notes: convert internal structures to struct object_id
[git.git] / Documentation / technical / api-hashmap.txt
blobccc634bbd754f6e0bab80fb3ccf1cc42afc5b829
1 hashmap API
2 ===========
4 The hashmap API is a generic implementation of hash-based key-value mappings.
6 Data Structures
7 ---------------
9 `struct hashmap`::
11         The hash table structure. Members can be used as follows, but should
12         not be modified directly:
14 The `size` member keeps track of the total number of entries (0 means the
15 hashmap is empty).
17 `tablesize` is the allocated size of the hash table. A non-0 value indicates
18 that the hashmap is initialized. It may also be useful for statistical purposes
19 (i.e. `size / tablesize` is the current load factor).
21 `cmpfn` stores the comparison function specified in `hashmap_init()`. In
22 advanced scenarios, it may be useful to change this, e.g. to switch between
23 case-sensitive and case-insensitive lookup.
25 When `disallow_rehash` is set, automatic rehashes are prevented during inserts
26 and deletes.
28 `struct hashmap_entry`::
30         An opaque structure representing an entry in the hash table, which must
31         be used as first member of user data structures. Ideally it should be
32         followed by an int-sized member to prevent unused memory on 64-bit
33         systems due to alignment.
35 The `hash` member is the entry's hash code and the `next` member points to the
36 next entry in case of collisions (i.e. if multiple entries map to the same
37 bucket).
39 `struct hashmap_iter`::
41         An iterator structure, to be used with hashmap_iter_* functions.
43 Types
44 -----
46 `int (*hashmap_cmp_fn)(const void *entry, const void *entry_or_key, const void *keydata)`::
48         User-supplied function to test two hashmap entries for equality. Shall
49         return 0 if the entries are equal.
51 This function is always called with non-NULL `entry` / `entry_or_key`
52 parameters that have the same hash code. When looking up an entry, the `key`
53 and `keydata` parameters to hashmap_get and hashmap_remove are always passed
54 as second and third argument, respectively. Otherwise, `keydata` is NULL.
56 Functions
57 ---------
59 `unsigned int strhash(const char *buf)`::
60 `unsigned int strihash(const char *buf)`::
61 `unsigned int memhash(const void *buf, size_t len)`::
62 `unsigned int memihash(const void *buf, size_t len)`::
63 `unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len)`::
65         Ready-to-use hash functions for strings, using the FNV-1 algorithm (see
66         http://www.isthe.com/chongo/tech/comp/fnv).
68 `strhash` and `strihash` take 0-terminated strings, while `memhash` and
69 `memihash` operate on arbitrary-length memory.
71 `strihash` and `memihash` are case insensitive versions.
73 `memihash_cont` is a variant of `memihash` that allows a computation to be
74 continued with another chunk of data.
76 `unsigned int sha1hash(const unsigned char *sha1)`::
78         Converts a cryptographic hash (e.g. SHA-1) into an int-sized hash code
79         for use in hash tables. Cryptographic hashes are supposed to have
80         uniform distribution, so in contrast to `memhash()`, this just copies
81         the first `sizeof(int)` bytes without shuffling any bits. Note that
82         the results will be different on big-endian and little-endian
83         platforms, so they should not be stored or transferred over the net.
85 `void hashmap_init(struct hashmap *map, hashmap_cmp_fn equals_function, size_t initial_size)`::
87         Initializes a hashmap structure.
89 `map` is the hashmap to initialize.
91 The `equals_function` can be specified to compare two entries for equality.
92 If NULL, entries are considered equal if their hash codes are equal.
94 If the total number of entries is known in advance, the `initial_size`
95 parameter may be used to preallocate a sufficiently large table and thus
96 prevent expensive resizing. If 0, the table is dynamically resized.
98 `void hashmap_free(struct hashmap *map, int free_entries)`::
100         Frees a hashmap structure and allocated memory.
102 `map` is the hashmap to free.
104 If `free_entries` is true, each hashmap_entry in the map is freed as well
105 (using stdlib's free()).
107 `void hashmap_entry_init(void *entry, unsigned int hash)`::
109         Initializes a hashmap_entry structure.
111 `entry` points to the entry to initialize.
113 `hash` is the hash code of the entry.
115 The hashmap_entry structure does not hold references to external resources,
116 and it is safe to just discard it once you are done with it (i.e. if
117 your structure was allocated with xmalloc(), you can just free(3) it,
118 and if it is on stack, you can just let it go out of scope).
120 `void *hashmap_get(const struct hashmap *map, const void *key, const void *keydata)`::
122         Returns the hashmap entry for the specified key, or NULL if not found.
124 `map` is the hashmap structure.
126 `key` is a hashmap_entry structure (or user data structure that starts with
127 hashmap_entry) that has at least been initialized with the proper hash code
128 (via `hashmap_entry_init`).
130 If an entry with matching hash code is found, `key` and `keydata` are passed
131 to `hashmap_cmp_fn` to decide whether the entry matches the key.
133 `void *hashmap_get_from_hash(const struct hashmap *map, unsigned int hash, const void *keydata)`::
135         Returns the hashmap entry for the specified hash code and key data,
136         or NULL if not found.
138 `map` is the hashmap structure.
140 `hash` is the hash code of the entry to look up.
142 If an entry with matching hash code is found, `keydata` is passed to
143 `hashmap_cmp_fn` to decide whether the entry matches the key. The
144 `entry_or_key` parameter points to a bogus hashmap_entry structure that
145 should not be used in the comparison.
147 `void *hashmap_get_next(const struct hashmap *map, const void *entry)`::
149         Returns the next equal hashmap entry, or NULL if not found. This can be
150         used to iterate over duplicate entries (see `hashmap_add`).
152 `map` is the hashmap structure.
154 `entry` is the hashmap_entry to start the search from, obtained via a previous
155 call to `hashmap_get` or `hashmap_get_next`.
157 `void hashmap_add(struct hashmap *map, void *entry)`::
159         Adds a hashmap entry. This allows to add duplicate entries (i.e.
160         separate values with the same key according to hashmap_cmp_fn).
162 `map` is the hashmap structure.
164 `entry` is the entry to add.
166 `void *hashmap_put(struct hashmap *map, void *entry)`::
168         Adds or replaces a hashmap entry. If the hashmap contains duplicate
169         entries equal to the specified entry, only one of them will be replaced.
171 `map` is the hashmap structure.
173 `entry` is the entry to add or replace.
175 Returns the replaced entry, or NULL if not found (i.e. the entry was added).
177 `void *hashmap_remove(struct hashmap *map, const void *key, const void *keydata)`::
179         Removes a hashmap entry matching the specified key. If the hashmap
180         contains duplicate entries equal to the specified key, only one of
181         them will be removed.
183 `map` is the hashmap structure.
185 `key` is a hashmap_entry structure (or user data structure that starts with
186 hashmap_entry) that has at least been initialized with the proper hash code
187 (via `hashmap_entry_init`).
189 If an entry with matching hash code is found, `key` and `keydata` are
190 passed to `hashmap_cmp_fn` to decide whether the entry matches the key.
192 Returns the removed entry, or NULL if not found.
194 `void hashmap_disallow_rehash(struct hashmap *map, unsigned value)`::
196         Disallow/allow automatic rehashing of the hashmap during inserts
197         and deletes.
199 This is useful if the caller knows that the hashmap will be accessed
200 by multiple threads.
202 The caller is still responsible for any necessary locking; this simply
203 prevents unexpected rehashing.  The caller is also responsible for properly
204 sizing the initial hashmap to ensure good performance.
206 A call to allow rehashing does not force a rehash; that might happen
207 with the next insert or delete.
209 `void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter)`::
210 `void *hashmap_iter_next(struct hashmap_iter *iter)`::
211 `void *hashmap_iter_first(struct hashmap *map, struct hashmap_iter *iter)`::
213         Used to iterate over all entries of a hashmap. Note that it is
214         not safe to add or remove entries to the hashmap while
215         iterating.
217 `hashmap_iter_init` initializes a `hashmap_iter` structure.
219 `hashmap_iter_next` returns the next hashmap_entry, or NULL if there are no
220 more entries.
222 `hashmap_iter_first` is a combination of both (i.e. initializes the iterator
223 and returns the first entry, if any).
225 `const char *strintern(const char *string)`::
226 `const void *memintern(const void *data, size_t len)`::
228         Returns the unique, interned version of the specified string or data,
229         similar to the `String.intern` API in Java and .NET, respectively.
230         Interned strings remain valid for the entire lifetime of the process.
232 Can be used as `[x]strdup()` or `xmemdupz` replacement, except that interned
233 strings / data must not be modified or freed.
235 Interned strings are best used for short strings with high probability of
236 duplicates.
238 Uses a hashmap to store the pool of interned strings.
240 Usage example
241 -------------
243 Here's a simple usage example that maps long keys to double values.
244 ------------
245 struct hashmap map;
247 struct long2double {
248         struct hashmap_entry ent; /* must be the first member! */
249         long key;
250         double value;
253 static int long2double_cmp(const struct long2double *e1, const struct long2double *e2, const void *unused)
255         return !(e1->key == e2->key);
258 void long2double_init(void)
260         hashmap_init(&map, (hashmap_cmp_fn) long2double_cmp, 0);
263 void long2double_free(void)
265         hashmap_free(&map, 1);
268 static struct long2double *find_entry(long key)
270         struct long2double k;
271         hashmap_entry_init(&k, memhash(&key, sizeof(long)));
272         k.key = key;
273         return hashmap_get(&map, &k, NULL);
276 double get_value(long key)
278         struct long2double *e = find_entry(key);
279         return e ? e->value : 0;
282 void set_value(long key, double value)
284         struct long2double *e = find_entry(key);
285         if (!e) {
286                 e = malloc(sizeof(struct long2double));
287                 hashmap_entry_init(e, memhash(&key, sizeof(long)));
288                 e->key = key;
289                 hashmap_add(&map, e);
290         }
291         e->value = value;
293 ------------
295 Using variable-sized keys
296 -------------------------
298 The `hashmap_entry_get` and `hashmap_entry_remove` functions expect an ordinary
299 `hashmap_entry` structure as key to find the correct entry. If the key data is
300 variable-sized (e.g. a FLEX_ARRAY string) or quite large, it is undesirable
301 to create a full-fledged entry structure on the heap and copy all the key data
302 into the structure.
304 In this case, the `keydata` parameter can be used to pass
305 variable-sized key data directly to the comparison function, and the `key`
306 parameter can be a stripped-down, fixed size entry structure allocated on the
307 stack.
309 See test-hashmap.c for an example using arbitrary-length strings as keys.