1 #include "git-compat-util.h"
5 #include "read-cache-ll.h"
6 #include "split-index.h"
10 struct split_index
*init_split_index(struct index_state
*istate
)
12 if (!istate
->split_index
) {
13 if (istate
->sparse_index
)
14 die(_("cannot use split index with a sparse index"));
16 CALLOC_ARRAY(istate
->split_index
, 1);
17 istate
->split_index
->refcount
= 1;
19 return istate
->split_index
;
22 int read_link_extension(struct index_state
*istate
,
23 const void *data_
, unsigned long sz
)
25 const unsigned char *data
= data_
;
26 struct split_index
*si
;
29 if (sz
< the_hash_algo
->rawsz
)
30 return error("corrupt link extension (too short)");
31 si
= init_split_index(istate
);
32 oidread(&si
->base_oid
, data
);
33 data
+= the_hash_algo
->rawsz
;
34 sz
-= the_hash_algo
->rawsz
;
37 si
->delete_bitmap
= ewah_new();
38 ret
= ewah_read_mmap(si
->delete_bitmap
, data
, sz
);
40 return error("corrupt delete bitmap in link extension");
43 si
->replace_bitmap
= ewah_new();
44 ret
= ewah_read_mmap(si
->replace_bitmap
, data
, sz
);
46 return error("corrupt replace bitmap in link extension");
48 return error("garbage at the end of link extension");
52 int write_link_extension(struct strbuf
*sb
,
53 struct index_state
*istate
)
55 struct split_index
*si
= istate
->split_index
;
56 strbuf_add(sb
, si
->base_oid
.hash
, the_hash_algo
->rawsz
);
57 if (!si
->delete_bitmap
&& !si
->replace_bitmap
)
59 ewah_serialize_strbuf(si
->delete_bitmap
, sb
);
60 ewah_serialize_strbuf(si
->replace_bitmap
, sb
);
64 static void mark_base_index_entries(struct index_state
*base
)
68 * To keep track of the shared entries between
69 * istate->base->cache[] and istate->cache[], base entry
70 * position is stored in each base entry. All positions start
71 * from 1 instead of 0, which is reserved to say "this is a new
74 for (i
= 0; i
< base
->cache_nr
; i
++)
75 base
->cache
[i
]->index
= i
+ 1;
78 void move_cache_to_base_index(struct index_state
*istate
)
80 struct split_index
*si
= istate
->split_index
;
84 * If there was a previous base index, then transfer ownership of allocated
85 * entries to the parent index.
88 si
->base
->ce_mem_pool
) {
90 if (!istate
->ce_mem_pool
) {
91 istate
->ce_mem_pool
= xmalloc(sizeof(struct mem_pool
));
92 mem_pool_init(istate
->ce_mem_pool
, 0);
95 mem_pool_combine(istate
->ce_mem_pool
, istate
->split_index
->base
->ce_mem_pool
);
98 ALLOC_ARRAY(si
->base
, 1);
99 index_state_init(si
->base
, istate
->repo
);
100 si
->base
->version
= istate
->version
;
101 /* zero timestamp disables racy test in ce_write_index() */
102 si
->base
->timestamp
= istate
->timestamp
;
103 ALLOC_GROW(si
->base
->cache
, istate
->cache_nr
, si
->base
->cache_alloc
);
104 si
->base
->cache_nr
= istate
->cache_nr
;
107 * The mem_pool needs to move with the allocated entries.
109 si
->base
->ce_mem_pool
= istate
->ce_mem_pool
;
110 istate
->ce_mem_pool
= NULL
;
112 COPY_ARRAY(si
->base
->cache
, istate
->cache
, istate
->cache_nr
);
113 mark_base_index_entries(si
->base
);
114 for (i
= 0; i
< si
->base
->cache_nr
; i
++)
115 si
->base
->cache
[i
]->ce_flags
&= ~CE_UPDATE_IN_BASE
;
118 static void mark_entry_for_delete(size_t pos
, void *data
)
120 struct index_state
*istate
= data
;
121 if (pos
>= istate
->cache_nr
)
122 die("position for delete %d exceeds base index size %d",
123 (int)pos
, istate
->cache_nr
);
124 istate
->cache
[pos
]->ce_flags
|= CE_REMOVE
;
125 istate
->split_index
->nr_deletions
++;
128 static void replace_entry(size_t pos
, void *data
)
130 struct index_state
*istate
= data
;
131 struct split_index
*si
= istate
->split_index
;
132 struct cache_entry
*dst
, *src
;
134 if (pos
>= istate
->cache_nr
)
135 die("position for replacement %d exceeds base index size %d",
136 (int)pos
, istate
->cache_nr
);
137 if (si
->nr_replacements
>= si
->saved_cache_nr
)
138 die("too many replacements (%d vs %d)",
139 si
->nr_replacements
, si
->saved_cache_nr
);
140 dst
= istate
->cache
[pos
];
141 if (dst
->ce_flags
& CE_REMOVE
)
142 die("entry %d is marked as both replaced and deleted",
144 src
= si
->saved_cache
[si
->nr_replacements
];
146 die("corrupt link extension, entry %d should have "
147 "zero length name", (int)pos
);
148 src
->index
= pos
+ 1;
149 src
->ce_flags
|= CE_UPDATE_IN_BASE
;
150 src
->ce_namelen
= dst
->ce_namelen
;
151 copy_cache_entry(dst
, src
);
152 discard_cache_entry(src
);
153 si
->nr_replacements
++;
156 void merge_base_index(struct index_state
*istate
)
158 struct split_index
*si
= istate
->split_index
;
161 mark_base_index_entries(si
->base
);
163 si
->saved_cache
= istate
->cache
;
164 si
->saved_cache_nr
= istate
->cache_nr
;
165 istate
->cache_nr
= si
->base
->cache_nr
;
166 istate
->cache
= NULL
;
167 istate
->cache_alloc
= 0;
168 ALLOC_GROW(istate
->cache
, istate
->cache_nr
, istate
->cache_alloc
);
169 COPY_ARRAY(istate
->cache
, si
->base
->cache
, istate
->cache_nr
);
171 si
->nr_deletions
= 0;
172 si
->nr_replacements
= 0;
173 ewah_each_bit(si
->replace_bitmap
, replace_entry
, istate
);
174 ewah_each_bit(si
->delete_bitmap
, mark_entry_for_delete
, istate
);
175 if (si
->nr_deletions
)
176 remove_marked_cache_entries(istate
, 0);
178 for (i
= si
->nr_replacements
; i
< si
->saved_cache_nr
; i
++) {
179 if (!ce_namelen(si
->saved_cache
[i
]))
180 die("corrupt link extension, entry %d should "
181 "have non-zero length name", i
);
182 add_index_entry(istate
, si
->saved_cache
[i
],
183 ADD_CACHE_OK_TO_ADD
|
184 ADD_CACHE_KEEP_CACHE_TREE
|
186 * we may have to replay what
187 * merge-recursive.c:update_stages()
188 * does, which has this flag on
190 ADD_CACHE_SKIP_DFCHECK
);
191 si
->saved_cache
[i
] = NULL
;
194 ewah_free(si
->delete_bitmap
);
195 ewah_free(si
->replace_bitmap
);
196 FREE_AND_NULL(si
->saved_cache
);
197 si
->delete_bitmap
= NULL
;
198 si
->replace_bitmap
= NULL
;
199 si
->saved_cache_nr
= 0;
203 * Compare most of the fields in two cache entries, i.e. all except the
204 * hashmap_entry and the name.
206 static int compare_ce_content(struct cache_entry
*a
, struct cache_entry
*b
)
208 const unsigned int ondisk_flags
= CE_STAGEMASK
| CE_VALID
|
210 unsigned int ce_flags
= a
->ce_flags
;
211 unsigned int base_flags
= b
->ce_flags
;
214 /* only on-disk flags matter */
215 a
->ce_flags
&= ondisk_flags
;
216 b
->ce_flags
&= ondisk_flags
;
217 ret
= memcmp(&a
->ce_stat_data
, &b
->ce_stat_data
,
218 offsetof(struct cache_entry
, name
) -
219 offsetof(struct cache_entry
, oid
)) ||
220 !oideq(&a
->oid
, &b
->oid
);
221 a
->ce_flags
= ce_flags
;
222 b
->ce_flags
= base_flags
;
227 void prepare_to_write_split_index(struct index_state
*istate
)
229 struct split_index
*si
= init_split_index(istate
);
230 struct cache_entry
**entries
= NULL
, *ce
;
231 int i
, nr_entries
= 0, nr_alloc
= 0;
233 si
->delete_bitmap
= ewah_new();
234 si
->replace_bitmap
= ewah_new();
237 /* Go through istate->cache[] and mark CE_MATCHED to
238 * entry with positive index. We'll go through
239 * base->cache[] later to delete all entries in base
240 * that are not marked with either CE_MATCHED or
241 * CE_UPDATE_IN_BASE. If istate->cache[i] is a
242 * duplicate, deduplicate it.
244 for (i
= 0; i
< istate
->cache_nr
; i
++) {
245 struct cache_entry
*base
;
246 ce
= istate
->cache
[i
];
249 * During simple update index operations this
250 * is a cache entry that is not present in
251 * the shared index. It will be added to the
254 * However, it might also represent a file
255 * that already has a cache entry in the
256 * shared index, but a new index has just
257 * been constructed by unpack_trees(), and
258 * this entry now refers to different content
259 * than what was recorded in the original
260 * index, e.g. during 'read-tree -m HEAD^' or
261 * 'checkout HEAD^'. In this case the
262 * original entry in the shared index will be
263 * marked as deleted, and this entry will be
264 * added to the split index.
268 if (ce
->index
> si
->base
->cache_nr
) {
269 BUG("ce refers to a shared ce at %d, which is beyond the shared index size %d",
270 ce
->index
, si
->base
->cache_nr
);
272 ce
->ce_flags
|= CE_MATCHED
; /* or "shared" */
273 base
= si
->base
->cache
[ce
->index
- 1];
275 /* The entry is present in the shared index. */
276 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
278 * Already marked for inclusion in
279 * the split index, either because
280 * the corresponding file was
281 * modified and the cached stat data
282 * was refreshed, or because there
283 * is already a replacement entry in
285 * Nothing more to do here.
287 } else if (!ce_uptodate(ce
) &&
288 is_racy_timestamp(istate
, ce
)) {
290 * A racily clean cache entry stored
291 * only in the shared index: it must
292 * be added to the split index, so
293 * the subsequent do_write_index()
294 * can smudge its stat data.
296 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
299 * The entry is only present in the
300 * shared index and it was not
302 * Just leave it there.
307 if (ce
->ce_namelen
!= base
->ce_namelen
||
308 strcmp(ce
->name
, base
->name
)) {
313 * This is the copy of a cache entry that is present
314 * in the shared index, created by unpack_trees()
315 * while it constructed a new index.
317 if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
319 * Already marked for inclusion in the split
320 * index, either because the corresponding
321 * file was modified and the cached stat data
322 * was refreshed, or because the original
323 * entry already had a replacement entry in
327 } else if (!ce_uptodate(ce
) &&
328 is_racy_timestamp(istate
, ce
)) {
330 * A copy of a racily clean cache entry from
331 * the shared index. It must be added to
332 * the split index, so the subsequent
333 * do_write_index() can smudge its stat data.
335 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
338 * Thoroughly compare the cached data to see
339 * whether it should be marked for inclusion
340 * in the split index.
342 * This comparison might be unnecessary, as
343 * code paths modifying the cached data do
344 * set CE_UPDATE_IN_BASE as well.
346 if (compare_ce_content(ce
, base
))
347 ce
->ce_flags
|= CE_UPDATE_IN_BASE
;
349 discard_cache_entry(base
);
350 si
->base
->cache
[ce
->index
- 1] = ce
;
352 for (i
= 0; i
< si
->base
->cache_nr
; i
++) {
353 ce
= si
->base
->cache
[i
];
354 if ((ce
->ce_flags
& CE_REMOVE
) ||
355 !(ce
->ce_flags
& CE_MATCHED
))
356 ewah_set(si
->delete_bitmap
, i
);
357 else if (ce
->ce_flags
& CE_UPDATE_IN_BASE
) {
358 ewah_set(si
->replace_bitmap
, i
);
359 ce
->ce_flags
|= CE_STRIP_NAME
;
360 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
361 entries
[nr_entries
++] = ce
;
363 if (is_null_oid(&ce
->oid
))
364 istate
->drop_cache_tree
= 1;
368 for (i
= 0; i
< istate
->cache_nr
; i
++) {
369 ce
= istate
->cache
[i
];
370 if ((!si
->base
|| !ce
->index
) && !(ce
->ce_flags
& CE_REMOVE
)) {
371 assert(!(ce
->ce_flags
& CE_STRIP_NAME
));
372 ALLOC_GROW(entries
, nr_entries
+1, nr_alloc
);
373 entries
[nr_entries
++] = ce
;
375 ce
->ce_flags
&= ~CE_MATCHED
;
379 * take cache[] out temporarily, put entries[] in its place
382 si
->saved_cache
= istate
->cache
;
383 si
->saved_cache_nr
= istate
->cache_nr
;
384 istate
->cache
= entries
;
385 istate
->cache_nr
= nr_entries
;
388 void finish_writing_split_index(struct index_state
*istate
)
390 struct split_index
*si
= init_split_index(istate
);
392 ewah_free(si
->delete_bitmap
);
393 ewah_free(si
->replace_bitmap
);
394 si
->delete_bitmap
= NULL
;
395 si
->replace_bitmap
= NULL
;
397 istate
->cache
= si
->saved_cache
;
398 istate
->cache_nr
= si
->saved_cache_nr
;
401 void discard_split_index(struct index_state
*istate
)
403 struct split_index
*si
= istate
->split_index
;
406 istate
->split_index
= NULL
;
411 discard_index(si
->base
);
417 void save_or_free_index_entry(struct index_state
*istate
, struct cache_entry
*ce
)
420 istate
->split_index
&&
421 istate
->split_index
->base
&&
422 ce
->index
<= istate
->split_index
->base
->cache_nr
&&
423 ce
== istate
->split_index
->base
->cache
[ce
->index
- 1])
424 ce
->ce_flags
|= CE_REMOVE
;
426 discard_cache_entry(ce
);
429 void replace_index_entry_in_base(struct index_state
*istate
,
430 struct cache_entry
*old_entry
,
431 struct cache_entry
*new_entry
)
433 if (old_entry
->index
&&
434 istate
->split_index
&&
435 istate
->split_index
->base
&&
436 old_entry
->index
<= istate
->split_index
->base
->cache_nr
) {
437 new_entry
->index
= old_entry
->index
;
438 if (old_entry
!= istate
->split_index
->base
->cache
[new_entry
->index
- 1])
439 discard_cache_entry(istate
->split_index
->base
->cache
[new_entry
->index
- 1]);
440 istate
->split_index
->base
->cache
[new_entry
->index
- 1] = new_entry
;
444 void add_split_index(struct index_state
*istate
)
446 if (!istate
->split_index
) {
447 init_split_index(istate
);
448 istate
->cache_changed
|= SPLIT_INDEX_ORDERED
;
452 void remove_split_index(struct index_state
*istate
)
454 if (istate
->split_index
) {
455 if (istate
->split_index
->base
) {
457 * When removing the split index, we need to move
458 * ownership of the mem_pool associated with the
459 * base index to the main index. There may be cache entries
460 * allocated from the base's memory pool that are shared with
463 mem_pool_combine(istate
->ce_mem_pool
,
464 istate
->split_index
->base
->ce_mem_pool
);
467 * The split index no longer owns the mem_pool backing
468 * its cache array. As we are discarding this index,
469 * mark the index as having no cache entries, so it
470 * will not attempt to clean up the cache entries or
473 istate
->split_index
->base
->cache_nr
= 0;
477 * We can discard the split index because its
478 * memory pool has been incorporated into the
479 * memory pool associated with the the_index.
481 discard_split_index(istate
);
483 istate
->cache_changed
|= SOMETHING_CHANGED
;