2 * LibXDiff by Davide Libenzi ( File Differential Library )
3 * Copyright (C) 2003 Davide Libenzi
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2.1 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Davide Libenzi <davidel@xmailserver.org>
27 #define XDL_MAX_COST_MIN 256
28 #define XDL_HEUR_MIN_COST 256
29 #define XDL_LINE_MAX (long)((1UL << (CHAR_BIT * sizeof(long) - 1)) - 1)
30 #define XDL_SNAKE_CNT 20
35 typedef struct s_xdpsplit
{
43 static long xdl_split(unsigned long const *ha1
, long off1
, long lim1
,
44 unsigned long const *ha2
, long off2
, long lim2
,
45 long *kvdf
, long *kvdb
, int need_min
, xdpsplit_t
*spl
,
47 static xdchange_t
*xdl_add_change(xdchange_t
*xscr
, long i1
, long i2
, long chg1
, long chg2
);
54 * See "An O(ND) Difference Algorithm and its Variations", by Eugene Myers.
55 * Basically considers a "box" (off1, off2, lim1, lim2) and scan from both
56 * the forward diagonal starting from (off1, off2) and the backward diagonal
57 * starting from (lim1, lim2). If the K values on the same diagonal crosses
58 * returns the furthest point of reach. We might end up having to expensive
59 * cases using this algorithm is full, so a little bit of heuristic is needed
60 * to cut the search and to return a suboptimal point.
62 static long xdl_split(unsigned long const *ha1
, long off1
, long lim1
,
63 unsigned long const *ha2
, long off2
, long lim2
,
64 long *kvdf
, long *kvdb
, int need_min
, xdpsplit_t
*spl
,
66 long dmin
= off1
- lim2
, dmax
= lim1
- off2
;
67 long fmid
= off1
- off2
, bmid
= lim1
- lim2
;
68 long odd
= (fmid
- bmid
) & 1;
69 long fmin
= fmid
, fmax
= fmid
;
70 long bmin
= bmid
, bmax
= bmid
;
71 long ec
, d
, i1
, i2
, prev1
, best
, dd
, v
, k
;
74 * Set initial diagonal values for both forward and backward path.
83 * We need to extent the diagonal "domain" by one. If the next
84 * values exits the box boundaries we need to change it in the
85 * opposite direction because (max - min) must be a power of two.
86 * Also we initialize the external K value to -1 so that we can
87 * avoid extra conditions check inside the core loop.
90 kvdf
[--fmin
- 1] = -1;
94 kvdf
[++fmax
+ 1] = -1;
98 for (d
= fmax
; d
>= fmin
; d
-= 2) {
99 if (kvdf
[d
- 1] >= kvdf
[d
+ 1])
100 i1
= kvdf
[d
- 1] + 1;
105 for (; i1
< lim1
&& i2
< lim2
&& ha1
[i1
] == ha2
[i2
]; i1
++, i2
++);
106 if (i1
- prev1
> xenv
->snake_cnt
)
109 if (odd
&& bmin
<= d
&& d
<= bmax
&& kvdb
[d
] <= i1
) {
112 spl
->min_lo
= spl
->min_hi
= 1;
118 * We need to extent the diagonal "domain" by one. If the next
119 * values exits the box boundaries we need to change it in the
120 * opposite direction because (max - min) must be a power of two.
121 * Also we initialize the external K value to -1 so that we can
122 * avoid extra conditions check inside the core loop.
125 kvdb
[--bmin
- 1] = XDL_LINE_MAX
;
129 kvdb
[++bmax
+ 1] = XDL_LINE_MAX
;
133 for (d
= bmax
; d
>= bmin
; d
-= 2) {
134 if (kvdb
[d
- 1] < kvdb
[d
+ 1])
137 i1
= kvdb
[d
+ 1] - 1;
140 for (; i1
> off1
&& i2
> off2
&& ha1
[i1
- 1] == ha2
[i2
- 1]; i1
--, i2
--);
141 if (prev1
- i1
> xenv
->snake_cnt
)
144 if (!odd
&& fmin
<= d
&& d
<= fmax
&& i1
<= kvdf
[d
]) {
147 spl
->min_lo
= spl
->min_hi
= 1;
156 * If the edit cost is above the heuristic trigger and if
157 * we got a good snake, we sample current diagonals to see
158 * if some of the, have reached an "interesting" path. Our
159 * measure is a function of the distance from the diagonal
160 * corner (i1 + i2) penalized with the distance from the
161 * mid diagonal itself. If this value is above the current
162 * edit cost times a magic factor (XDL_K_HEUR) we consider
165 if (got_snake
&& ec
> xenv
->heur_min
) {
166 for (best
= 0, d
= fmax
; d
>= fmin
; d
-= 2) {
167 dd
= d
> fmid
? d
- fmid
: fmid
- d
;
170 v
= (i1
- off1
) + (i2
- off2
) - dd
;
172 if (v
> XDL_K_HEUR
* ec
&& v
> best
&&
173 off1
+ xenv
->snake_cnt
<= i1
&& i1
< lim1
&&
174 off2
+ xenv
->snake_cnt
<= i2
&& i2
< lim2
) {
175 for (k
= 1; ha1
[i1
- k
] == ha2
[i2
- k
]; k
++)
176 if (k
== xenv
->snake_cnt
) {
190 for (best
= 0, d
= bmax
; d
>= bmin
; d
-= 2) {
191 dd
= d
> bmid
? d
- bmid
: bmid
- d
;
194 v
= (lim1
- i1
) + (lim2
- i2
) - dd
;
196 if (v
> XDL_K_HEUR
* ec
&& v
> best
&&
197 off1
< i1
&& i1
<= lim1
- xenv
->snake_cnt
&&
198 off2
< i2
&& i2
<= lim2
- xenv
->snake_cnt
) {
199 for (k
= 0; ha1
[i1
+ k
] == ha2
[i2
+ k
]; k
++)
200 if (k
== xenv
->snake_cnt
- 1) {
216 * Enough is enough. We spent too much time here and now we collect
217 * the furthest reaching path using the (i1 + i2) measure.
219 if (ec
>= xenv
->mxcost
) {
220 long fbest
, fbest1
, bbest
, bbest1
;
223 for (d
= fmax
; d
>= fmin
; d
-= 2) {
224 i1
= XDL_MIN(kvdf
[d
], lim1
);
227 i1
= lim2
+ d
, i2
= lim2
;
228 if (fbest
< i1
+ i2
) {
234 bbest
= bbest1
= XDL_LINE_MAX
;
235 for (d
= bmax
; d
>= bmin
; d
-= 2) {
236 i1
= XDL_MAX(off1
, kvdb
[d
]);
239 i1
= off2
+ d
, i2
= off2
;
240 if (i1
+ i2
< bbest
) {
246 if ((lim1
+ lim2
) - bbest
< fbest
- (off1
+ off2
)) {
248 spl
->i2
= fbest
- fbest1
;
253 spl
->i2
= bbest
- bbest1
;
264 * Rule: "Divide et Impera". Recursively split the box in sub-boxes by calling
265 * the box splitting function. Note that the real job (marking changed lines)
266 * is done in the two boundary reaching checks.
268 int xdl_recs_cmp(diffdata_t
*dd1
, long off1
, long lim1
,
269 diffdata_t
*dd2
, long off2
, long lim2
,
270 long *kvdf
, long *kvdb
, int need_min
, xdalgoenv_t
*xenv
) {
271 unsigned long const *ha1
= dd1
->ha
, *ha2
= dd2
->ha
;
274 * Shrink the box by walking through each diagonal snake (SW and NE).
276 for (; off1
< lim1
&& off2
< lim2
&& ha1
[off1
] == ha2
[off2
]; off1
++, off2
++);
277 for (; off1
< lim1
&& off2
< lim2
&& ha1
[lim1
- 1] == ha2
[lim2
- 1]; lim1
--, lim2
--);
280 * If one dimension is empty, then all records on the other one must
281 * be obviously changed.
284 char *rchg2
= dd2
->rchg
;
285 long *rindex2
= dd2
->rindex
;
287 for (; off2
< lim2
; off2
++)
288 rchg2
[rindex2
[off2
]] = 1;
289 } else if (off2
== lim2
) {
290 char *rchg1
= dd1
->rchg
;
291 long *rindex1
= dd1
->rindex
;
293 for (; off1
< lim1
; off1
++)
294 rchg1
[rindex1
[off1
]] = 1;
302 if (xdl_split(ha1
, off1
, lim1
, ha2
, off2
, lim2
, kvdf
, kvdb
,
303 need_min
, &spl
, xenv
) < 0) {
311 if (xdl_recs_cmp(dd1
, off1
, spl
.i1
, dd2
, off2
, spl
.i2
,
312 kvdf
, kvdb
, spl
.min_lo
, xenv
) < 0 ||
313 xdl_recs_cmp(dd1
, spl
.i1
, lim1
, dd2
, spl
.i2
, lim2
,
314 kvdf
, kvdb
, spl
.min_hi
, xenv
) < 0) {
324 int xdl_do_diff(mmfile_t
*mf1
, mmfile_t
*mf2
, xpparam_t
const *xpp
,
327 long *kvd
, *kvdf
, *kvdb
;
331 if (XDF_DIFF_ALG(xpp
->flags
) == XDF_PATIENCE_DIFF
)
332 return xdl_do_patience_diff(mf1
, mf2
, xpp
, xe
);
334 if (XDF_DIFF_ALG(xpp
->flags
) == XDF_HISTOGRAM_DIFF
)
335 return xdl_do_histogram_diff(mf1
, mf2
, xpp
, xe
);
337 if (xdl_prepare_env(mf1
, mf2
, xpp
, xe
) < 0) {
343 * Allocate and setup K vectors to be used by the differential algorithm.
344 * One is to store the forward path and one to store the backward path.
346 ndiags
= xe
->xdf1
.nreff
+ xe
->xdf2
.nreff
+ 3;
347 if (!(kvd
= (long *) xdl_malloc((2 * ndiags
+ 2) * sizeof(long)))) {
353 kvdb
= kvdf
+ ndiags
;
354 kvdf
+= xe
->xdf2
.nreff
+ 1;
355 kvdb
+= xe
->xdf2
.nreff
+ 1;
357 xenv
.mxcost
= xdl_bogosqrt(ndiags
);
358 if (xenv
.mxcost
< XDL_MAX_COST_MIN
)
359 xenv
.mxcost
= XDL_MAX_COST_MIN
;
360 xenv
.snake_cnt
= XDL_SNAKE_CNT
;
361 xenv
.heur_min
= XDL_HEUR_MIN_COST
;
363 dd1
.nrec
= xe
->xdf1
.nreff
;
364 dd1
.ha
= xe
->xdf1
.ha
;
365 dd1
.rchg
= xe
->xdf1
.rchg
;
366 dd1
.rindex
= xe
->xdf1
.rindex
;
367 dd2
.nrec
= xe
->xdf2
.nreff
;
368 dd2
.ha
= xe
->xdf2
.ha
;
369 dd2
.rchg
= xe
->xdf2
.rchg
;
370 dd2
.rindex
= xe
->xdf2
.rindex
;
372 if (xdl_recs_cmp(&dd1
, 0, dd1
.nrec
, &dd2
, 0, dd2
.nrec
,
373 kvdf
, kvdb
, (xpp
->flags
& XDF_NEED_MINIMAL
) != 0, &xenv
) < 0) {
386 static xdchange_t
*xdl_add_change(xdchange_t
*xscr
, long i1
, long i2
, long chg1
, long chg2
) {
389 if (!(xch
= (xdchange_t
*) xdl_malloc(sizeof(xdchange_t
))))
403 static int is_blank_line(xrecord_t
*rec
, long flags
)
405 return xdl_blankline(rec
->ptr
, rec
->size
, flags
);
408 static int recs_match(xrecord_t
*rec1
, xrecord_t
*rec2
, long flags
)
410 return (rec1
->ha
== rec2
->ha
&&
411 xdl_recmatch(rec1
->ptr
, rec1
->size
,
412 rec2
->ptr
, rec2
->size
,
417 * If a line is indented more than this, get_indent() just returns this value.
418 * This avoids having to do absurd amounts of work for data that are not
419 * human-readable text, and also ensures that the output of get_indent fits within
422 #define MAX_INDENT 200
425 * Return the amount of indentation of the specified line, treating TAB as 8
426 * columns. Return -1 if line is empty or contains only whitespace. Clamp the
427 * output value at MAX_INDENT.
429 static int get_indent(xrecord_t
*rec
)
434 for (i
= 0; i
< rec
->size
; i
++) {
435 char c
= rec
->ptr
[i
];
443 /* ignore other whitespace characters */
445 if (ret
>= MAX_INDENT
)
449 /* The line contains only whitespace. */
454 * If more than this number of consecutive blank rows are found, just return this
455 * value. This avoids requiring O(N^2) work for pathological cases, and also
456 * ensures that the output of score_split fits in an int.
458 #define MAX_BLANKS 20
460 /* Characteristics measured about a hypothetical split position. */
461 struct split_measurement
{
463 * Is the split at the end of the file (aside from any blank lines)?
468 * How much is the line immediately following the split indented (or -1 if
469 * the line is blank):
474 * How many consecutive lines above the split are blank?
479 * How much is the nearest non-blank line above the split indented (or -1
480 * if there is no such line)?
485 * How many lines after the line following the split are blank?
490 * How much is the nearest non-blank line after the line following the
491 * split indented (or -1 if there is no such line)?
497 /* The effective indent of this split (smaller is preferred). */
498 int effective_indent
;
500 /* Penalty for this split (smaller is preferred). */
505 * Fill m with information about a hypothetical split of xdf above line split.
507 static void measure_split(const xdfile_t
*xdf
, long split
,
508 struct split_measurement
*m
)
512 if (split
>= xdf
->nrec
) {
517 m
->indent
= get_indent(xdf
->recs
[split
]);
522 for (i
= split
- 1; i
>= 0; i
--) {
523 m
->pre_indent
= get_indent(xdf
->recs
[i
]);
524 if (m
->pre_indent
!= -1)
527 if (m
->pre_blank
== MAX_BLANKS
) {
535 for (i
= split
+ 1; i
< xdf
->nrec
; i
++) {
536 m
->post_indent
= get_indent(xdf
->recs
[i
]);
537 if (m
->post_indent
!= -1)
540 if (m
->post_blank
== MAX_BLANKS
) {
548 * The empirically-determined weight factors used by score_split() below.
549 * Larger values means that the position is a less favorable place to split.
551 * Note that scores are only ever compared against each other, so multiplying
552 * all of these weight/penalty values by the same factor wouldn't change the
553 * heuristic's behavior. Still, we need to set that arbitrary scale *somehow*.
554 * In practice, these numbers are chosen to be large enough that they can be
555 * adjusted relative to each other with sufficient precision despite using
559 /* Penalty if there are no non-blank lines before the split */
560 #define START_OF_FILE_PENALTY 1
562 /* Penalty if there are no non-blank lines after the split */
563 #define END_OF_FILE_PENALTY 21
565 /* Multiplier for the number of blank lines around the split */
566 #define TOTAL_BLANK_WEIGHT (-30)
568 /* Multiplier for the number of blank lines after the split */
569 #define POST_BLANK_WEIGHT 6
572 * Penalties applied if the line is indented more than its predecessor
574 #define RELATIVE_INDENT_PENALTY (-4)
575 #define RELATIVE_INDENT_WITH_BLANK_PENALTY 10
578 * Penalties applied if the line is indented less than both its predecessor and
581 #define RELATIVE_OUTDENT_PENALTY 24
582 #define RELATIVE_OUTDENT_WITH_BLANK_PENALTY 17
585 * Penalties applied if the line is indented less than its predecessor but not
586 * less than its successor
588 #define RELATIVE_DEDENT_PENALTY 23
589 #define RELATIVE_DEDENT_WITH_BLANK_PENALTY 17
592 * We only consider whether the sum of the effective indents for splits are
593 * less than (-1), equal to (0), or greater than (+1) each other. The resulting
594 * value is multiplied by the following weight and combined with the penalty to
595 * determine the better of two scores.
597 #define INDENT_WEIGHT 60
600 * Compute a badness score for the hypothetical split whose measurements are
601 * stored in m. The weight factors were determined empirically using the tools and
602 * corpus described in
604 * https://github.com/mhagger/diff-slider-tools
606 * Also see that project if you want to improve the weights based on, for example,
607 * a larger or more diverse corpus.
609 static void score_add_split(const struct split_measurement
*m
, struct split_score
*s
)
612 * A place to accumulate penalty factors (positive makes this index more
615 int post_blank
, total_blank
, indent
, any_blanks
;
617 if (m
->pre_indent
== -1 && m
->pre_blank
== 0)
618 s
->penalty
+= START_OF_FILE_PENALTY
;
621 s
->penalty
+= END_OF_FILE_PENALTY
;
624 * Set post_blank to the number of blank lines following the split,
625 * including the line immediately after the split:
627 post_blank
= (m
->indent
== -1) ? 1 + m
->post_blank
: 0;
628 total_blank
= m
->pre_blank
+ post_blank
;
630 /* Penalties based on nearby blank lines: */
631 s
->penalty
+= TOTAL_BLANK_WEIGHT
* total_blank
;
632 s
->penalty
+= POST_BLANK_WEIGHT
* post_blank
;
637 indent
= m
->post_indent
;
639 any_blanks
= (total_blank
!= 0);
641 /* Note that the effective indent is -1 at the end of the file: */
642 s
->effective_indent
+= indent
;
645 /* No additional adjustments needed. */
646 } else if (m
->pre_indent
== -1) {
647 /* No additional adjustments needed. */
648 } else if (indent
> m
->pre_indent
) {
650 * The line is indented more than its predecessor.
652 s
->penalty
+= any_blanks
?
653 RELATIVE_INDENT_WITH_BLANK_PENALTY
:
654 RELATIVE_INDENT_PENALTY
;
655 } else if (indent
== m
->pre_indent
) {
657 * The line has the same indentation level as its predecessor.
658 * No additional adjustments needed.
662 * The line is indented less than its predecessor. It could be
663 * the block terminator of the previous block, but it could
664 * also be the start of a new block (e.g., an "else" block, or
665 * maybe the previous block didn't have a block terminator).
666 * Try to distinguish those cases based on what comes next:
668 if (m
->post_indent
!= -1 && m
->post_indent
> indent
) {
670 * The following line is indented more. So it is likely
671 * that this line is the start of a block.
673 s
->penalty
+= any_blanks
?
674 RELATIVE_OUTDENT_WITH_BLANK_PENALTY
:
675 RELATIVE_OUTDENT_PENALTY
;
678 * That was probably the end of a block.
680 s
->penalty
+= any_blanks
?
681 RELATIVE_DEDENT_WITH_BLANK_PENALTY
:
682 RELATIVE_DEDENT_PENALTY
;
687 static int score_cmp(struct split_score
*s1
, struct split_score
*s2
)
689 /* -1 if s1.effective_indent < s2->effective_indent, etc. */
690 int cmp_indents
= ((s1
->effective_indent
> s2
->effective_indent
) -
691 (s1
->effective_indent
< s2
->effective_indent
));
693 return INDENT_WEIGHT
* cmp_indents
+ (s1
->penalty
- s2
->penalty
);
697 * Represent a group of changed lines in an xdfile_t (i.e., a contiguous group
698 * of lines that was inserted or deleted from the corresponding version of the
699 * file). We consider there to be such a group at the beginning of the file, at
700 * the end of the file, and between any two unchanged lines, though most such
701 * groups will usually be empty.
703 * If the first line in a group is equal to the line following the group, then
704 * the group can be slid down. Similarly, if the last line in a group is equal
705 * to the line preceding the group, then the group can be slid up. See
706 * group_slide_down() and group_slide_up().
708 * Note that loops that are testing for changed lines in xdf->rchg do not need
709 * index bounding since the array is prepared with a zero at position -1 and N.
713 * The index of the first changed line in the group, or the index of
714 * the unchanged line above which the (empty) group is located.
719 * The index of the first unchanged line after the group. For an empty
720 * group, end is equal to start.
726 * Initialize g to point at the first group in xdf.
728 static void group_init(xdfile_t
*xdf
, struct xdlgroup
*g
)
730 g
->start
= g
->end
= 0;
731 while (xdf
->rchg
[g
->end
])
736 * Move g to describe the next (possibly empty) group in xdf and return 0. If g
737 * is already at the end of the file, do nothing and return -1.
739 static inline int group_next(xdfile_t
*xdf
, struct xdlgroup
*g
)
741 if (g
->end
== xdf
->nrec
)
744 g
->start
= g
->end
+ 1;
745 for (g
->end
= g
->start
; xdf
->rchg
[g
->end
]; g
->end
++)
752 * Move g to describe the previous (possibly empty) group in xdf and return 0.
753 * If g is already at the beginning of the file, do nothing and return -1.
755 static inline int group_previous(xdfile_t
*xdf
, struct xdlgroup
*g
)
760 g
->end
= g
->start
- 1;
761 for (g
->start
= g
->end
; xdf
->rchg
[g
->start
- 1]; g
->start
--)
768 * If g can be slid toward the end of the file, do so, and if it bumps into a
769 * following group, expand this group to include it. Return 0 on success or -1
770 * if g cannot be slid down.
772 static int group_slide_down(xdfile_t
*xdf
, struct xdlgroup
*g
, long flags
)
774 if (g
->end
< xdf
->nrec
&&
775 recs_match(xdf
->recs
[g
->start
], xdf
->recs
[g
->end
], flags
)) {
776 xdf
->rchg
[g
->start
++] = 0;
777 xdf
->rchg
[g
->end
++] = 1;
779 while (xdf
->rchg
[g
->end
])
789 * If g can be slid toward the beginning of the file, do so, and if it bumps
790 * into a previous group, expand this group to include it. Return 0 on success
791 * or -1 if g cannot be slid up.
793 static int group_slide_up(xdfile_t
*xdf
, struct xdlgroup
*g
, long flags
)
796 recs_match(xdf
->recs
[g
->start
- 1], xdf
->recs
[g
->end
- 1], flags
)) {
797 xdf
->rchg
[--g
->start
] = 1;
798 xdf
->rchg
[--g
->end
] = 0;
800 while (xdf
->rchg
[g
->start
- 1])
809 static void xdl_bug(const char *msg
)
811 fprintf(stderr
, "BUG: %s\n", msg
);
816 * Move back and forward change groups for a consistent and pretty diff output.
817 * This also helps in finding joinable change groups and reducing the diff
820 int xdl_change_compact(xdfile_t
*xdf
, xdfile_t
*xdfo
, long flags
) {
821 struct xdlgroup g
, go
;
822 long earliest_end
, end_matching_other
;
824 unsigned int blank_lines
;
827 group_init(xdfo
, &go
);
830 /* If the group is empty in the to-be-compacted file, skip it: */
831 if (g
.end
== g
.start
)
835 * Now shift the change up and then down as far as possible in
836 * each direction. If it bumps into any other changes, merge them.
839 groupsize
= g
.end
- g
.start
;
842 * Keep track of the last "end" index that causes this
843 * group to align with a group of changed lines in the
844 * other file. -1 indicates that we haven't found such
847 end_matching_other
= -1;
850 * Boolean value that records whether there are any blank
851 * lines that could be made to be the last line of this
856 /* Shift the group backward as much as possible: */
857 while (!group_slide_up(xdf
, &g
, flags
))
858 if (group_previous(xdfo
, &go
))
859 xdl_bug("group sync broken sliding up");
862 * This is this highest that this group can be shifted.
863 * Record its end index:
865 earliest_end
= g
.end
;
867 if (go
.end
> go
.start
)
868 end_matching_other
= g
.end
;
870 /* Now shift the group forward as far as possible: */
873 blank_lines
= is_blank_line(
874 xdf
->recs
[g
.end
- 1],
877 if (group_slide_down(xdf
, &g
, flags
))
879 if (group_next(xdfo
, &go
))
880 xdl_bug("group sync broken sliding down");
882 if (go
.end
> go
.start
)
883 end_matching_other
= g
.end
;
885 } while (groupsize
!= g
.end
- g
.start
);
888 * If the group can be shifted, then we can possibly use this
889 * freedom to produce a more intuitive diff.
891 * The group is currently shifted as far down as possible, so the
892 * heuristics below only have to handle upwards shifts.
895 if (g
.end
== earliest_end
) {
896 /* no shifting was possible */
897 } else if (end_matching_other
!= -1) {
899 * Move the possibly merged group of changes back to line
900 * up with the last group of changes from the other file
901 * that it can align with.
903 while (go
.end
== go
.start
) {
904 if (group_slide_up(xdf
, &g
, flags
))
905 xdl_bug("match disappeared");
906 if (group_previous(xdfo
, &go
))
907 xdl_bug("group sync broken sliding to match");
909 } else if ((flags
& XDF_COMPACTION_HEURISTIC
) && blank_lines
) {
911 * Compaction heuristic: if it is possible to shift the
912 * group to make its bottom line a blank line, do so.
914 * As we already shifted the group forward as far as
915 * possible in the earlier loop, we only need to handle
916 * backward shifts, not forward ones.
918 while (!is_blank_line(xdf
->recs
[g
.end
- 1], flags
)) {
919 if (group_slide_up(xdf
, &g
, flags
))
920 xdl_bug("blank line disappeared");
921 if (group_previous(xdfo
, &go
))
922 xdl_bug("group sync broken sliding to blank line");
924 } else if (flags
& XDF_INDENT_HEURISTIC
) {
926 * Indent heuristic: a group of pure add/delete lines
927 * implies two splits, one between the end of the "before"
928 * context and the start of the group, and another between
929 * the end of the group and the beginning of the "after"
930 * context. Some splits are aesthetically better and some
931 * are worse. We compute a badness "score" for each split,
932 * and add the scores for the two splits to define a
933 * "score" for each position that the group can be shifted
934 * to. Then we pick the shift with the lowest score.
936 long shift
, best_shift
= -1;
937 struct split_score best_score
;
939 for (shift
= earliest_end
; shift
<= g
.end
; shift
++) {
940 struct split_measurement m
;
941 struct split_score score
= {0, 0};
943 measure_split(xdf
, shift
, &m
);
944 score_add_split(&m
, &score
);
945 measure_split(xdf
, shift
- groupsize
, &m
);
946 score_add_split(&m
, &score
);
947 if (best_shift
== -1 ||
948 score_cmp(&score
, &best_score
) <= 0) {
949 best_score
.effective_indent
= score
.effective_indent
;
950 best_score
.penalty
= score
.penalty
;
955 while (g
.end
> best_shift
) {
956 if (group_slide_up(xdf
, &g
, flags
))
957 xdl_bug("best shift unreached");
958 if (group_previous(xdfo
, &go
))
959 xdl_bug("group sync broken sliding to blank line");
964 /* Move past the just-processed group: */
965 if (group_next(xdf
, &g
))
967 if (group_next(xdfo
, &go
))
968 xdl_bug("group sync broken moving to next group");
971 if (!group_next(xdfo
, &go
))
972 xdl_bug("group sync broken at end of file");
978 int xdl_build_script(xdfenv_t
*xe
, xdchange_t
**xscr
) {
979 xdchange_t
*cscr
= NULL
, *xch
;
980 char *rchg1
= xe
->xdf1
.rchg
, *rchg2
= xe
->xdf2
.rchg
;
984 * Trivial. Collects "groups" of changes and creates an edit script.
986 for (i1
= xe
->xdf1
.nrec
, i2
= xe
->xdf2
.nrec
; i1
>= 0 || i2
>= 0; i1
--, i2
--)
987 if (rchg1
[i1
- 1] || rchg2
[i2
- 1]) {
988 for (l1
= i1
; rchg1
[i1
- 1]; i1
--);
989 for (l2
= i2
; rchg2
[i2
- 1]; i2
--);
991 if (!(xch
= xdl_add_change(cscr
, i1
, i2
, l1
- i1
, l2
- i2
))) {
992 xdl_free_script(cscr
);
1004 void xdl_free_script(xdchange_t
*xscr
) {
1007 while ((xch
= xscr
) != NULL
) {
1013 static int xdl_call_hunk_func(xdfenv_t
*xe
, xdchange_t
*xscr
, xdemitcb_t
*ecb
,
1014 xdemitconf_t
const *xecfg
)
1016 xdchange_t
*xch
, *xche
;
1018 for (xch
= xscr
; xch
; xch
= xche
->next
) {
1019 xche
= xdl_get_hunk(&xch
, xecfg
);
1022 if (xecfg
->hunk_func(xch
->i1
, xche
->i1
+ xche
->chg1
- xch
->i1
,
1023 xch
->i2
, xche
->i2
+ xche
->chg2
- xch
->i2
,
1030 static void xdl_mark_ignorable(xdchange_t
*xscr
, xdfenv_t
*xe
, long flags
)
1034 for (xch
= xscr
; xch
; xch
= xch
->next
) {
1039 rec
= &xe
->xdf1
.recs
[xch
->i1
];
1040 for (i
= 0; i
< xch
->chg1
&& ignore
; i
++)
1041 ignore
= xdl_blankline(rec
[i
]->ptr
, rec
[i
]->size
, flags
);
1043 rec
= &xe
->xdf2
.recs
[xch
->i2
];
1044 for (i
= 0; i
< xch
->chg2
&& ignore
; i
++)
1045 ignore
= xdl_blankline(rec
[i
]->ptr
, rec
[i
]->size
, flags
);
1047 xch
->ignore
= ignore
;
1051 int xdl_diff(mmfile_t
*mf1
, mmfile_t
*mf2
, xpparam_t
const *xpp
,
1052 xdemitconf_t
const *xecfg
, xdemitcb_t
*ecb
) {
1055 emit_func_t ef
= xecfg
->hunk_func
? xdl_call_hunk_func
: xdl_emit_diff
;
1057 if (xdl_do_diff(mf1
, mf2
, xpp
, &xe
) < 0) {
1061 if (xdl_change_compact(&xe
.xdf1
, &xe
.xdf2
, xpp
->flags
) < 0 ||
1062 xdl_change_compact(&xe
.xdf2
, &xe
.xdf1
, xpp
->flags
) < 0 ||
1063 xdl_build_script(&xe
, &xscr
) < 0) {
1069 if (xpp
->flags
& XDF_IGNORE_BLANK_LINES
)
1070 xdl_mark_ignorable(xscr
, &xe
, xpp
->flags
);
1072 if (ef(&xe
, xscr
, ecb
, xecfg
) < 0) {
1074 xdl_free_script(xscr
);
1078 xdl_free_script(xscr
);