1469 size_t nr_processes;
1471 struct {
1472 enum child_state state;
1473 struct child_process process;
1474 struct strbuf err;
1475 void *data;
1476 } *children;
1478 * The struct pollfd is logically part of *children,
1479 * but the system call expects it as its own array.
1481 struct pollfd *pfd;
1483 unsigned shutdown : 1;
1485 size_t output_owner;
1486 struct strbuf buffered_output; /* of finished children */
1489 struct parallel_processes_for_signal {
1490 const struct run_process_parallel_opts *opts;
1491 const struct parallel_processes *pp;
1494 static void kill_children(const struct parallel_processes *pp,
1495 const struct run_process_parallel_opts *opts,
1496 int signo)
1498 for (size_t i = 0; i < opts->processes; i++)
1499 if (pp->children[i].state == GIT_CP_WORKING)
1500 kill(pp->children[i].process.pid, signo);
1503 static void kill_children_signal(const struct parallel_processes_for_signal *pp_sig,
1504 int signo)
1506 kill_children(pp_sig->pp, pp_sig->opts, signo);
1509 static struct parallel_processes_for_signal *pp_for_signal;
1511 static void handle_children_on_signal(int signo)
1513 kill_children_signal(pp_for_signal, signo);
1514 sigchain_pop(signo);
1515 raise(signo);
1518 static void pp_init(struct parallel_processes *pp,
1519 const struct run_process_parallel_opts *opts,
1520 struct parallel_processes_for_signal *pp_sig)
1522 const size_t n = opts->processes;
1524 if (!n)
1525 BUG("you must provide a non-zero number of processes!");
1527 trace_printf("run_processes_parallel: preparing to run up to %"PRIuMAX" tasks",
1528 (uintmax_t)n);
1530 if (!opts->get_next_task)
1531 BUG("you need to specify a get_next_task function");
1533 CALLOC_ARRAY(pp->children, n);
1534 if (!opts->ungroup)
1535 CALLOC_ARRAY(pp->pfd, n);
1537 for (size_t i = 0; i < n; i++) {
1538 strbuf_init(&pp->children[i].err, 0);
1539 child_process_init(&pp->children[i].process);
1540 if (pp->pfd) {
1541 pp->pfd[i].events = POLLIN | POLLHUP;
1542 pp->pfd[i].fd = -1;
1546 pp_sig->pp = pp;
1547 pp_sig->opts = opts;
1548 pp_for_signal = pp_sig;
1549 sigchain_push_common(handle_children_on_signal);
1552 static void pp_cleanup(struct parallel_processes *pp,
1553 const struct run_process_parallel_opts *opts)
1555 trace_printf("run_processes_parallel: done");
1556 for (size_t i = 0; i < opts->processes; i++) {
1557 strbuf_release(&pp->children[i].err);
1558 child_process_clear(&pp->children[i].process);
1561 free(pp->children);
1562 free(pp->pfd);
1565 * When get_next_task added messages to the buffer in its last
1566 * iteration, the buffered output is non empty.
1568 strbuf_write(&pp->buffered_output, stderr);
1569 strbuf_release(&pp->buffered_output);
1571 sigchain_pop_common();
1574 /* returns
1575 * 0 if a new task was started.
1576 * 1 if no new jobs was started (get_next_task ran out of work, non critical
1577 * problem with starting a new command)
1578 * <0 no new job was started, user wishes to shutdown early. Use negative code
1579 * to signal the children.
1581 static int pp_start_one(struct parallel_processes *pp,
1582 const struct run_process_parallel_opts *opts)
1584 size_t i;
1585 int code;
1587 for (i = 0; i < opts->processes; i++)
1588 if (pp->children[i].state == GIT_CP_FREE)
1589 break;
1590 if (i == opts->processes)
1591 BUG("bookkeeping is hard");
1594 * By default, do not inherit stdin from the parent process - otherwise,
1595 * all children would share stdin! Users may overwrite this to provide
1596 * something to the child's stdin by having their 'get_next_task'
1597 * callback assign 0 to .no_stdin and an appropriate integer to .in.
1599 pp->children[i].process.no_stdin = 1;
1601 code = opts->get_next_task(&pp->children[i].process,
1602 opts->ungroup ? NULL : &pp->children[i].err,
1603 opts->data,
1604 &pp->children[i].data);
1605 if (!code) {
1606 if (!opts->ungroup) {
1607 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1608 strbuf_reset(&pp->children[i].err);
1610 return 1;
1612 if (!opts->ungroup) {
1613 pp->children[i].process.err = -1;
1614 pp->children[i].process.stdout_to_stderr = 1;
1617 if (start_command(&pp->children[i].process)) {
1618 if (opts->start_failure)
1619 code = opts->start_failure(opts->ungroup ? NULL :
1620 &pp->children[i].err,
1621 opts->data,
1622 pp->children[i].data);
1623 else
1624 code = 0;
1626 if (!opts->ungroup) {
1627 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1628 strbuf_reset(&pp->children[i].err);
1630 if (code)
1631 pp->shutdown = 1;
1632 return code;
1635 pp->nr_processes++;
1636 pp->children[i].state = GIT_CP_WORKING;
1637 if (pp->pfd)
1638 pp->pfd[i].fd = pp->children[i].process.err;
1639 return 0;
1642 static void pp_buffer_stderr(struct parallel_processes *pp,
1643 const struct run_process_parallel_opts *opts,
1644 int output_timeout)
1646 while (poll(pp->pfd, opts->processes, output_timeout) < 0) {
1647 if (errno == EINTR)
1648 continue;
1649 pp_cleanup(pp, opts);
1650 die_errno("poll");
1653 /* Buffer output from all pipes. */
1654 for (size_t i = 0; i < opts->processes; i++) {
1655 if (pp->children[i].state == GIT_CP_WORKING &&
1656 pp->pfd[i].revents & (POLLIN | POLLHUP)) {
1657 int n = strbuf_read_once(&pp->children[i].err,
1658 pp->children[i].process.err, 0);
1659 if (n == 0) {
1660 close(pp->children[i].process.err);
1661 pp->children[i].state = GIT_CP_WAIT_CLEANUP;
1662 } else if (n < 0)
1663 if (errno != EAGAIN)
1664 die_errno("read");
1669 static void pp_output(const struct parallel_processes *pp)
1671 size_t i = pp->output_owner;
1673 if (pp->children[i].state == GIT_CP_WORKING &&
1674 pp->children[i].err.len) {
1675 strbuf_write(&pp->children[i].err, stderr);
1676 strbuf_reset(&pp->children[i].err);
1680 static int pp_collect_finished(struct parallel_processes *pp,
1681 const struct run_process_parallel_opts *opts)
1683 int code;
1684 size_t i;
1685 int result = 0;
1687 while (pp->nr_processes > 0) {
1688 for (i = 0; i < opts->processes; i++)
1689 if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
1690 break;
1691 if (i == opts->processes)
1692 break;
1694 code = finish_command(&pp->children[i].process);
1696 if (opts->task_finished)
1697 code = opts->task_finished(code, opts->ungroup ? NULL :
1698 &pp->children[i].err, opts->data,
1699 pp->children[i].data);
1700 else
1701 code = 0;
1703 if (code)
1704 result = code;
1705 if (code < 0)
1706 break;
1708 pp->nr_processes--;
1709 pp->children[i].state = GIT_CP_FREE;
1710 if (pp->pfd)
1711 pp->pfd[i].fd = -1;
1712 child_process_init(&pp->children[i].process);
1714 if (opts->ungroup) {
1715 ; /* no strbuf_*() work to do here */
1716 } else if (i != pp->output_owner) {
1717 strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
1718 strbuf_reset(&pp->children[i].err);
1719 } else {
1720 const size_t n = opts->processes;
1722 strbuf_write(&pp->children[i].err, stderr);
1723 strbuf_reset(&pp->children[i].err);
1725 /* Output all other finished child processes */
1726 strbuf_write(&pp->buffered_output, stderr);
1727 strbuf_reset(&pp->buffered_output);
1730 * Pick next process to output live.
1731 * NEEDSWORK:
1732 * For now we pick it randomly by doing a round
1733 * robin. Later we may want to pick the one with
1734 * the most output or the longest or shortest
1735 * running process time.
1737 for (i = 0; i < n; i++)
1738 if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
1739 break;
1740 pp->output_owner = (pp->output_owner + i) % n;
1743 return result;
1746 void run_processes_parallel(const struct run_process_parallel_opts *opts)
1748 int i, code;
1749 int output_timeout = 100;
1750 int spawn_cap = 4;
1751 struct parallel_processes_for_signal pp_sig;
1752 struct parallel_processes pp = {
1753 .buffered_output = STRBUF_INIT,
1755 /* options */
1756 const char *tr2_category = opts->tr2_category;
1757 const char *tr2_label = opts->tr2_label;
1758 const int do_trace2 = tr2_category && tr2_label;
1760 if (do_trace2)
1761 trace2_region_enter_printf(tr2_category, tr2_label, NULL,
1762 "max:%d", opts->processes);
1764 pp_init(&pp, opts, &pp_sig);
1765 while (1) {
1766 for (i = 0;
1767 i < spawn_cap && !pp.shutdown &&
1768 pp.nr_processes < opts->processes;
1769 i++) {
1770 code = pp_start_one(&pp, opts);
1771 if (!code)
1772 continue;
1773 if (code < 0) {
1774 pp.shutdown = 1;
1775 kill_children(&pp, opts, -code);
1777 break;
1779 if (!pp.nr_processes)
1780 break;
1781 if (opts->ungroup) {
1782 for (size_t i = 0; i < opts->processes; i++)
1783 pp.children[i].state = GIT_CP_WAIT_CLEANUP;
1784 } else {
1785 pp_buffer_stderr(&pp, opts, output_timeout);
1786 pp_output(&pp);
1788 code = pp_collect_finished(&pp, opts);
1789 if (code) {
1790 pp.shutdown = 1;
1791 if (code < 0)
1792 kill_children(&pp, opts,-code);
1796 pp_cleanup(&pp, opts);
1798 if (do_trace2)
1799 trace2_region_leave(tr2_category, tr2_label, NULL);
1802 int run_auto_maintenance(int quiet)
1804 int enabled;
1805 struct child_process maint = CHILD_PROCESS_INIT;
1807 if (!git_config_get_bool("maintenance.auto", &enabled) &&
1808 !enabled)
1809 return 0;
1811 maint.git_cmd = 1;
1812 maint.close_object_store = 1;
1813 strvec_pushl(&maint.args, "maintenance", "run", "--auto", NULL);
1814 strvec_push(&maint.args, quiet ? "--quiet" : "--no-quiet");
1816 return run_command(&maint);
1819 void prepare_other_repo_env(struct strvec *env, const char *new_git_dir)
1821 const char * const *var;
1823 for (var = local_repo_env; *var; var++) {
1824 if (strcmp(*var, CONFIG_DATA_ENVIRONMENT) &&
1825 strcmp(*var, CONFIG_COUNT_ENVIRONMENT))
1826 strvec_push(env, *var);
1828 strvec_pushf(env, "%s=%s", GIT_DIR_ENVIRONMENT, new_git_dir);
1831 enum start_bg_result start_bg_command(struct child_process *cmd,
1832 start_bg_wait_cb *wait_cb,
1833 void *cb_data,
1834 unsigned int timeout_sec)
1836 enum start_bg_result sbgr = SBGR_ERROR;
1837 int ret;
1838 int wait_status;
1839 pid_t pid_seen;
1840 time_t time_limit;
1843 * We do not allow clean-on-exit because the child process
1844 * should persist in the background and possibly/probably
1845 * after this process exits. So we don't want to kill the
1846 * child during our atexit routine.
1848 if (cmd->clean_on_exit)
1849 BUG("start_bg_command() does not allow non-zero clean_on_exit");
1851 if (!cmd->trace2_child_class)
1852 cmd->trace2_child_class = "background";
1854 ret = start_command(cmd);
1855 if (ret) {
1857 * We assume that if `start_command()` fails, we
1858 * either get a complete `trace2_child_start() /
1859 * trace2_child_exit()` pair or it fails before the
1860 * `trace2_child_start()` is emitted, so we do not
1861 * need to worry about it here.
1863 * We also assume that `start_command()` does not add
1864 * us to the cleanup list. And that it calls
1865 * `child_process_clear()`.
1867 sbgr = SBGR_ERROR;
1868 goto done;
1871 time(&time_limit);
1872 time_limit += timeout_sec;
1874 wait:
1875 pid_seen = waitpid(cmd->pid, &wait_status, WNOHANG);
1877 if (!pid_seen) {
1879 * The child is currently running. Ask the callback
1880 * if the child is ready to do work or whether we
1881 * should keep waiting for it to boot up.
1883 ret = (*wait_cb)(cmd, cb_data);
1884 if (!ret) {
1886 * The child is running and "ready".
1888 trace2_child_ready(cmd, "ready");
1889 sbgr = SBGR_READY;
1890 goto done;
1891 } else if (ret > 0) {
1893 * The callback said to give it more time to boot up
1894 * (subject to our timeout limit).
1896 time_t now;
1898 time(&now);
1899 if (now < time_limit)
1900 goto wait;
1903 * Our timeout has expired. We don't try to
1904 * kill the child, but rather let it continue
1905 * (hopefully) trying to startup.
1907 trace2_child_ready(cmd, "timeout");
1908 sbgr = SBGR_TIMEOUT;
1909 goto done;
1910 } else {
1912 * The cb gave up on this child. It is still running,
1913 * but our cb got an error trying to probe it.
1915 trace2_child_ready(cmd, "error");
1916 sbgr = SBGR_CB_ERROR;
1917 goto done;
1921 else if (pid_seen == cmd->pid) {
1922 int child_code = -1;
1925 * The child started, but exited or was terminated
1926 * before becoming "ready".
1928 * We try to match the behavior of `wait_or_whine()`
1929 * WRT the handling of WIFSIGNALED() and WIFEXITED()
1930 * and convert the child's status to a return code for
1931 * tracing purposes and emit the `trace2_child_exit()`
1932 * event.
1934 * We do not want the wait_or_whine() error message
1935 * because we will be called by client-side library
1936 * routines.
1938 if (WIFEXITED(wait_status))
1939 child_code = WEXITSTATUS(wait_status);
1940 else if (WIFSIGNALED(wait_status))
1941 child_code = WTERMSIG(wait_status) + 128;
1942 trace2_child_exit(cmd, child_code);
1944 sbgr = SBGR_DIED;
1945 goto done;
1948 else if (pid_seen < 0 && errno == EINTR)
1949 goto wait;
1951 trace2_child_exit(cmd, -1);
1952 sbgr = SBGR_ERROR;
1954 done:
1955 child_process_clear(cmd);
1956 invalidate_lstat_cache();
1957 return sbgr;