Merge branch 'jc/maint-github-actions-update'
[git.git] / builtin / fsmonitor--daemon.c
blob6f30a4f93a7fa93873e40312a0fcb569056daf88
1 #include "builtin.h"
2 #include "config.h"
3 #include "parse-options.h"
4 #include "fsmonitor.h"
5 #include "fsmonitor-ipc.h"
6 #include "fsmonitor-path-utils.h"
7 #include "compat/fsmonitor/fsm-health.h"
8 #include "compat/fsmonitor/fsm-listen.h"
9 #include "fsmonitor--daemon.h"
10 #include "simple-ipc.h"
11 #include "khash.h"
12 #include "pkt-line.h"
14 static const char * const builtin_fsmonitor__daemon_usage[] = {
15 N_("git fsmonitor--daemon start [<options>]"),
16 N_("git fsmonitor--daemon run [<options>]"),
17 "git fsmonitor--daemon stop",
18 "git fsmonitor--daemon status",
19 NULL
22 #ifdef HAVE_FSMONITOR_DAEMON_BACKEND
24 * Global state loaded from config.
26 #define FSMONITOR__IPC_THREADS "fsmonitor.ipcthreads"
27 static int fsmonitor__ipc_threads = 8;
29 #define FSMONITOR__START_TIMEOUT "fsmonitor.starttimeout"
30 static int fsmonitor__start_timeout_sec = 60;
32 #define FSMONITOR__ANNOUNCE_STARTUP "fsmonitor.announcestartup"
33 static int fsmonitor__announce_startup = 0;
35 static int fsmonitor_config(const char *var, const char *value, void *cb)
37 if (!strcmp(var, FSMONITOR__IPC_THREADS)) {
38 int i = git_config_int(var, value);
39 if (i < 1)
40 return error(_("value of '%s' out of range: %d"),
41 FSMONITOR__IPC_THREADS, i);
42 fsmonitor__ipc_threads = i;
43 return 0;
46 if (!strcmp(var, FSMONITOR__START_TIMEOUT)) {
47 int i = git_config_int(var, value);
48 if (i < 0)
49 return error(_("value of '%s' out of range: %d"),
50 FSMONITOR__START_TIMEOUT, i);
51 fsmonitor__start_timeout_sec = i;
52 return 0;
55 if (!strcmp(var, FSMONITOR__ANNOUNCE_STARTUP)) {
56 int is_bool;
57 int i = git_config_bool_or_int(var, value, &is_bool);
58 if (i < 0)
59 return error(_("value of '%s' not bool or int: %d"),
60 var, i);
61 fsmonitor__announce_startup = i;
62 return 0;
65 return git_default_config(var, value, cb);
69 * Acting as a CLIENT.
71 * Send a "quit" command to the `git-fsmonitor--daemon` (if running)
72 * and wait for it to shutdown.
74 static int do_as_client__send_stop(void)
76 struct strbuf answer = STRBUF_INIT;
77 int ret;
79 ret = fsmonitor_ipc__send_command("quit", &answer);
81 /* The quit command does not return any response data. */
82 strbuf_release(&answer);
84 if (ret)
85 return ret;
87 trace2_region_enter("fsm_client", "polling-for-daemon-exit", NULL);
88 while (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING)
89 sleep_millisec(50);
90 trace2_region_leave("fsm_client", "polling-for-daemon-exit", NULL);
92 return 0;
95 static int do_as_client__status(void)
97 enum ipc_active_state state = fsmonitor_ipc__get_state();
99 switch (state) {
100 case IPC_STATE__LISTENING:
101 printf(_("fsmonitor-daemon is watching '%s'\n"),
102 the_repository->worktree);
103 return 0;
105 default:
106 printf(_("fsmonitor-daemon is not watching '%s'\n"),
107 the_repository->worktree);
108 return 1;
112 enum fsmonitor_cookie_item_result {
113 FCIR_ERROR = -1, /* could not create cookie file ? */
114 FCIR_INIT,
115 FCIR_SEEN,
116 FCIR_ABORT,
119 struct fsmonitor_cookie_item {
120 struct hashmap_entry entry;
121 char *name;
122 enum fsmonitor_cookie_item_result result;
125 static int cookies_cmp(const void *data, const struct hashmap_entry *he1,
126 const struct hashmap_entry *he2, const void *keydata)
128 const struct fsmonitor_cookie_item *a =
129 container_of(he1, const struct fsmonitor_cookie_item, entry);
130 const struct fsmonitor_cookie_item *b =
131 container_of(he2, const struct fsmonitor_cookie_item, entry);
133 return strcmp(a->name, keydata ? keydata : b->name);
136 static enum fsmonitor_cookie_item_result with_lock__wait_for_cookie(
137 struct fsmonitor_daemon_state *state)
139 /* assert current thread holding state->main_lock */
141 int fd;
142 struct fsmonitor_cookie_item *cookie;
143 struct strbuf cookie_pathname = STRBUF_INIT;
144 struct strbuf cookie_filename = STRBUF_INIT;
145 enum fsmonitor_cookie_item_result result;
146 int my_cookie_seq;
148 CALLOC_ARRAY(cookie, 1);
150 my_cookie_seq = state->cookie_seq++;
152 strbuf_addf(&cookie_filename, "%i-%i", getpid(), my_cookie_seq);
154 strbuf_addbuf(&cookie_pathname, &state->path_cookie_prefix);
155 strbuf_addbuf(&cookie_pathname, &cookie_filename);
157 cookie->name = strbuf_detach(&cookie_filename, NULL);
158 cookie->result = FCIR_INIT;
159 hashmap_entry_init(&cookie->entry, strhash(cookie->name));
161 hashmap_add(&state->cookies, &cookie->entry);
163 trace_printf_key(&trace_fsmonitor, "cookie-wait: '%s' '%s'",
164 cookie->name, cookie_pathname.buf);
167 * Create the cookie file on disk and then wait for a notification
168 * that the listener thread has seen it.
170 fd = open(cookie_pathname.buf, O_WRONLY | O_CREAT | O_EXCL, 0600);
171 if (fd < 0) {
172 error_errno(_("could not create fsmonitor cookie '%s'"),
173 cookie->name);
175 cookie->result = FCIR_ERROR;
176 goto done;
180 * Technically, close() and unlink() can fail, but we don't
181 * care here. We only created the file to trigger a watch
182 * event from the FS to know that when we're up to date.
184 close(fd);
185 unlink(cookie_pathname.buf);
188 * Technically, this is an infinite wait (well, unless another
189 * thread sends us an abort). I'd like to change this to
190 * use `pthread_cond_timedwait()` and return an error/timeout
191 * and let the caller do the trivial response thing, but we
192 * don't have that routine in our thread-utils.
194 * After extensive beta testing I'm not really worried about
195 * this. Also note that the above open() and unlink() calls
196 * will cause at least two FS events on that path, so the odds
197 * of getting stuck are pretty slim.
199 while (cookie->result == FCIR_INIT)
200 pthread_cond_wait(&state->cookies_cond,
201 &state->main_lock);
203 done:
204 hashmap_remove(&state->cookies, &cookie->entry, NULL);
206 result = cookie->result;
208 free(cookie->name);
209 free(cookie);
210 strbuf_release(&cookie_pathname);
212 return result;
216 * Mark these cookies as _SEEN and wake up the corresponding client threads.
218 static void with_lock__mark_cookies_seen(struct fsmonitor_daemon_state *state,
219 const struct string_list *cookie_names)
221 /* assert current thread holding state->main_lock */
223 int k;
224 int nr_seen = 0;
226 for (k = 0; k < cookie_names->nr; k++) {
227 struct fsmonitor_cookie_item key;
228 struct fsmonitor_cookie_item *cookie;
230 key.name = cookie_names->items[k].string;
231 hashmap_entry_init(&key.entry, strhash(key.name));
233 cookie = hashmap_get_entry(&state->cookies, &key, entry, NULL);
234 if (cookie) {
235 trace_printf_key(&trace_fsmonitor, "cookie-seen: '%s'",
236 cookie->name);
237 cookie->result = FCIR_SEEN;
238 nr_seen++;
242 if (nr_seen)
243 pthread_cond_broadcast(&state->cookies_cond);
247 * Set _ABORT on all pending cookies and wake up all client threads.
249 static void with_lock__abort_all_cookies(struct fsmonitor_daemon_state *state)
251 /* assert current thread holding state->main_lock */
253 struct hashmap_iter iter;
254 struct fsmonitor_cookie_item *cookie;
255 int nr_aborted = 0;
257 hashmap_for_each_entry(&state->cookies, &iter, cookie, entry) {
258 trace_printf_key(&trace_fsmonitor, "cookie-abort: '%s'",
259 cookie->name);
260 cookie->result = FCIR_ABORT;
261 nr_aborted++;
264 if (nr_aborted)
265 pthread_cond_broadcast(&state->cookies_cond);
269 * Requests to and from a FSMonitor Protocol V2 provider use an opaque
270 * "token" as a virtual timestamp. Clients can request a summary of all
271 * created/deleted/modified files relative to a token. In the response,
272 * clients receive a new token for the next (relative) request.
275 * Token Format
276 * ============
278 * The contents of the token are private and provider-specific.
280 * For the built-in fsmonitor--daemon, we define a token as follows:
282 * "builtin" ":" <token_id> ":" <sequence_nr>
284 * The "builtin" prefix is used as a namespace to avoid conflicts
285 * with other providers (such as Watchman).
287 * The <token_id> is an arbitrary OPAQUE string, such as a GUID,
288 * UUID, or {timestamp,pid}. It is used to group all filesystem
289 * events that happened while the daemon was monitoring (and in-sync
290 * with the filesystem).
292 * Unlike FSMonitor Protocol V1, it is not defined as a timestamp
293 * and does not define less-than/greater-than relationships.
294 * (There are too many race conditions to rely on file system
295 * event timestamps.)
297 * The <sequence_nr> is a simple integer incremented whenever the
298 * daemon needs to make its state public. For example, if 1000 file
299 * system events come in, but no clients have requested the data,
300 * the daemon can continue to accumulate file changes in the same
301 * bin and does not need to advance the sequence number. However,
302 * as soon as a client does arrive, the daemon needs to start a new
303 * bin and increment the sequence number.
305 * The sequence number serves as the boundary between 2 sets
306 * of bins -- the older ones that the client has already seen
307 * and the newer ones that it hasn't.
309 * When a new <token_id> is created, the <sequence_nr> is reset to
310 * zero.
313 * About Token Ids
314 * ===============
316 * A new token_id is created:
318 * [1] each time the daemon is started.
320 * [2] any time that the daemon must re-sync with the filesystem
321 * (such as when the kernel drops or we miss events on a very
322 * active volume).
324 * [3] in response to a client "flush" command (for dropped event
325 * testing).
327 * When a new token_id is created, the daemon is free to discard all
328 * cached filesystem events associated with any previous token_ids.
329 * Events associated with a non-current token_id will never be sent
330 * to a client. A token_id change implicitly means that the daemon
331 * has gap in its event history.
333 * Therefore, clients that present a token with a stale (non-current)
334 * token_id will always be given a trivial response.
336 struct fsmonitor_token_data {
337 struct strbuf token_id;
338 struct fsmonitor_batch *batch_head;
339 struct fsmonitor_batch *batch_tail;
340 uint64_t client_ref_count;
343 struct fsmonitor_batch {
344 struct fsmonitor_batch *next;
345 uint64_t batch_seq_nr;
346 const char **interned_paths;
347 size_t nr, alloc;
348 time_t pinned_time;
351 static struct fsmonitor_token_data *fsmonitor_new_token_data(void)
353 static int test_env_value = -1;
354 static uint64_t flush_count = 0;
355 struct fsmonitor_token_data *token;
356 struct fsmonitor_batch *batch;
358 CALLOC_ARRAY(token, 1);
359 batch = fsmonitor_batch__new();
361 strbuf_init(&token->token_id, 0);
362 token->batch_head = batch;
363 token->batch_tail = batch;
364 token->client_ref_count = 0;
366 if (test_env_value < 0)
367 test_env_value = git_env_bool("GIT_TEST_FSMONITOR_TOKEN", 0);
369 if (!test_env_value) {
370 struct timeval tv;
371 struct tm tm;
372 time_t secs;
374 gettimeofday(&tv, NULL);
375 secs = tv.tv_sec;
376 gmtime_r(&secs, &tm);
378 strbuf_addf(&token->token_id,
379 "%"PRIu64".%d.%4d%02d%02dT%02d%02d%02d.%06ldZ",
380 flush_count++,
381 getpid(),
382 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
383 tm.tm_hour, tm.tm_min, tm.tm_sec,
384 (long)tv.tv_usec);
385 } else {
386 strbuf_addf(&token->token_id, "test_%08x", test_env_value++);
390 * We created a new <token_id> and are starting a new series
391 * of tokens with a zero <seq_nr>.
393 * Since clients cannot guess our new (non test) <token_id>
394 * they will always receive a trivial response (because of the
395 * mismatch on the <token_id>). The trivial response will
396 * tell them our new <token_id> so that subsequent requests
397 * will be relative to our new series. (And when sending that
398 * response, we pin the current head of the batch list.)
400 * Even if the client correctly guesses the <token_id>, their
401 * request of "builtin:<token_id>:0" asks for all changes MORE
402 * RECENT than batch/bin 0.
404 * This implies that it is a waste to accumulate paths in the
405 * initial batch/bin (because they will never be transmitted).
407 * So the daemon could be running for days and watching the
408 * file system, but doesn't need to actually accumulate any
409 * paths UNTIL we need to set a reference point for a later
410 * relative request.
412 * However, it is very useful for testing to always have a
413 * reference point set. Pin batch 0 to force early file system
414 * events to accumulate.
416 if (test_env_value)
417 batch->pinned_time = time(NULL);
419 return token;
422 struct fsmonitor_batch *fsmonitor_batch__new(void)
424 struct fsmonitor_batch *batch;
426 CALLOC_ARRAY(batch, 1);
428 return batch;
431 void fsmonitor_batch__free_list(struct fsmonitor_batch *batch)
433 while (batch) {
434 struct fsmonitor_batch *next = batch->next;
437 * The actual strings within the array of this batch
438 * are interned, so we don't own them. We only own
439 * the array.
441 free(batch->interned_paths);
442 free(batch);
444 batch = next;
448 void fsmonitor_batch__add_path(struct fsmonitor_batch *batch,
449 const char *path)
451 const char *interned_path = strintern(path);
453 trace_printf_key(&trace_fsmonitor, "event: %s", interned_path);
455 ALLOC_GROW(batch->interned_paths, batch->nr + 1, batch->alloc);
456 batch->interned_paths[batch->nr++] = interned_path;
459 static void fsmonitor_batch__combine(struct fsmonitor_batch *batch_dest,
460 const struct fsmonitor_batch *batch_src)
462 size_t k;
464 ALLOC_GROW(batch_dest->interned_paths,
465 batch_dest->nr + batch_src->nr + 1,
466 batch_dest->alloc);
468 for (k = 0; k < batch_src->nr; k++)
469 batch_dest->interned_paths[batch_dest->nr++] =
470 batch_src->interned_paths[k];
474 * To keep the batch list from growing unbounded in response to filesystem
475 * activity, we try to truncate old batches from the end of the list as
476 * they become irrelevant.
478 * We assume that the .git/index will be updated with the most recent token
479 * any time the index is updated. And future commands will only ask for
480 * recent changes *since* that new token. So as tokens advance into the
481 * future, older batch items will never be requested/needed. So we can
482 * truncate them without loss of functionality.
484 * However, multiple commands may be talking to the daemon concurrently
485 * or perform a slow command, so a little "token skew" is possible.
486 * Therefore, we want this to be a little bit lazy and have a generous
487 * delay.
489 * The current reader thread walked backwards in time from `token->batch_head`
490 * back to `batch_marker` somewhere in the middle of the batch list.
492 * Let's walk backwards in time from that marker an arbitrary delay
493 * and truncate the list there. Note that these timestamps are completely
494 * artificial (based on when we pinned the batch item) and not on any
495 * filesystem activity.
497 * Return the obsolete portion of the list after we have removed it from
498 * the official list so that the caller can free it after leaving the lock.
500 #define MY_TIME_DELAY_SECONDS (5 * 60) /* seconds */
502 static struct fsmonitor_batch *with_lock__truncate_old_batches(
503 struct fsmonitor_daemon_state *state,
504 const struct fsmonitor_batch *batch_marker)
506 /* assert current thread holding state->main_lock */
508 const struct fsmonitor_batch *batch;
509 struct fsmonitor_batch *remainder;
511 if (!batch_marker)
512 return NULL;
514 trace_printf_key(&trace_fsmonitor, "Truncate: mark (%"PRIu64",%"PRIu64")",
515 batch_marker->batch_seq_nr,
516 (uint64_t)batch_marker->pinned_time);
518 for (batch = batch_marker; batch; batch = batch->next) {
519 time_t t;
521 if (!batch->pinned_time) /* an overflow batch */
522 continue;
524 t = batch->pinned_time + MY_TIME_DELAY_SECONDS;
525 if (t > batch_marker->pinned_time) /* too close to marker */
526 continue;
528 goto truncate_past_here;
531 return NULL;
533 truncate_past_here:
534 state->current_token_data->batch_tail = (struct fsmonitor_batch *)batch;
536 remainder = ((struct fsmonitor_batch *)batch)->next;
537 ((struct fsmonitor_batch *)batch)->next = NULL;
539 return remainder;
542 static void fsmonitor_free_token_data(struct fsmonitor_token_data *token)
544 if (!token)
545 return;
547 assert(token->client_ref_count == 0);
549 strbuf_release(&token->token_id);
551 fsmonitor_batch__free_list(token->batch_head);
553 free(token);
557 * Flush all of our cached data about the filesystem. Call this if we
558 * lose sync with the filesystem and miss some notification events.
560 * [1] If we are missing events, then we no longer have a complete
561 * history of the directory (relative to our current start token).
562 * We should create a new token and start fresh (as if we just
563 * booted up).
565 * [2] Some of those lost events may have been for cookie files. We
566 * should assume the worst and abort them rather letting them starve.
568 * If there are no concurrent threads reading the current token data
569 * series, we can free it now. Otherwise, let the last reader free
570 * it.
572 * Either way, the old token data series is no longer associated with
573 * our state data.
575 static void with_lock__do_force_resync(struct fsmonitor_daemon_state *state)
577 /* assert current thread holding state->main_lock */
579 struct fsmonitor_token_data *free_me = NULL;
580 struct fsmonitor_token_data *new_one = NULL;
582 new_one = fsmonitor_new_token_data();
584 if (state->current_token_data->client_ref_count == 0)
585 free_me = state->current_token_data;
586 state->current_token_data = new_one;
588 fsmonitor_free_token_data(free_me);
590 with_lock__abort_all_cookies(state);
593 void fsmonitor_force_resync(struct fsmonitor_daemon_state *state)
595 pthread_mutex_lock(&state->main_lock);
596 with_lock__do_force_resync(state);
597 pthread_mutex_unlock(&state->main_lock);
601 * Format an opaque token string to send to the client.
603 static void with_lock__format_response_token(
604 struct strbuf *response_token,
605 const struct strbuf *response_token_id,
606 const struct fsmonitor_batch *batch)
608 /* assert current thread holding state->main_lock */
610 strbuf_reset(response_token);
611 strbuf_addf(response_token, "builtin:%s:%"PRIu64,
612 response_token_id->buf, batch->batch_seq_nr);
616 * Parse an opaque token from the client.
617 * Returns -1 on error.
619 static int fsmonitor_parse_client_token(const char *buf_token,
620 struct strbuf *requested_token_id,
621 uint64_t *seq_nr)
623 const char *p;
624 char *p_end;
626 strbuf_reset(requested_token_id);
627 *seq_nr = 0;
629 if (!skip_prefix(buf_token, "builtin:", &p))
630 return -1;
632 while (*p && *p != ':')
633 strbuf_addch(requested_token_id, *p++);
634 if (!*p++)
635 return -1;
637 *seq_nr = (uint64_t)strtoumax(p, &p_end, 10);
638 if (*p_end)
639 return -1;
641 return 0;
644 KHASH_INIT(str, const char *, int, 0, kh_str_hash_func, kh_str_hash_equal)
646 static int do_handle_client(struct fsmonitor_daemon_state *state,
647 const char *command,
648 ipc_server_reply_cb *reply,
649 struct ipc_server_reply_data *reply_data)
651 struct fsmonitor_token_data *token_data = NULL;
652 struct strbuf response_token = STRBUF_INIT;
653 struct strbuf requested_token_id = STRBUF_INIT;
654 struct strbuf payload = STRBUF_INIT;
655 uint64_t requested_oldest_seq_nr = 0;
656 uint64_t total_response_len = 0;
657 const char *p;
658 const struct fsmonitor_batch *batch_head;
659 const struct fsmonitor_batch *batch;
660 struct fsmonitor_batch *remainder = NULL;
661 intmax_t count = 0, duplicates = 0;
662 kh_str_t *shown;
663 int hash_ret;
664 int do_trivial = 0;
665 int do_flush = 0;
666 int do_cookie = 0;
667 enum fsmonitor_cookie_item_result cookie_result;
670 * We expect `command` to be of the form:
672 * <command> := quit NUL
673 * | flush NUL
674 * | <V1-time-since-epoch-ns> NUL
675 * | <V2-opaque-fsmonitor-token> NUL
678 if (!strcmp(command, "quit")) {
680 * A client has requested over the socket/pipe that the
681 * daemon shutdown.
683 * Tell the IPC thread pool to shutdown (which completes
684 * the await in the main thread (which can stop the
685 * fsmonitor listener thread)).
687 * There is no reply to the client.
689 return SIMPLE_IPC_QUIT;
691 } else if (!strcmp(command, "flush")) {
693 * Flush all of our cached data and generate a new token
694 * just like if we lost sync with the filesystem.
696 * Then send a trivial response using the new token.
698 do_flush = 1;
699 do_trivial = 1;
701 } else if (!skip_prefix(command, "builtin:", &p)) {
702 /* assume V1 timestamp or garbage */
704 char *p_end;
706 strtoumax(command, &p_end, 10);
707 trace_printf_key(&trace_fsmonitor,
708 ((*p_end) ?
709 "fsmonitor: invalid command line '%s'" :
710 "fsmonitor: unsupported V1 protocol '%s'"),
711 command);
712 do_trivial = 1;
714 } else {
715 /* We have "builtin:*" */
716 if (fsmonitor_parse_client_token(command, &requested_token_id,
717 &requested_oldest_seq_nr)) {
718 trace_printf_key(&trace_fsmonitor,
719 "fsmonitor: invalid V2 protocol token '%s'",
720 command);
721 do_trivial = 1;
723 } else {
725 * We have a V2 valid token:
726 * "builtin:<token_id>:<seq_nr>"
728 do_cookie = 1;
732 pthread_mutex_lock(&state->main_lock);
734 if (!state->current_token_data)
735 BUG("fsmonitor state does not have a current token");
738 * Write a cookie file inside the directory being watched in
739 * an effort to flush out existing filesystem events that we
740 * actually care about. Suspend this client thread until we
741 * see the filesystem events for this cookie file.
743 * Creating the cookie lets us guarantee that our FS listener
744 * thread has drained the kernel queue and we are caught up
745 * with the kernel.
747 * If we cannot create the cookie (or otherwise guarantee that
748 * we are caught up), we send a trivial response. We have to
749 * assume that there might be some very, very recent activity
750 * on the FS still in flight.
752 if (do_cookie) {
753 cookie_result = with_lock__wait_for_cookie(state);
754 if (cookie_result != FCIR_SEEN) {
755 error(_("fsmonitor: cookie_result '%d' != SEEN"),
756 cookie_result);
757 do_trivial = 1;
761 if (do_flush)
762 with_lock__do_force_resync(state);
765 * We mark the current head of the batch list as "pinned" so
766 * that the listener thread will treat this item as read-only
767 * (and prevent any more paths from being added to it) from
768 * now on.
770 token_data = state->current_token_data;
771 batch_head = token_data->batch_head;
772 ((struct fsmonitor_batch *)batch_head)->pinned_time = time(NULL);
775 * FSMonitor Protocol V2 requires that we send a response header
776 * with a "new current token" and then all of the paths that changed
777 * since the "requested token". We send the seq_nr of the just-pinned
778 * head batch so that future requests from a client will be relative
779 * to it.
781 with_lock__format_response_token(&response_token,
782 &token_data->token_id, batch_head);
784 reply(reply_data, response_token.buf, response_token.len + 1);
785 total_response_len += response_token.len + 1;
787 trace2_data_string("fsmonitor", the_repository, "response/token",
788 response_token.buf);
789 trace_printf_key(&trace_fsmonitor, "response token: %s",
790 response_token.buf);
792 if (!do_trivial) {
793 if (strcmp(requested_token_id.buf, token_data->token_id.buf)) {
795 * The client last spoke to a different daemon
796 * instance -OR- the daemon had to resync with
797 * the filesystem (and lost events), so reject.
799 trace2_data_string("fsmonitor", the_repository,
800 "response/token", "different");
801 do_trivial = 1;
803 } else if (requested_oldest_seq_nr <
804 token_data->batch_tail->batch_seq_nr) {
806 * The client wants older events than we have for
807 * this token_id. This means that the end of our
808 * batch list was truncated and we cannot give the
809 * client a complete snapshot relative to their
810 * request.
812 trace_printf_key(&trace_fsmonitor,
813 "client requested truncated data");
814 do_trivial = 1;
818 if (do_trivial) {
819 pthread_mutex_unlock(&state->main_lock);
821 reply(reply_data, "/", 2);
823 trace2_data_intmax("fsmonitor", the_repository,
824 "response/trivial", 1);
826 goto cleanup;
830 * We're going to hold onto a pointer to the current
831 * token-data while we walk the list of batches of files.
832 * During this time, we will NOT be under the lock.
833 * So we ref-count it.
835 * This allows the listener thread to continue prepending
836 * new batches of items to the token-data (which we'll ignore).
838 * AND it allows the listener thread to do a token-reset
839 * (and install a new `current_token_data`).
841 token_data->client_ref_count++;
843 pthread_mutex_unlock(&state->main_lock);
846 * The client request is relative to the token that they sent,
847 * so walk the batch list backwards from the current head back
848 * to the batch (sequence number) they named.
850 * We use khash to de-dup the list of pathnames.
852 * NEEDSWORK: each batch contains a list of interned strings,
853 * so we only need to do pointer comparisons here to build the
854 * hash table. Currently, we're still comparing the string
855 * values.
857 shown = kh_init_str();
858 for (batch = batch_head;
859 batch && batch->batch_seq_nr > requested_oldest_seq_nr;
860 batch = batch->next) {
861 size_t k;
863 for (k = 0; k < batch->nr; k++) {
864 const char *s = batch->interned_paths[k];
865 size_t s_len;
867 if (kh_get_str(shown, s) != kh_end(shown))
868 duplicates++;
869 else {
870 kh_put_str(shown, s, &hash_ret);
872 trace_printf_key(&trace_fsmonitor,
873 "send[%"PRIuMAX"]: %s",
874 count, s);
876 /* Each path gets written with a trailing NUL */
877 s_len = strlen(s) + 1;
879 if (payload.len + s_len >=
880 LARGE_PACKET_DATA_MAX) {
881 reply(reply_data, payload.buf,
882 payload.len);
883 total_response_len += payload.len;
884 strbuf_reset(&payload);
887 strbuf_add(&payload, s, s_len);
888 count++;
893 if (payload.len) {
894 reply(reply_data, payload.buf, payload.len);
895 total_response_len += payload.len;
898 kh_release_str(shown);
900 pthread_mutex_lock(&state->main_lock);
902 if (token_data->client_ref_count > 0)
903 token_data->client_ref_count--;
905 if (token_data->client_ref_count == 0) {
906 if (token_data != state->current_token_data) {
908 * The listener thread did a token-reset while we were
909 * walking the batch list. Therefore, this token is
910 * stale and can be discarded completely. If we are
911 * the last reader thread using this token, we own
912 * that work.
914 fsmonitor_free_token_data(token_data);
915 } else if (batch) {
917 * We are holding the lock and are the only
918 * reader of the ref-counted portion of the
919 * list, so we get the honor of seeing if the
920 * list can be truncated to save memory.
922 * The main loop did not walk to the end of the
923 * list, so this batch is the first item in the
924 * batch-list that is older than the requested
925 * end-point sequence number. See if the tail
926 * end of the list is obsolete.
928 remainder = with_lock__truncate_old_batches(state,
929 batch);
933 pthread_mutex_unlock(&state->main_lock);
935 if (remainder)
936 fsmonitor_batch__free_list(remainder);
938 trace2_data_intmax("fsmonitor", the_repository, "response/length", total_response_len);
939 trace2_data_intmax("fsmonitor", the_repository, "response/count/files", count);
940 trace2_data_intmax("fsmonitor", the_repository, "response/count/duplicates", duplicates);
942 cleanup:
943 strbuf_release(&response_token);
944 strbuf_release(&requested_token_id);
945 strbuf_release(&payload);
947 return 0;
950 static ipc_server_application_cb handle_client;
952 static int handle_client(void *data,
953 const char *command, size_t command_len,
954 ipc_server_reply_cb *reply,
955 struct ipc_server_reply_data *reply_data)
957 struct fsmonitor_daemon_state *state = data;
958 int result;
961 * The Simple IPC API now supports {char*, len} arguments, but
962 * FSMonitor always uses proper null-terminated strings, so
963 * we can ignore the command_len argument. (Trust, but verify.)
965 if (command_len != strlen(command))
966 BUG("FSMonitor assumes text messages");
968 trace_printf_key(&trace_fsmonitor, "requested token: %s", command);
970 trace2_region_enter("fsmonitor", "handle_client", the_repository);
971 trace2_data_string("fsmonitor", the_repository, "request", command);
973 result = do_handle_client(state, command, reply, reply_data);
975 trace2_region_leave("fsmonitor", "handle_client", the_repository);
977 return result;
980 #define FSMONITOR_DIR "fsmonitor--daemon"
981 #define FSMONITOR_COOKIE_DIR "cookies"
982 #define FSMONITOR_COOKIE_PREFIX (FSMONITOR_DIR "/" FSMONITOR_COOKIE_DIR "/")
984 enum fsmonitor_path_type fsmonitor_classify_path_workdir_relative(
985 const char *rel)
987 if (fspathncmp(rel, ".git", 4))
988 return IS_WORKDIR_PATH;
989 rel += 4;
991 if (!*rel)
992 return IS_DOT_GIT;
993 if (*rel != '/')
994 return IS_WORKDIR_PATH; /* e.g. .gitignore */
995 rel++;
997 if (!fspathncmp(rel, FSMONITOR_COOKIE_PREFIX,
998 strlen(FSMONITOR_COOKIE_PREFIX)))
999 return IS_INSIDE_DOT_GIT_WITH_COOKIE_PREFIX;
1001 return IS_INSIDE_DOT_GIT;
1004 enum fsmonitor_path_type fsmonitor_classify_path_gitdir_relative(
1005 const char *rel)
1007 if (!fspathncmp(rel, FSMONITOR_COOKIE_PREFIX,
1008 strlen(FSMONITOR_COOKIE_PREFIX)))
1009 return IS_INSIDE_GITDIR_WITH_COOKIE_PREFIX;
1011 return IS_INSIDE_GITDIR;
1014 static enum fsmonitor_path_type try_classify_workdir_abs_path(
1015 struct fsmonitor_daemon_state *state,
1016 const char *path)
1018 const char *rel;
1020 if (fspathncmp(path, state->path_worktree_watch.buf,
1021 state->path_worktree_watch.len))
1022 return IS_OUTSIDE_CONE;
1024 rel = path + state->path_worktree_watch.len;
1026 if (!*rel)
1027 return IS_WORKDIR_PATH; /* it is the root dir exactly */
1028 if (*rel != '/')
1029 return IS_OUTSIDE_CONE;
1030 rel++;
1032 return fsmonitor_classify_path_workdir_relative(rel);
1035 enum fsmonitor_path_type fsmonitor_classify_path_absolute(
1036 struct fsmonitor_daemon_state *state,
1037 const char *path)
1039 const char *rel;
1040 enum fsmonitor_path_type t;
1042 t = try_classify_workdir_abs_path(state, path);
1043 if (state->nr_paths_watching == 1)
1044 return t;
1045 if (t != IS_OUTSIDE_CONE)
1046 return t;
1048 if (fspathncmp(path, state->path_gitdir_watch.buf,
1049 state->path_gitdir_watch.len))
1050 return IS_OUTSIDE_CONE;
1052 rel = path + state->path_gitdir_watch.len;
1054 if (!*rel)
1055 return IS_GITDIR; /* it is the <gitdir> exactly */
1056 if (*rel != '/')
1057 return IS_OUTSIDE_CONE;
1058 rel++;
1060 return fsmonitor_classify_path_gitdir_relative(rel);
1064 * We try to combine small batches at the front of the batch-list to avoid
1065 * having a long list. This hopefully makes it a little easier when we want
1066 * to truncate and maintain the list. However, we don't want the paths array
1067 * to just keep growing and growing with realloc, so we insert an arbitrary
1068 * limit.
1070 #define MY_COMBINE_LIMIT (1024)
1072 void fsmonitor_publish(struct fsmonitor_daemon_state *state,
1073 struct fsmonitor_batch *batch,
1074 const struct string_list *cookie_names)
1076 if (!batch && !cookie_names->nr)
1077 return;
1079 pthread_mutex_lock(&state->main_lock);
1081 if (batch) {
1082 struct fsmonitor_batch *head;
1084 head = state->current_token_data->batch_head;
1085 if (!head) {
1086 BUG("token does not have batch");
1087 } else if (head->pinned_time) {
1089 * We cannot alter the current batch list
1090 * because:
1092 * [a] it is being transmitted to at least one
1093 * client and the handle_client() thread has a
1094 * ref-count, but not a lock on the batch list
1095 * starting with this item.
1097 * [b] it has been transmitted in the past to
1098 * at least one client such that future
1099 * requests are relative to this head batch.
1101 * So, we can only prepend a new batch onto
1102 * the front of the list.
1104 batch->batch_seq_nr = head->batch_seq_nr + 1;
1105 batch->next = head;
1106 state->current_token_data->batch_head = batch;
1107 } else if (!head->batch_seq_nr) {
1109 * Batch 0 is unpinned. See the note in
1110 * `fsmonitor_new_token_data()` about why we
1111 * don't need to accumulate these paths.
1113 fsmonitor_batch__free_list(batch);
1114 } else if (head->nr + batch->nr > MY_COMBINE_LIMIT) {
1116 * The head batch in the list has never been
1117 * transmitted to a client, but folding the
1118 * contents of the new batch onto it would
1119 * exceed our arbitrary limit, so just prepend
1120 * the new batch onto the list.
1122 batch->batch_seq_nr = head->batch_seq_nr + 1;
1123 batch->next = head;
1124 state->current_token_data->batch_head = batch;
1125 } else {
1127 * We are free to add the paths in the given
1128 * batch onto the end of the current head batch.
1130 fsmonitor_batch__combine(head, batch);
1131 fsmonitor_batch__free_list(batch);
1135 if (cookie_names->nr)
1136 with_lock__mark_cookies_seen(state, cookie_names);
1138 pthread_mutex_unlock(&state->main_lock);
1141 static void *fsm_health__thread_proc(void *_state)
1143 struct fsmonitor_daemon_state *state = _state;
1145 trace2_thread_start("fsm-health");
1147 fsm_health__loop(state);
1149 trace2_thread_exit();
1150 return NULL;
1153 static void *fsm_listen__thread_proc(void *_state)
1155 struct fsmonitor_daemon_state *state = _state;
1157 trace2_thread_start("fsm-listen");
1159 trace_printf_key(&trace_fsmonitor, "Watching: worktree '%s'",
1160 state->path_worktree_watch.buf);
1161 if (state->nr_paths_watching > 1)
1162 trace_printf_key(&trace_fsmonitor, "Watching: gitdir '%s'",
1163 state->path_gitdir_watch.buf);
1165 fsm_listen__loop(state);
1167 pthread_mutex_lock(&state->main_lock);
1168 if (state->current_token_data &&
1169 state->current_token_data->client_ref_count == 0)
1170 fsmonitor_free_token_data(state->current_token_data);
1171 state->current_token_data = NULL;
1172 pthread_mutex_unlock(&state->main_lock);
1174 trace2_thread_exit();
1175 return NULL;
1178 static int fsmonitor_run_daemon_1(struct fsmonitor_daemon_state *state)
1180 struct ipc_server_opts ipc_opts = {
1181 .nr_threads = fsmonitor__ipc_threads,
1184 * We know that there are no other active threads yet,
1185 * so we can let the IPC layer temporarily chdir() if
1186 * it needs to when creating the server side of the
1187 * Unix domain socket.
1189 .uds_disallow_chdir = 0
1191 int health_started = 0;
1192 int listener_started = 0;
1193 int err = 0;
1196 * Start the IPC thread pool before the we've started the file
1197 * system event listener thread so that we have the IPC handle
1198 * before we need it.
1200 if (ipc_server_run_async(&state->ipc_server_data,
1201 state->path_ipc.buf, &ipc_opts,
1202 handle_client, state))
1203 return error_errno(
1204 _("could not start IPC thread pool on '%s'"),
1205 state->path_ipc.buf);
1208 * Start the fsmonitor listener thread to collect filesystem
1209 * events.
1211 if (pthread_create(&state->listener_thread, NULL,
1212 fsm_listen__thread_proc, state) < 0) {
1213 ipc_server_stop_async(state->ipc_server_data);
1214 err = error(_("could not start fsmonitor listener thread"));
1215 goto cleanup;
1217 listener_started = 1;
1220 * Start the health thread to watch over our process.
1222 if (pthread_create(&state->health_thread, NULL,
1223 fsm_health__thread_proc, state) < 0) {
1224 ipc_server_stop_async(state->ipc_server_data);
1225 err = error(_("could not start fsmonitor health thread"));
1226 goto cleanup;
1228 health_started = 1;
1231 * The daemon is now fully functional in background threads.
1232 * Our primary thread should now just wait while the threads
1233 * do all the work.
1235 cleanup:
1237 * Wait for the IPC thread pool to shutdown (whether by client
1238 * request, from filesystem activity, or an error).
1240 ipc_server_await(state->ipc_server_data);
1243 * The fsmonitor listener thread may have received a shutdown
1244 * event from the IPC thread pool, but it doesn't hurt to tell
1245 * it again. And wait for it to shutdown.
1247 if (listener_started) {
1248 fsm_listen__stop_async(state);
1249 pthread_join(state->listener_thread, NULL);
1252 if (health_started) {
1253 fsm_health__stop_async(state);
1254 pthread_join(state->health_thread, NULL);
1257 if (err)
1258 return err;
1259 if (state->listen_error_code)
1260 return state->listen_error_code;
1261 if (state->health_error_code)
1262 return state->health_error_code;
1263 return 0;
1266 static int fsmonitor_run_daemon(void)
1268 struct fsmonitor_daemon_state state;
1269 const char *home;
1270 int err;
1272 memset(&state, 0, sizeof(state));
1274 hashmap_init(&state.cookies, cookies_cmp, NULL, 0);
1275 pthread_mutex_init(&state.main_lock, NULL);
1276 pthread_cond_init(&state.cookies_cond, NULL);
1277 state.listen_error_code = 0;
1278 state.health_error_code = 0;
1279 state.current_token_data = fsmonitor_new_token_data();
1281 /* Prepare to (recursively) watch the <worktree-root> directory. */
1282 strbuf_init(&state.path_worktree_watch, 0);
1283 strbuf_addstr(&state.path_worktree_watch, absolute_path(get_git_work_tree()));
1284 state.nr_paths_watching = 1;
1286 strbuf_init(&state.alias.alias, 0);
1287 strbuf_init(&state.alias.points_to, 0);
1288 if ((err = fsmonitor__get_alias(state.path_worktree_watch.buf, &state.alias)))
1289 goto done;
1292 * We create and delete cookie files somewhere inside the .git
1293 * directory to help us keep sync with the file system. If
1294 * ".git" is not a directory, then <gitdir> is not inside the
1295 * cone of <worktree-root>, so set up a second watch to watch
1296 * the <gitdir> so that we get events for the cookie files.
1298 strbuf_init(&state.path_gitdir_watch, 0);
1299 strbuf_addbuf(&state.path_gitdir_watch, &state.path_worktree_watch);
1300 strbuf_addstr(&state.path_gitdir_watch, "/.git");
1301 if (!is_directory(state.path_gitdir_watch.buf)) {
1302 strbuf_reset(&state.path_gitdir_watch);
1303 strbuf_addstr(&state.path_gitdir_watch, absolute_path(get_git_dir()));
1304 state.nr_paths_watching = 2;
1308 * We will write filesystem syncing cookie files into
1309 * <gitdir>/<fsmonitor-dir>/<cookie-dir>/<pid>-<seq>.
1311 * The extra layers of subdirectories here keep us from
1312 * changing the mtime on ".git/" or ".git/foo/" when we create
1313 * or delete cookie files.
1315 * There have been problems with some IDEs that do a
1316 * non-recursive watch of the ".git/" directory and run a
1317 * series of commands any time something happens.
1319 * For example, if we place our cookie files directly in
1320 * ".git/" or ".git/foo/" then a `git status` (or similar
1321 * command) from the IDE will cause a cookie file to be
1322 * created in one of those dirs. This causes the mtime of
1323 * those dirs to change. This triggers the IDE's watch
1324 * notification. This triggers the IDE to run those commands
1325 * again. And the process repeats and the machine never goes
1326 * idle.
1328 * Adding the extra layers of subdirectories prevents the
1329 * mtime of ".git/" and ".git/foo" from changing when a
1330 * cookie file is created.
1332 strbuf_init(&state.path_cookie_prefix, 0);
1333 strbuf_addbuf(&state.path_cookie_prefix, &state.path_gitdir_watch);
1335 strbuf_addch(&state.path_cookie_prefix, '/');
1336 strbuf_addstr(&state.path_cookie_prefix, FSMONITOR_DIR);
1337 mkdir(state.path_cookie_prefix.buf, 0777);
1339 strbuf_addch(&state.path_cookie_prefix, '/');
1340 strbuf_addstr(&state.path_cookie_prefix, FSMONITOR_COOKIE_DIR);
1341 mkdir(state.path_cookie_prefix.buf, 0777);
1343 strbuf_addch(&state.path_cookie_prefix, '/');
1346 * We create a named-pipe or unix domain socket inside of the
1347 * ".git" directory. (Well, on Windows, we base our named
1348 * pipe in the NPFS on the absolute path of the git
1349 * directory.)
1351 strbuf_init(&state.path_ipc, 0);
1352 strbuf_addstr(&state.path_ipc,
1353 absolute_path(fsmonitor_ipc__get_path(the_repository)));
1356 * Confirm that we can create platform-specific resources for the
1357 * filesystem listener before we bother starting all the threads.
1359 if (fsm_listen__ctor(&state)) {
1360 err = error(_("could not initialize listener thread"));
1361 goto done;
1364 if (fsm_health__ctor(&state)) {
1365 err = error(_("could not initialize health thread"));
1366 goto done;
1370 * CD out of the worktree root directory.
1372 * The common Git startup mechanism causes our CWD to be the
1373 * root of the worktree. On Windows, this causes our process
1374 * to hold a locked handle on the CWD. This prevents the
1375 * worktree from being moved or deleted while the daemon is
1376 * running.
1378 * We assume that our FS and IPC listener threads have either
1379 * opened all of the handles that they need or will do
1380 * everything using absolute paths.
1382 home = getenv("HOME");
1383 if (home && *home && chdir(home))
1384 die_errno(_("could not cd home '%s'"), home);
1386 err = fsmonitor_run_daemon_1(&state);
1388 done:
1389 pthread_cond_destroy(&state.cookies_cond);
1390 pthread_mutex_destroy(&state.main_lock);
1391 fsm_listen__dtor(&state);
1392 fsm_health__dtor(&state);
1394 ipc_server_free(state.ipc_server_data);
1396 strbuf_release(&state.path_worktree_watch);
1397 strbuf_release(&state.path_gitdir_watch);
1398 strbuf_release(&state.path_cookie_prefix);
1399 strbuf_release(&state.path_ipc);
1400 strbuf_release(&state.alias.alias);
1401 strbuf_release(&state.alias.points_to);
1403 return err;
1406 static int try_to_run_foreground_daemon(int detach_console)
1409 * Technically, we don't need to probe for an existing daemon
1410 * process, since we could just call `fsmonitor_run_daemon()`
1411 * and let it fail if the pipe/socket is busy.
1413 * However, this method gives us a nicer error message for a
1414 * common error case.
1416 if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING)
1417 die(_("fsmonitor--daemon is already running '%s'"),
1418 the_repository->worktree);
1420 if (fsmonitor__announce_startup) {
1421 fprintf(stderr, _("running fsmonitor-daemon in '%s'\n"),
1422 the_repository->worktree);
1423 fflush(stderr);
1426 #ifdef GIT_WINDOWS_NATIVE
1427 if (detach_console)
1428 FreeConsole();
1429 #endif
1431 return !!fsmonitor_run_daemon();
1434 static start_bg_wait_cb bg_wait_cb;
1436 static int bg_wait_cb(const struct child_process *cp, void *cb_data)
1438 enum ipc_active_state s = fsmonitor_ipc__get_state();
1440 switch (s) {
1441 case IPC_STATE__LISTENING:
1442 /* child is "ready" */
1443 return 0;
1445 case IPC_STATE__NOT_LISTENING:
1446 case IPC_STATE__PATH_NOT_FOUND:
1447 /* give child more time */
1448 return 1;
1450 default:
1451 case IPC_STATE__INVALID_PATH:
1452 case IPC_STATE__OTHER_ERROR:
1453 /* all the time in world won't help */
1454 return -1;
1458 static int try_to_start_background_daemon(void)
1460 struct child_process cp = CHILD_PROCESS_INIT;
1461 enum start_bg_result sbgr;
1464 * Before we try to create a background daemon process, see
1465 * if a daemon process is already listening. This makes it
1466 * easier for us to report an already-listening error to the
1467 * console, since our spawn/daemon can only report the success
1468 * of creating the background process (and not whether it
1469 * immediately exited).
1471 if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING)
1472 die(_("fsmonitor--daemon is already running '%s'"),
1473 the_repository->worktree);
1475 if (fsmonitor__announce_startup) {
1476 fprintf(stderr, _("starting fsmonitor-daemon in '%s'\n"),
1477 the_repository->worktree);
1478 fflush(stderr);
1481 cp.git_cmd = 1;
1483 strvec_push(&cp.args, "fsmonitor--daemon");
1484 strvec_push(&cp.args, "run");
1485 strvec_push(&cp.args, "--detach");
1486 strvec_pushf(&cp.args, "--ipc-threads=%d", fsmonitor__ipc_threads);
1488 cp.no_stdin = 1;
1489 cp.no_stdout = 1;
1490 cp.no_stderr = 1;
1492 sbgr = start_bg_command(&cp, bg_wait_cb, NULL,
1493 fsmonitor__start_timeout_sec);
1495 switch (sbgr) {
1496 case SBGR_READY:
1497 return 0;
1499 default:
1500 case SBGR_ERROR:
1501 case SBGR_CB_ERROR:
1502 return error(_("daemon failed to start"));
1504 case SBGR_TIMEOUT:
1505 return error(_("daemon not online yet"));
1507 case SBGR_DIED:
1508 return error(_("daemon terminated"));
1512 int cmd_fsmonitor__daemon(int argc, const char **argv, const char *prefix)
1514 const char *subcmd;
1515 enum fsmonitor_reason reason;
1516 int detach_console = 0;
1518 struct option options[] = {
1519 OPT_BOOL(0, "detach", &detach_console, N_("detach from console")),
1520 OPT_INTEGER(0, "ipc-threads",
1521 &fsmonitor__ipc_threads,
1522 N_("use <n> ipc worker threads")),
1523 OPT_INTEGER(0, "start-timeout",
1524 &fsmonitor__start_timeout_sec,
1525 N_("max seconds to wait for background daemon startup")),
1527 OPT_END()
1530 git_config(fsmonitor_config, NULL);
1532 argc = parse_options(argc, argv, prefix, options,
1533 builtin_fsmonitor__daemon_usage, 0);
1534 if (argc != 1)
1535 usage_with_options(builtin_fsmonitor__daemon_usage, options);
1536 subcmd = argv[0];
1538 if (fsmonitor__ipc_threads < 1)
1539 die(_("invalid 'ipc-threads' value (%d)"),
1540 fsmonitor__ipc_threads);
1542 prepare_repo_settings(the_repository);
1544 * If the repo is fsmonitor-compatible, explicitly set IPC-mode
1545 * (without bothering to load the `core.fsmonitor` config settings).
1547 * If the repo is not compatible, the repo-settings will be set to
1548 * incompatible rather than IPC, so we can use one of the __get
1549 * routines to detect the discrepancy.
1551 fsm_settings__set_ipc(the_repository);
1553 reason = fsm_settings__get_reason(the_repository);
1554 if (reason > FSMONITOR_REASON_OK)
1555 die("%s",
1556 fsm_settings__get_incompatible_msg(the_repository,
1557 reason));
1559 if (!strcmp(subcmd, "start"))
1560 return !!try_to_start_background_daemon();
1562 if (!strcmp(subcmd, "run"))
1563 return !!try_to_run_foreground_daemon(detach_console);
1565 if (!strcmp(subcmd, "stop"))
1566 return !!do_as_client__send_stop();
1568 if (!strcmp(subcmd, "status"))
1569 return !!do_as_client__status();
1571 die(_("Unhandled subcommand '%s'"), subcmd);
1574 #else
1575 int cmd_fsmonitor__daemon(int argc, const char **argv, const char *prefix)
1577 struct option options[] = {
1578 OPT_END()
1581 if (argc == 2 && !strcmp(argv[1], "-h"))
1582 usage_with_options(builtin_fsmonitor__daemon_usage, options);
1584 die(_("fsmonitor--daemon not supported on this platform"));
1586 #endif