4 #include "environment.h"
6 #include "parse-options.h"
7 #include "fsmonitor-ll.h"
8 #include "fsmonitor-ipc.h"
9 #include "fsmonitor-path-utils.h"
10 #include "fsmonitor-settings.h"
11 #include "compat/fsmonitor/fsm-health.h"
12 #include "compat/fsmonitor/fsm-listen.h"
13 #include "fsmonitor--daemon.h"
14 #include "simple-ipc.h"
20 static const char * const builtin_fsmonitor__daemon_usage
[] = {
21 N_("git fsmonitor--daemon start [<options>]"),
22 N_("git fsmonitor--daemon run [<options>]"),
23 "git fsmonitor--daemon stop",
24 "git fsmonitor--daemon status",
28 #ifdef HAVE_FSMONITOR_DAEMON_BACKEND
30 * Global state loaded from config.
32 #define FSMONITOR__IPC_THREADS "fsmonitor.ipcthreads"
33 static int fsmonitor__ipc_threads
= 8;
35 #define FSMONITOR__START_TIMEOUT "fsmonitor.starttimeout"
36 static int fsmonitor__start_timeout_sec
= 60;
38 #define FSMONITOR__ANNOUNCE_STARTUP "fsmonitor.announcestartup"
39 static int fsmonitor__announce_startup
= 0;
41 static int fsmonitor_config(const char *var
, const char *value
,
42 const struct config_context
*ctx
, void *cb
)
44 if (!strcmp(var
, FSMONITOR__IPC_THREADS
)) {
45 int i
= git_config_int(var
, value
, ctx
->kvi
);
47 return error(_("value of '%s' out of range: %d"),
48 FSMONITOR__IPC_THREADS
, i
);
49 fsmonitor__ipc_threads
= i
;
53 if (!strcmp(var
, FSMONITOR__START_TIMEOUT
)) {
54 int i
= git_config_int(var
, value
, ctx
->kvi
);
56 return error(_("value of '%s' out of range: %d"),
57 FSMONITOR__START_TIMEOUT
, i
);
58 fsmonitor__start_timeout_sec
= i
;
62 if (!strcmp(var
, FSMONITOR__ANNOUNCE_STARTUP
)) {
64 int i
= git_config_bool_or_int(var
, value
, ctx
->kvi
, &is_bool
);
66 return error(_("value of '%s' not bool or int: %d"),
68 fsmonitor__announce_startup
= i
;
72 return git_default_config(var
, value
, ctx
, cb
);
78 * Send a "quit" command to the `git-fsmonitor--daemon` (if running)
79 * and wait for it to shutdown.
81 static int do_as_client__send_stop(void)
83 struct strbuf answer
= STRBUF_INIT
;
86 ret
= fsmonitor_ipc__send_command("quit", &answer
);
88 /* The quit command does not return any response data. */
89 strbuf_release(&answer
);
94 trace2_region_enter("fsm_client", "polling-for-daemon-exit", NULL
);
95 while (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING
)
97 trace2_region_leave("fsm_client", "polling-for-daemon-exit", NULL
);
102 static int do_as_client__status(void)
104 enum ipc_active_state state
= fsmonitor_ipc__get_state();
107 case IPC_STATE__LISTENING
:
108 printf(_("fsmonitor-daemon is watching '%s'\n"),
109 the_repository
->worktree
);
113 printf(_("fsmonitor-daemon is not watching '%s'\n"),
114 the_repository
->worktree
);
119 enum fsmonitor_cookie_item_result
{
120 FCIR_ERROR
= -1, /* could not create cookie file ? */
126 struct fsmonitor_cookie_item
{
127 struct hashmap_entry entry
;
129 enum fsmonitor_cookie_item_result result
;
132 static int cookies_cmp(const void *data
, const struct hashmap_entry
*he1
,
133 const struct hashmap_entry
*he2
, const void *keydata
)
135 const struct fsmonitor_cookie_item
*a
=
136 container_of(he1
, const struct fsmonitor_cookie_item
, entry
);
137 const struct fsmonitor_cookie_item
*b
=
138 container_of(he2
, const struct fsmonitor_cookie_item
, entry
);
140 return strcmp(a
->name
, keydata
? keydata
: b
->name
);
143 static enum fsmonitor_cookie_item_result
with_lock__wait_for_cookie(
144 struct fsmonitor_daemon_state
*state
)
146 /* assert current thread holding state->main_lock */
149 struct fsmonitor_cookie_item
*cookie
;
150 struct strbuf cookie_pathname
= STRBUF_INIT
;
151 struct strbuf cookie_filename
= STRBUF_INIT
;
152 enum fsmonitor_cookie_item_result result
;
155 CALLOC_ARRAY(cookie
, 1);
157 my_cookie_seq
= state
->cookie_seq
++;
159 strbuf_addf(&cookie_filename
, "%i-%i", getpid(), my_cookie_seq
);
161 strbuf_addbuf(&cookie_pathname
, &state
->path_cookie_prefix
);
162 strbuf_addbuf(&cookie_pathname
, &cookie_filename
);
164 cookie
->name
= strbuf_detach(&cookie_filename
, NULL
);
165 cookie
->result
= FCIR_INIT
;
166 hashmap_entry_init(&cookie
->entry
, strhash(cookie
->name
));
168 hashmap_add(&state
->cookies
, &cookie
->entry
);
170 trace_printf_key(&trace_fsmonitor
, "cookie-wait: '%s' '%s'",
171 cookie
->name
, cookie_pathname
.buf
);
174 * Create the cookie file on disk and then wait for a notification
175 * that the listener thread has seen it.
177 fd
= open(cookie_pathname
.buf
, O_WRONLY
| O_CREAT
| O_EXCL
, 0600);
179 error_errno(_("could not create fsmonitor cookie '%s'"),
182 cookie
->result
= FCIR_ERROR
;
187 * Technically, close() and unlink() can fail, but we don't
188 * care here. We only created the file to trigger a watch
189 * event from the FS to know that when we're up to date.
192 unlink(cookie_pathname
.buf
);
195 * Technically, this is an infinite wait (well, unless another
196 * thread sends us an abort). I'd like to change this to
197 * use `pthread_cond_timedwait()` and return an error/timeout
198 * and let the caller do the trivial response thing, but we
199 * don't have that routine in our thread-utils.
201 * After extensive beta testing I'm not really worried about
202 * this. Also note that the above open() and unlink() calls
203 * will cause at least two FS events on that path, so the odds
204 * of getting stuck are pretty slim.
206 while (cookie
->result
== FCIR_INIT
)
207 pthread_cond_wait(&state
->cookies_cond
,
211 hashmap_remove(&state
->cookies
, &cookie
->entry
, NULL
);
213 result
= cookie
->result
;
217 strbuf_release(&cookie_pathname
);
223 * Mark these cookies as _SEEN and wake up the corresponding client threads.
225 static void with_lock__mark_cookies_seen(struct fsmonitor_daemon_state
*state
,
226 const struct string_list
*cookie_names
)
228 /* assert current thread holding state->main_lock */
233 for (k
= 0; k
< cookie_names
->nr
; k
++) {
234 struct fsmonitor_cookie_item key
;
235 struct fsmonitor_cookie_item
*cookie
;
237 key
.name
= cookie_names
->items
[k
].string
;
238 hashmap_entry_init(&key
.entry
, strhash(key
.name
));
240 cookie
= hashmap_get_entry(&state
->cookies
, &key
, entry
, NULL
);
242 trace_printf_key(&trace_fsmonitor
, "cookie-seen: '%s'",
244 cookie
->result
= FCIR_SEEN
;
250 pthread_cond_broadcast(&state
->cookies_cond
);
254 * Set _ABORT on all pending cookies and wake up all client threads.
256 static void with_lock__abort_all_cookies(struct fsmonitor_daemon_state
*state
)
258 /* assert current thread holding state->main_lock */
260 struct hashmap_iter iter
;
261 struct fsmonitor_cookie_item
*cookie
;
264 hashmap_for_each_entry(&state
->cookies
, &iter
, cookie
, entry
) {
265 trace_printf_key(&trace_fsmonitor
, "cookie-abort: '%s'",
267 cookie
->result
= FCIR_ABORT
;
272 pthread_cond_broadcast(&state
->cookies_cond
);
276 * Requests to and from a FSMonitor Protocol V2 provider use an opaque
277 * "token" as a virtual timestamp. Clients can request a summary of all
278 * created/deleted/modified files relative to a token. In the response,
279 * clients receive a new token for the next (relative) request.
285 * The contents of the token are private and provider-specific.
287 * For the built-in fsmonitor--daemon, we define a token as follows:
289 * "builtin" ":" <token_id> ":" <sequence_nr>
291 * The "builtin" prefix is used as a namespace to avoid conflicts
292 * with other providers (such as Watchman).
294 * The <token_id> is an arbitrary OPAQUE string, such as a GUID,
295 * UUID, or {timestamp,pid}. It is used to group all filesystem
296 * events that happened while the daemon was monitoring (and in-sync
297 * with the filesystem).
299 * Unlike FSMonitor Protocol V1, it is not defined as a timestamp
300 * and does not define less-than/greater-than relationships.
301 * (There are too many race conditions to rely on file system
304 * The <sequence_nr> is a simple integer incremented whenever the
305 * daemon needs to make its state public. For example, if 1000 file
306 * system events come in, but no clients have requested the data,
307 * the daemon can continue to accumulate file changes in the same
308 * bin and does not need to advance the sequence number. However,
309 * as soon as a client does arrive, the daemon needs to start a new
310 * bin and increment the sequence number.
312 * The sequence number serves as the boundary between 2 sets
313 * of bins -- the older ones that the client has already seen
314 * and the newer ones that it hasn't.
316 * When a new <token_id> is created, the <sequence_nr> is reset to
323 * A new token_id is created:
325 * [1] each time the daemon is started.
327 * [2] any time that the daemon must re-sync with the filesystem
328 * (such as when the kernel drops or we miss events on a very
331 * [3] in response to a client "flush" command (for dropped event
334 * When a new token_id is created, the daemon is free to discard all
335 * cached filesystem events associated with any previous token_ids.
336 * Events associated with a non-current token_id will never be sent
337 * to a client. A token_id change implicitly means that the daemon
338 * has gap in its event history.
340 * Therefore, clients that present a token with a stale (non-current)
341 * token_id will always be given a trivial response.
343 struct fsmonitor_token_data
{
344 struct strbuf token_id
;
345 struct fsmonitor_batch
*batch_head
;
346 struct fsmonitor_batch
*batch_tail
;
347 uint64_t client_ref_count
;
350 struct fsmonitor_batch
{
351 struct fsmonitor_batch
*next
;
352 uint64_t batch_seq_nr
;
353 const char **interned_paths
;
358 static struct fsmonitor_token_data
*fsmonitor_new_token_data(void)
360 static int test_env_value
= -1;
361 static uint64_t flush_count
= 0;
362 struct fsmonitor_token_data
*token
;
363 struct fsmonitor_batch
*batch
;
365 CALLOC_ARRAY(token
, 1);
366 batch
= fsmonitor_batch__new();
368 strbuf_init(&token
->token_id
, 0);
369 token
->batch_head
= batch
;
370 token
->batch_tail
= batch
;
371 token
->client_ref_count
= 0;
373 if (test_env_value
< 0)
374 test_env_value
= git_env_bool("GIT_TEST_FSMONITOR_TOKEN", 0);
376 if (!test_env_value
) {
381 gettimeofday(&tv
, NULL
);
383 gmtime_r(&secs
, &tm
);
385 strbuf_addf(&token
->token_id
,
386 "%"PRIu64
".%d.%4d%02d%02dT%02d%02d%02d.%06ldZ",
389 tm
.tm_year
+ 1900, tm
.tm_mon
+ 1, tm
.tm_mday
,
390 tm
.tm_hour
, tm
.tm_min
, tm
.tm_sec
,
393 strbuf_addf(&token
->token_id
, "test_%08x", test_env_value
++);
397 * We created a new <token_id> and are starting a new series
398 * of tokens with a zero <seq_nr>.
400 * Since clients cannot guess our new (non test) <token_id>
401 * they will always receive a trivial response (because of the
402 * mismatch on the <token_id>). The trivial response will
403 * tell them our new <token_id> so that subsequent requests
404 * will be relative to our new series. (And when sending that
405 * response, we pin the current head of the batch list.)
407 * Even if the client correctly guesses the <token_id>, their
408 * request of "builtin:<token_id>:0" asks for all changes MORE
409 * RECENT than batch/bin 0.
411 * This implies that it is a waste to accumulate paths in the
412 * initial batch/bin (because they will never be transmitted).
414 * So the daemon could be running for days and watching the
415 * file system, but doesn't need to actually accumulate any
416 * paths UNTIL we need to set a reference point for a later
419 * However, it is very useful for testing to always have a
420 * reference point set. Pin batch 0 to force early file system
421 * events to accumulate.
424 batch
->pinned_time
= time(NULL
);
429 struct fsmonitor_batch
*fsmonitor_batch__new(void)
431 struct fsmonitor_batch
*batch
;
433 CALLOC_ARRAY(batch
, 1);
438 void fsmonitor_batch__free_list(struct fsmonitor_batch
*batch
)
441 struct fsmonitor_batch
*next
= batch
->next
;
444 * The actual strings within the array of this batch
445 * are interned, so we don't own them. We only own
448 free(batch
->interned_paths
);
455 void fsmonitor_batch__add_path(struct fsmonitor_batch
*batch
,
458 const char *interned_path
= strintern(path
);
460 trace_printf_key(&trace_fsmonitor
, "event: %s", interned_path
);
462 ALLOC_GROW(batch
->interned_paths
, batch
->nr
+ 1, batch
->alloc
);
463 batch
->interned_paths
[batch
->nr
++] = interned_path
;
466 static void fsmonitor_batch__combine(struct fsmonitor_batch
*batch_dest
,
467 const struct fsmonitor_batch
*batch_src
)
471 ALLOC_GROW(batch_dest
->interned_paths
,
472 batch_dest
->nr
+ batch_src
->nr
+ 1,
475 for (k
= 0; k
< batch_src
->nr
; k
++)
476 batch_dest
->interned_paths
[batch_dest
->nr
++] =
477 batch_src
->interned_paths
[k
];
481 * To keep the batch list from growing unbounded in response to filesystem
482 * activity, we try to truncate old batches from the end of the list as
483 * they become irrelevant.
485 * We assume that the .git/index will be updated with the most recent token
486 * any time the index is updated. And future commands will only ask for
487 * recent changes *since* that new token. So as tokens advance into the
488 * future, older batch items will never be requested/needed. So we can
489 * truncate them without loss of functionality.
491 * However, multiple commands may be talking to the daemon concurrently
492 * or perform a slow command, so a little "token skew" is possible.
493 * Therefore, we want this to be a little bit lazy and have a generous
496 * The current reader thread walked backwards in time from `token->batch_head`
497 * back to `batch_marker` somewhere in the middle of the batch list.
499 * Let's walk backwards in time from that marker an arbitrary delay
500 * and truncate the list there. Note that these timestamps are completely
501 * artificial (based on when we pinned the batch item) and not on any
502 * filesystem activity.
504 * Return the obsolete portion of the list after we have removed it from
505 * the official list so that the caller can free it after leaving the lock.
507 #define MY_TIME_DELAY_SECONDS (5 * 60) /* seconds */
509 static struct fsmonitor_batch
*with_lock__truncate_old_batches(
510 struct fsmonitor_daemon_state
*state
,
511 const struct fsmonitor_batch
*batch_marker
)
513 /* assert current thread holding state->main_lock */
515 const struct fsmonitor_batch
*batch
;
516 struct fsmonitor_batch
*remainder
;
521 trace_printf_key(&trace_fsmonitor
, "Truncate: mark (%"PRIu64
",%"PRIu64
")",
522 batch_marker
->batch_seq_nr
,
523 (uint64_t)batch_marker
->pinned_time
);
525 for (batch
= batch_marker
; batch
; batch
= batch
->next
) {
528 if (!batch
->pinned_time
) /* an overflow batch */
531 t
= batch
->pinned_time
+ MY_TIME_DELAY_SECONDS
;
532 if (t
> batch_marker
->pinned_time
) /* too close to marker */
535 goto truncate_past_here
;
541 state
->current_token_data
->batch_tail
= (struct fsmonitor_batch
*)batch
;
543 remainder
= ((struct fsmonitor_batch
*)batch
)->next
;
544 ((struct fsmonitor_batch
*)batch
)->next
= NULL
;
549 static void fsmonitor_free_token_data(struct fsmonitor_token_data
*token
)
554 assert(token
->client_ref_count
== 0);
556 strbuf_release(&token
->token_id
);
558 fsmonitor_batch__free_list(token
->batch_head
);
564 * Flush all of our cached data about the filesystem. Call this if we
565 * lose sync with the filesystem and miss some notification events.
567 * [1] If we are missing events, then we no longer have a complete
568 * history of the directory (relative to our current start token).
569 * We should create a new token and start fresh (as if we just
572 * [2] Some of those lost events may have been for cookie files. We
573 * should assume the worst and abort them rather letting them starve.
575 * If there are no concurrent threads reading the current token data
576 * series, we can free it now. Otherwise, let the last reader free
579 * Either way, the old token data series is no longer associated with
582 static void with_lock__do_force_resync(struct fsmonitor_daemon_state
*state
)
584 /* assert current thread holding state->main_lock */
586 struct fsmonitor_token_data
*free_me
= NULL
;
587 struct fsmonitor_token_data
*new_one
= NULL
;
589 new_one
= fsmonitor_new_token_data();
591 if (state
->current_token_data
->client_ref_count
== 0)
592 free_me
= state
->current_token_data
;
593 state
->current_token_data
= new_one
;
595 fsmonitor_free_token_data(free_me
);
597 with_lock__abort_all_cookies(state
);
600 void fsmonitor_force_resync(struct fsmonitor_daemon_state
*state
)
602 pthread_mutex_lock(&state
->main_lock
);
603 with_lock__do_force_resync(state
);
604 pthread_mutex_unlock(&state
->main_lock
);
608 * Format an opaque token string to send to the client.
610 static void with_lock__format_response_token(
611 struct strbuf
*response_token
,
612 const struct strbuf
*response_token_id
,
613 const struct fsmonitor_batch
*batch
)
615 /* assert current thread holding state->main_lock */
617 strbuf_reset(response_token
);
618 strbuf_addf(response_token
, "builtin:%s:%"PRIu64
,
619 response_token_id
->buf
, batch
->batch_seq_nr
);
623 * Parse an opaque token from the client.
624 * Returns -1 on error.
626 static int fsmonitor_parse_client_token(const char *buf_token
,
627 struct strbuf
*requested_token_id
,
633 strbuf_reset(requested_token_id
);
636 if (!skip_prefix(buf_token
, "builtin:", &p
))
639 while (*p
&& *p
!= ':')
640 strbuf_addch(requested_token_id
, *p
++);
644 *seq_nr
= (uint64_t)strtoumax(p
, &p_end
, 10);
651 KHASH_INIT(str
, const char *, int, 0, kh_str_hash_func
, kh_str_hash_equal
)
653 static int do_handle_client(struct fsmonitor_daemon_state
*state
,
655 ipc_server_reply_cb
*reply
,
656 struct ipc_server_reply_data
*reply_data
)
658 struct fsmonitor_token_data
*token_data
= NULL
;
659 struct strbuf response_token
= STRBUF_INIT
;
660 struct strbuf requested_token_id
= STRBUF_INIT
;
661 struct strbuf payload
= STRBUF_INIT
;
662 uint64_t requested_oldest_seq_nr
= 0;
663 uint64_t total_response_len
= 0;
665 const struct fsmonitor_batch
*batch_head
;
666 const struct fsmonitor_batch
*batch
;
667 struct fsmonitor_batch
*remainder
= NULL
;
668 intmax_t count
= 0, duplicates
= 0;
674 enum fsmonitor_cookie_item_result cookie_result
;
677 * We expect `command` to be of the form:
679 * <command> := quit NUL
681 * | <V1-time-since-epoch-ns> NUL
682 * | <V2-opaque-fsmonitor-token> NUL
685 if (!strcmp(command
, "quit")) {
687 * A client has requested over the socket/pipe that the
690 * Tell the IPC thread pool to shutdown (which completes
691 * the await in the main thread (which can stop the
692 * fsmonitor listener thread)).
694 * There is no reply to the client.
696 return SIMPLE_IPC_QUIT
;
698 } else if (!strcmp(command
, "flush")) {
700 * Flush all of our cached data and generate a new token
701 * just like if we lost sync with the filesystem.
703 * Then send a trivial response using the new token.
708 } else if (!skip_prefix(command
, "builtin:", &p
)) {
709 /* assume V1 timestamp or garbage */
713 strtoumax(command
, &p_end
, 10);
714 trace_printf_key(&trace_fsmonitor
,
716 "fsmonitor: invalid command line '%s'" :
717 "fsmonitor: unsupported V1 protocol '%s'"),
723 /* We have "builtin:*" */
724 if (fsmonitor_parse_client_token(command
, &requested_token_id
,
725 &requested_oldest_seq_nr
)) {
726 trace_printf_key(&trace_fsmonitor
,
727 "fsmonitor: invalid V2 protocol token '%s'",
734 * We have a V2 valid token:
735 * "builtin:<token_id>:<seq_nr>"
741 pthread_mutex_lock(&state
->main_lock
);
743 if (!state
->current_token_data
)
744 BUG("fsmonitor state does not have a current token");
747 * Write a cookie file inside the directory being watched in
748 * an effort to flush out existing filesystem events that we
749 * actually care about. Suspend this client thread until we
750 * see the filesystem events for this cookie file.
752 * Creating the cookie lets us guarantee that our FS listener
753 * thread has drained the kernel queue and we are caught up
756 * If we cannot create the cookie (or otherwise guarantee that
757 * we are caught up), we send a trivial response. We have to
758 * assume that there might be some very, very recent activity
759 * on the FS still in flight.
762 cookie_result
= with_lock__wait_for_cookie(state
);
763 if (cookie_result
!= FCIR_SEEN
) {
764 error(_("fsmonitor: cookie_result '%d' != SEEN"),
771 with_lock__do_force_resync(state
);
774 * We mark the current head of the batch list as "pinned" so
775 * that the listener thread will treat this item as read-only
776 * (and prevent any more paths from being added to it) from
779 token_data
= state
->current_token_data
;
780 batch_head
= token_data
->batch_head
;
781 ((struct fsmonitor_batch
*)batch_head
)->pinned_time
= time(NULL
);
784 * FSMonitor Protocol V2 requires that we send a response header
785 * with a "new current token" and then all of the paths that changed
786 * since the "requested token". We send the seq_nr of the just-pinned
787 * head batch so that future requests from a client will be relative
790 with_lock__format_response_token(&response_token
,
791 &token_data
->token_id
, batch_head
);
793 reply(reply_data
, response_token
.buf
, response_token
.len
+ 1);
794 total_response_len
+= response_token
.len
+ 1;
796 trace2_data_string("fsmonitor", the_repository
, "response/token",
798 trace_printf_key(&trace_fsmonitor
, "response token: %s",
802 if (strcmp(requested_token_id
.buf
, token_data
->token_id
.buf
)) {
804 * The client last spoke to a different daemon
805 * instance -OR- the daemon had to resync with
806 * the filesystem (and lost events), so reject.
808 trace2_data_string("fsmonitor", the_repository
,
809 "response/token", "different");
812 } else if (requested_oldest_seq_nr
<
813 token_data
->batch_tail
->batch_seq_nr
) {
815 * The client wants older events than we have for
816 * this token_id. This means that the end of our
817 * batch list was truncated and we cannot give the
818 * client a complete snapshot relative to their
821 trace_printf_key(&trace_fsmonitor
,
822 "client requested truncated data");
828 pthread_mutex_unlock(&state
->main_lock
);
830 reply(reply_data
, "/", 2);
832 trace2_data_intmax("fsmonitor", the_repository
,
833 "response/trivial", 1);
839 * We're going to hold onto a pointer to the current
840 * token-data while we walk the list of batches of files.
841 * During this time, we will NOT be under the lock.
842 * So we ref-count it.
844 * This allows the listener thread to continue prepending
845 * new batches of items to the token-data (which we'll ignore).
847 * AND it allows the listener thread to do a token-reset
848 * (and install a new `current_token_data`).
850 token_data
->client_ref_count
++;
852 pthread_mutex_unlock(&state
->main_lock
);
855 * The client request is relative to the token that they sent,
856 * so walk the batch list backwards from the current head back
857 * to the batch (sequence number) they named.
859 * We use khash to de-dup the list of pathnames.
861 * NEEDSWORK: each batch contains a list of interned strings,
862 * so we only need to do pointer comparisons here to build the
863 * hash table. Currently, we're still comparing the string
866 shown
= kh_init_str();
867 for (batch
= batch_head
;
868 batch
&& batch
->batch_seq_nr
> requested_oldest_seq_nr
;
869 batch
= batch
->next
) {
872 for (k
= 0; k
< batch
->nr
; k
++) {
873 const char *s
= batch
->interned_paths
[k
];
876 if (kh_get_str(shown
, s
) != kh_end(shown
))
879 kh_put_str(shown
, s
, &hash_ret
);
881 trace_printf_key(&trace_fsmonitor
,
882 "send[%"PRIuMAX
"]: %s",
885 /* Each path gets written with a trailing NUL */
886 s_len
= strlen(s
) + 1;
888 if (payload
.len
+ s_len
>=
889 LARGE_PACKET_DATA_MAX
) {
890 reply(reply_data
, payload
.buf
,
892 total_response_len
+= payload
.len
;
893 strbuf_reset(&payload
);
896 strbuf_add(&payload
, s
, s_len
);
903 reply(reply_data
, payload
.buf
, payload
.len
);
904 total_response_len
+= payload
.len
;
907 kh_release_str(shown
);
909 pthread_mutex_lock(&state
->main_lock
);
911 if (token_data
->client_ref_count
> 0)
912 token_data
->client_ref_count
--;
914 if (token_data
->client_ref_count
== 0) {
915 if (token_data
!= state
->current_token_data
) {
917 * The listener thread did a token-reset while we were
918 * walking the batch list. Therefore, this token is
919 * stale and can be discarded completely. If we are
920 * the last reader thread using this token, we own
923 fsmonitor_free_token_data(token_data
);
926 * We are holding the lock and are the only
927 * reader of the ref-counted portion of the
928 * list, so we get the honor of seeing if the
929 * list can be truncated to save memory.
931 * The main loop did not walk to the end of the
932 * list, so this batch is the first item in the
933 * batch-list that is older than the requested
934 * end-point sequence number. See if the tail
935 * end of the list is obsolete.
937 remainder
= with_lock__truncate_old_batches(state
,
942 pthread_mutex_unlock(&state
->main_lock
);
945 fsmonitor_batch__free_list(remainder
);
947 trace2_data_intmax("fsmonitor", the_repository
, "response/length", total_response_len
);
948 trace2_data_intmax("fsmonitor", the_repository
, "response/count/files", count
);
949 trace2_data_intmax("fsmonitor", the_repository
, "response/count/duplicates", duplicates
);
952 strbuf_release(&response_token
);
953 strbuf_release(&requested_token_id
);
954 strbuf_release(&payload
);
959 static ipc_server_application_cb handle_client
;
961 static int handle_client(void *data
,
962 const char *command
, size_t command_len
,
963 ipc_server_reply_cb
*reply
,
964 struct ipc_server_reply_data
*reply_data
)
966 struct fsmonitor_daemon_state
*state
= data
;
970 * The Simple IPC API now supports {char*, len} arguments, but
971 * FSMonitor always uses proper null-terminated strings, so
972 * we can ignore the command_len argument. (Trust, but verify.)
974 if (command_len
!= strlen(command
))
975 BUG("FSMonitor assumes text messages");
977 trace_printf_key(&trace_fsmonitor
, "requested token: %s", command
);
979 trace2_region_enter("fsmonitor", "handle_client", the_repository
);
980 trace2_data_string("fsmonitor", the_repository
, "request", command
);
982 result
= do_handle_client(state
, command
, reply
, reply_data
);
984 trace2_region_leave("fsmonitor", "handle_client", the_repository
);
989 #define FSMONITOR_DIR "fsmonitor--daemon"
990 #define FSMONITOR_COOKIE_DIR "cookies"
991 #define FSMONITOR_COOKIE_PREFIX (FSMONITOR_DIR "/" FSMONITOR_COOKIE_DIR "/")
993 enum fsmonitor_path_type
fsmonitor_classify_path_workdir_relative(
996 if (fspathncmp(rel
, ".git", 4))
997 return IS_WORKDIR_PATH
;
1003 return IS_WORKDIR_PATH
; /* e.g. .gitignore */
1006 if (!fspathncmp(rel
, FSMONITOR_COOKIE_PREFIX
,
1007 strlen(FSMONITOR_COOKIE_PREFIX
)))
1008 return IS_INSIDE_DOT_GIT_WITH_COOKIE_PREFIX
;
1010 return IS_INSIDE_DOT_GIT
;
1013 enum fsmonitor_path_type
fsmonitor_classify_path_gitdir_relative(
1016 if (!fspathncmp(rel
, FSMONITOR_COOKIE_PREFIX
,
1017 strlen(FSMONITOR_COOKIE_PREFIX
)))
1018 return IS_INSIDE_GITDIR_WITH_COOKIE_PREFIX
;
1020 return IS_INSIDE_GITDIR
;
1023 static enum fsmonitor_path_type
try_classify_workdir_abs_path(
1024 struct fsmonitor_daemon_state
*state
,
1029 if (fspathncmp(path
, state
->path_worktree_watch
.buf
,
1030 state
->path_worktree_watch
.len
))
1031 return IS_OUTSIDE_CONE
;
1033 rel
= path
+ state
->path_worktree_watch
.len
;
1036 return IS_WORKDIR_PATH
; /* it is the root dir exactly */
1038 return IS_OUTSIDE_CONE
;
1041 return fsmonitor_classify_path_workdir_relative(rel
);
1044 enum fsmonitor_path_type
fsmonitor_classify_path_absolute(
1045 struct fsmonitor_daemon_state
*state
,
1049 enum fsmonitor_path_type t
;
1051 t
= try_classify_workdir_abs_path(state
, path
);
1052 if (state
->nr_paths_watching
== 1)
1054 if (t
!= IS_OUTSIDE_CONE
)
1057 if (fspathncmp(path
, state
->path_gitdir_watch
.buf
,
1058 state
->path_gitdir_watch
.len
))
1059 return IS_OUTSIDE_CONE
;
1061 rel
= path
+ state
->path_gitdir_watch
.len
;
1064 return IS_GITDIR
; /* it is the <gitdir> exactly */
1066 return IS_OUTSIDE_CONE
;
1069 return fsmonitor_classify_path_gitdir_relative(rel
);
1073 * We try to combine small batches at the front of the batch-list to avoid
1074 * having a long list. This hopefully makes it a little easier when we want
1075 * to truncate and maintain the list. However, we don't want the paths array
1076 * to just keep growing and growing with realloc, so we insert an arbitrary
1079 #define MY_COMBINE_LIMIT (1024)
1081 void fsmonitor_publish(struct fsmonitor_daemon_state
*state
,
1082 struct fsmonitor_batch
*batch
,
1083 const struct string_list
*cookie_names
)
1085 if (!batch
&& !cookie_names
->nr
)
1088 pthread_mutex_lock(&state
->main_lock
);
1091 struct fsmonitor_batch
*head
;
1093 head
= state
->current_token_data
->batch_head
;
1095 BUG("token does not have batch");
1096 } else if (head
->pinned_time
) {
1098 * We cannot alter the current batch list
1101 * [a] it is being transmitted to at least one
1102 * client and the handle_client() thread has a
1103 * ref-count, but not a lock on the batch list
1104 * starting with this item.
1106 * [b] it has been transmitted in the past to
1107 * at least one client such that future
1108 * requests are relative to this head batch.
1110 * So, we can only prepend a new batch onto
1111 * the front of the list.
1113 batch
->batch_seq_nr
= head
->batch_seq_nr
+ 1;
1115 state
->current_token_data
->batch_head
= batch
;
1116 } else if (!head
->batch_seq_nr
) {
1118 * Batch 0 is unpinned. See the note in
1119 * `fsmonitor_new_token_data()` about why we
1120 * don't need to accumulate these paths.
1122 fsmonitor_batch__free_list(batch
);
1123 } else if (head
->nr
+ batch
->nr
> MY_COMBINE_LIMIT
) {
1125 * The head batch in the list has never been
1126 * transmitted to a client, but folding the
1127 * contents of the new batch onto it would
1128 * exceed our arbitrary limit, so just prepend
1129 * the new batch onto the list.
1131 batch
->batch_seq_nr
= head
->batch_seq_nr
+ 1;
1133 state
->current_token_data
->batch_head
= batch
;
1136 * We are free to add the paths in the given
1137 * batch onto the end of the current head batch.
1139 fsmonitor_batch__combine(head
, batch
);
1140 fsmonitor_batch__free_list(batch
);
1144 if (cookie_names
->nr
)
1145 with_lock__mark_cookies_seen(state
, cookie_names
);
1147 pthread_mutex_unlock(&state
->main_lock
);
1150 static void *fsm_health__thread_proc(void *_state
)
1152 struct fsmonitor_daemon_state
*state
= _state
;
1154 trace2_thread_start("fsm-health");
1156 fsm_health__loop(state
);
1158 trace2_thread_exit();
1162 static void *fsm_listen__thread_proc(void *_state
)
1164 struct fsmonitor_daemon_state
*state
= _state
;
1166 trace2_thread_start("fsm-listen");
1168 trace_printf_key(&trace_fsmonitor
, "Watching: worktree '%s'",
1169 state
->path_worktree_watch
.buf
);
1170 if (state
->nr_paths_watching
> 1)
1171 trace_printf_key(&trace_fsmonitor
, "Watching: gitdir '%s'",
1172 state
->path_gitdir_watch
.buf
);
1174 fsm_listen__loop(state
);
1176 pthread_mutex_lock(&state
->main_lock
);
1177 if (state
->current_token_data
&&
1178 state
->current_token_data
->client_ref_count
== 0)
1179 fsmonitor_free_token_data(state
->current_token_data
);
1180 state
->current_token_data
= NULL
;
1181 pthread_mutex_unlock(&state
->main_lock
);
1183 trace2_thread_exit();
1187 static int fsmonitor_run_daemon_1(struct fsmonitor_daemon_state
*state
)
1189 struct ipc_server_opts ipc_opts
= {
1190 .nr_threads
= fsmonitor__ipc_threads
,
1193 * We know that there are no other active threads yet,
1194 * so we can let the IPC layer temporarily chdir() if
1195 * it needs to when creating the server side of the
1196 * Unix domain socket.
1198 .uds_disallow_chdir
= 0
1200 int health_started
= 0;
1201 int listener_started
= 0;
1205 * Start the IPC thread pool before the we've started the file
1206 * system event listener thread so that we have the IPC handle
1207 * before we need it.
1209 if (ipc_server_run_async(&state
->ipc_server_data
,
1210 state
->path_ipc
.buf
, &ipc_opts
,
1211 handle_client
, state
))
1213 _("could not start IPC thread pool on '%s'"),
1214 state
->path_ipc
.buf
);
1217 * Start the fsmonitor listener thread to collect filesystem
1220 if (pthread_create(&state
->listener_thread
, NULL
,
1221 fsm_listen__thread_proc
, state
)) {
1222 ipc_server_stop_async(state
->ipc_server_data
);
1223 err
= error(_("could not start fsmonitor listener thread"));
1226 listener_started
= 1;
1229 * Start the health thread to watch over our process.
1231 if (pthread_create(&state
->health_thread
, NULL
,
1232 fsm_health__thread_proc
, state
)) {
1233 ipc_server_stop_async(state
->ipc_server_data
);
1234 err
= error(_("could not start fsmonitor health thread"));
1240 * The daemon is now fully functional in background threads.
1241 * Our primary thread should now just wait while the threads
1246 * Wait for the IPC thread pool to shutdown (whether by client
1247 * request, from filesystem activity, or an error).
1249 ipc_server_await(state
->ipc_server_data
);
1252 * The fsmonitor listener thread may have received a shutdown
1253 * event from the IPC thread pool, but it doesn't hurt to tell
1254 * it again. And wait for it to shutdown.
1256 if (listener_started
) {
1257 fsm_listen__stop_async(state
);
1258 pthread_join(state
->listener_thread
, NULL
);
1261 if (health_started
) {
1262 fsm_health__stop_async(state
);
1263 pthread_join(state
->health_thread
, NULL
);
1268 if (state
->listen_error_code
)
1269 return state
->listen_error_code
;
1270 if (state
->health_error_code
)
1271 return state
->health_error_code
;
1275 static int fsmonitor_run_daemon(void)
1277 struct fsmonitor_daemon_state state
;
1281 memset(&state
, 0, sizeof(state
));
1283 hashmap_init(&state
.cookies
, cookies_cmp
, NULL
, 0);
1284 pthread_mutex_init(&state
.main_lock
, NULL
);
1285 pthread_cond_init(&state
.cookies_cond
, NULL
);
1286 state
.listen_error_code
= 0;
1287 state
.health_error_code
= 0;
1288 state
.current_token_data
= fsmonitor_new_token_data();
1290 /* Prepare to (recursively) watch the <worktree-root> directory. */
1291 strbuf_init(&state
.path_worktree_watch
, 0);
1292 strbuf_addstr(&state
.path_worktree_watch
, absolute_path(get_git_work_tree()));
1293 state
.nr_paths_watching
= 1;
1295 strbuf_init(&state
.alias
.alias
, 0);
1296 strbuf_init(&state
.alias
.points_to
, 0);
1297 if ((err
= fsmonitor__get_alias(state
.path_worktree_watch
.buf
, &state
.alias
)))
1301 * We create and delete cookie files somewhere inside the .git
1302 * directory to help us keep sync with the file system. If
1303 * ".git" is not a directory, then <gitdir> is not inside the
1304 * cone of <worktree-root>, so set up a second watch to watch
1305 * the <gitdir> so that we get events for the cookie files.
1307 strbuf_init(&state
.path_gitdir_watch
, 0);
1308 strbuf_addbuf(&state
.path_gitdir_watch
, &state
.path_worktree_watch
);
1309 strbuf_addstr(&state
.path_gitdir_watch
, "/.git");
1310 if (!is_directory(state
.path_gitdir_watch
.buf
)) {
1311 strbuf_reset(&state
.path_gitdir_watch
);
1312 strbuf_addstr(&state
.path_gitdir_watch
, absolute_path(get_git_dir()));
1313 state
.nr_paths_watching
= 2;
1317 * We will write filesystem syncing cookie files into
1318 * <gitdir>/<fsmonitor-dir>/<cookie-dir>/<pid>-<seq>.
1320 * The extra layers of subdirectories here keep us from
1321 * changing the mtime on ".git/" or ".git/foo/" when we create
1322 * or delete cookie files.
1324 * There have been problems with some IDEs that do a
1325 * non-recursive watch of the ".git/" directory and run a
1326 * series of commands any time something happens.
1328 * For example, if we place our cookie files directly in
1329 * ".git/" or ".git/foo/" then a `git status` (or similar
1330 * command) from the IDE will cause a cookie file to be
1331 * created in one of those dirs. This causes the mtime of
1332 * those dirs to change. This triggers the IDE's watch
1333 * notification. This triggers the IDE to run those commands
1334 * again. And the process repeats and the machine never goes
1337 * Adding the extra layers of subdirectories prevents the
1338 * mtime of ".git/" and ".git/foo" from changing when a
1339 * cookie file is created.
1341 strbuf_init(&state
.path_cookie_prefix
, 0);
1342 strbuf_addbuf(&state
.path_cookie_prefix
, &state
.path_gitdir_watch
);
1344 strbuf_addch(&state
.path_cookie_prefix
, '/');
1345 strbuf_addstr(&state
.path_cookie_prefix
, FSMONITOR_DIR
);
1346 mkdir(state
.path_cookie_prefix
.buf
, 0777);
1348 strbuf_addch(&state
.path_cookie_prefix
, '/');
1349 strbuf_addstr(&state
.path_cookie_prefix
, FSMONITOR_COOKIE_DIR
);
1350 mkdir(state
.path_cookie_prefix
.buf
, 0777);
1352 strbuf_addch(&state
.path_cookie_prefix
, '/');
1355 * We create a named-pipe or unix domain socket inside of the
1356 * ".git" directory. (Well, on Windows, we base our named
1357 * pipe in the NPFS on the absolute path of the git
1360 strbuf_init(&state
.path_ipc
, 0);
1361 strbuf_addstr(&state
.path_ipc
,
1362 absolute_path(fsmonitor_ipc__get_path(the_repository
)));
1365 * Confirm that we can create platform-specific resources for the
1366 * filesystem listener before we bother starting all the threads.
1368 if (fsm_listen__ctor(&state
)) {
1369 err
= error(_("could not initialize listener thread"));
1373 if (fsm_health__ctor(&state
)) {
1374 err
= error(_("could not initialize health thread"));
1379 * CD out of the worktree root directory.
1381 * The common Git startup mechanism causes our CWD to be the
1382 * root of the worktree. On Windows, this causes our process
1383 * to hold a locked handle on the CWD. This prevents the
1384 * worktree from being moved or deleted while the daemon is
1387 * We assume that our FS and IPC listener threads have either
1388 * opened all of the handles that they need or will do
1389 * everything using absolute paths.
1391 home
= getenv("HOME");
1392 if (home
&& *home
&& chdir(home
))
1393 die_errno(_("could not cd home '%s'"), home
);
1395 err
= fsmonitor_run_daemon_1(&state
);
1398 pthread_cond_destroy(&state
.cookies_cond
);
1399 pthread_mutex_destroy(&state
.main_lock
);
1400 fsm_listen__dtor(&state
);
1401 fsm_health__dtor(&state
);
1403 ipc_server_free(state
.ipc_server_data
);
1405 strbuf_release(&state
.path_worktree_watch
);
1406 strbuf_release(&state
.path_gitdir_watch
);
1407 strbuf_release(&state
.path_cookie_prefix
);
1408 strbuf_release(&state
.path_ipc
);
1409 strbuf_release(&state
.alias
.alias
);
1410 strbuf_release(&state
.alias
.points_to
);
1415 static int try_to_run_foreground_daemon(int detach_console
)
1418 * Technically, we don't need to probe for an existing daemon
1419 * process, since we could just call `fsmonitor_run_daemon()`
1420 * and let it fail if the pipe/socket is busy.
1422 * However, this method gives us a nicer error message for a
1423 * common error case.
1425 if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING
)
1426 die(_("fsmonitor--daemon is already running '%s'"),
1427 the_repository
->worktree
);
1429 if (fsmonitor__announce_startup
) {
1430 fprintf(stderr
, _("running fsmonitor-daemon in '%s'\n"),
1431 the_repository
->worktree
);
1435 #ifdef GIT_WINDOWS_NATIVE
1440 return !!fsmonitor_run_daemon();
1443 static start_bg_wait_cb bg_wait_cb
;
1445 static int bg_wait_cb(const struct child_process
*cp
, void *cb_data
)
1447 enum ipc_active_state s
= fsmonitor_ipc__get_state();
1450 case IPC_STATE__LISTENING
:
1451 /* child is "ready" */
1454 case IPC_STATE__NOT_LISTENING
:
1455 case IPC_STATE__PATH_NOT_FOUND
:
1456 /* give child more time */
1460 case IPC_STATE__INVALID_PATH
:
1461 case IPC_STATE__OTHER_ERROR
:
1462 /* all the time in world won't help */
1467 static int try_to_start_background_daemon(void)
1469 struct child_process cp
= CHILD_PROCESS_INIT
;
1470 enum start_bg_result sbgr
;
1473 * Before we try to create a background daemon process, see
1474 * if a daemon process is already listening. This makes it
1475 * easier for us to report an already-listening error to the
1476 * console, since our spawn/daemon can only report the success
1477 * of creating the background process (and not whether it
1478 * immediately exited).
1480 if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING
)
1481 die(_("fsmonitor--daemon is already running '%s'"),
1482 the_repository
->worktree
);
1484 if (fsmonitor__announce_startup
) {
1485 fprintf(stderr
, _("starting fsmonitor-daemon in '%s'\n"),
1486 the_repository
->worktree
);
1492 strvec_push(&cp
.args
, "fsmonitor--daemon");
1493 strvec_push(&cp
.args
, "run");
1494 strvec_push(&cp
.args
, "--detach");
1495 strvec_pushf(&cp
.args
, "--ipc-threads=%d", fsmonitor__ipc_threads
);
1501 sbgr
= start_bg_command(&cp
, bg_wait_cb
, NULL
,
1502 fsmonitor__start_timeout_sec
);
1511 return error(_("daemon failed to start"));
1514 return error(_("daemon not online yet"));
1517 return error(_("daemon terminated"));
1521 int cmd_fsmonitor__daemon(int argc
, const char **argv
, const char *prefix
)
1524 enum fsmonitor_reason reason
;
1525 int detach_console
= 0;
1527 struct option options
[] = {
1528 OPT_BOOL(0, "detach", &detach_console
, N_("detach from console")),
1529 OPT_INTEGER(0, "ipc-threads",
1530 &fsmonitor__ipc_threads
,
1531 N_("use <n> ipc worker threads")),
1532 OPT_INTEGER(0, "start-timeout",
1533 &fsmonitor__start_timeout_sec
,
1534 N_("max seconds to wait for background daemon startup")),
1539 git_config(fsmonitor_config
, NULL
);
1541 argc
= parse_options(argc
, argv
, prefix
, options
,
1542 builtin_fsmonitor__daemon_usage
, 0);
1544 usage_with_options(builtin_fsmonitor__daemon_usage
, options
);
1547 if (fsmonitor__ipc_threads
< 1)
1548 die(_("invalid 'ipc-threads' value (%d)"),
1549 fsmonitor__ipc_threads
);
1551 prepare_repo_settings(the_repository
);
1553 * If the repo is fsmonitor-compatible, explicitly set IPC-mode
1554 * (without bothering to load the `core.fsmonitor` config settings).
1556 * If the repo is not compatible, the repo-settings will be set to
1557 * incompatible rather than IPC, so we can use one of the __get
1558 * routines to detect the discrepancy.
1560 fsm_settings__set_ipc(the_repository
);
1562 reason
= fsm_settings__get_reason(the_repository
);
1563 if (reason
> FSMONITOR_REASON_OK
)
1565 fsm_settings__get_incompatible_msg(the_repository
,
1568 if (!strcmp(subcmd
, "start"))
1569 return !!try_to_start_background_daemon();
1571 if (!strcmp(subcmd
, "run"))
1572 return !!try_to_run_foreground_daemon(detach_console
);
1574 if (!strcmp(subcmd
, "stop"))
1575 return !!do_as_client__send_stop();
1577 if (!strcmp(subcmd
, "status"))
1578 return !!do_as_client__status();
1580 die(_("Unhandled subcommand '%s'"), subcmd
);
1584 int cmd_fsmonitor__daemon(int argc
, const char **argv
, const char *prefix UNUSED
)
1586 struct option options
[] = {
1590 if (argc
== 2 && !strcmp(argv
[1], "-h"))
1591 usage_with_options(builtin_fsmonitor__daemon_usage
, options
);
1593 die(_("fsmonitor--daemon not supported on this platform"));