load_subtree(): check earlier whether an internal node is a tree entry
[git.git] / notes.c
blob61a5001fc069debdff9bffe453a0ae000eac5319
1 #include "cache.h"
2 #include "config.h"
3 #include "notes.h"
4 #include "blob.h"
5 #include "tree.h"
6 #include "utf8.h"
7 #include "strbuf.h"
8 #include "tree-walk.h"
9 #include "string-list.h"
10 #include "refs.h"
13 * Use a non-balancing simple 16-tree structure with struct int_node as
14 * internal nodes, and struct leaf_node as leaf nodes. Each int_node has a
15 * 16-array of pointers to its children.
16 * The bottom 2 bits of each pointer is used to identify the pointer type
17 * - ptr & 3 == 0 - NULL pointer, assert(ptr == NULL)
18 * - ptr & 3 == 1 - pointer to next internal node - cast to struct int_node *
19 * - ptr & 3 == 2 - pointer to note entry - cast to struct leaf_node *
20 * - ptr & 3 == 3 - pointer to subtree entry - cast to struct leaf_node *
22 * The root node is a statically allocated struct int_node.
24 struct int_node {
25 void *a[16];
29 * Leaf nodes come in two variants, note entries and subtree entries,
30 * distinguished by the LSb of the leaf node pointer (see above).
31 * As a note entry, the key is the SHA1 of the referenced object, and the
32 * value is the SHA1 of the note object.
33 * As a subtree entry, the key is the prefix SHA1 (w/trailing NULs) of the
34 * referenced object, using the last byte of the key to store the length of
35 * the prefix. The value is the SHA1 of the tree object containing the notes
36 * subtree.
38 struct leaf_node {
39 struct object_id key_oid;
40 struct object_id val_oid;
44 * A notes tree may contain entries that are not notes, and that do not follow
45 * the naming conventions of notes. There are typically none/few of these, but
46 * we still need to keep track of them. Keep a simple linked list sorted alpha-
47 * betically on the non-note path. The list is populated when parsing tree
48 * objects in load_subtree(), and the non-notes are correctly written back into
49 * the tree objects produced by write_notes_tree().
51 struct non_note {
52 struct non_note *next; /* grounded (last->next == NULL) */
53 char *path;
54 unsigned int mode;
55 struct object_id oid;
58 #define PTR_TYPE_NULL 0
59 #define PTR_TYPE_INTERNAL 1
60 #define PTR_TYPE_NOTE 2
61 #define PTR_TYPE_SUBTREE 3
63 #define GET_PTR_TYPE(ptr) ((uintptr_t) (ptr) & 3)
64 #define CLR_PTR_TYPE(ptr) ((void *) ((uintptr_t) (ptr) & ~3))
65 #define SET_PTR_TYPE(ptr, type) ((void *) ((uintptr_t) (ptr) | (type)))
67 #define GET_NIBBLE(n, sha1) ((((sha1)[(n) >> 1]) >> ((~(n) & 0x01) << 2)) & 0x0f)
69 #define KEY_INDEX (GIT_SHA1_RAWSZ - 1)
70 #define FANOUT_PATH_SEPARATORS ((GIT_SHA1_HEXSZ / 2) - 1)
71 #define SUBTREE_SHA1_PREFIXCMP(key_sha1, subtree_sha1) \
72 (memcmp(key_sha1, subtree_sha1, subtree_sha1[KEY_INDEX]))
74 struct notes_tree default_notes_tree;
76 static struct string_list display_notes_refs = STRING_LIST_INIT_NODUP;
77 static struct notes_tree **display_notes_trees;
79 static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
80 struct int_node *node, unsigned int n);
83 * Search the tree until the appropriate location for the given key is found:
84 * 1. Start at the root node, with n = 0
85 * 2. If a[0] at the current level is a matching subtree entry, unpack that
86 * subtree entry and remove it; restart search at the current level.
87 * 3. Use the nth nibble of the key as an index into a:
88 * - If a[n] is an int_node, recurse from #2 into that node and increment n
89 * - If a matching subtree entry, unpack that subtree entry (and remove it);
90 * restart search at the current level.
91 * - Otherwise, we have found one of the following:
92 * - a subtree entry which does not match the key
93 * - a note entry which may or may not match the key
94 * - an unused leaf node (NULL)
95 * In any case, set *tree and *n, and return pointer to the tree location.
97 static void **note_tree_search(struct notes_tree *t, struct int_node **tree,
98 unsigned char *n, const unsigned char *key_sha1)
100 struct leaf_node *l;
101 unsigned char i;
102 void *p = (*tree)->a[0];
104 if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
105 l = (struct leaf_node *) CLR_PTR_TYPE(p);
106 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
107 /* unpack tree and resume search */
108 (*tree)->a[0] = NULL;
109 load_subtree(t, l, *tree, *n);
110 free(l);
111 return note_tree_search(t, tree, n, key_sha1);
115 i = GET_NIBBLE(*n, key_sha1);
116 p = (*tree)->a[i];
117 switch (GET_PTR_TYPE(p)) {
118 case PTR_TYPE_INTERNAL:
119 *tree = CLR_PTR_TYPE(p);
120 (*n)++;
121 return note_tree_search(t, tree, n, key_sha1);
122 case PTR_TYPE_SUBTREE:
123 l = (struct leaf_node *) CLR_PTR_TYPE(p);
124 if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_oid.hash)) {
125 /* unpack tree and resume search */
126 (*tree)->a[i] = NULL;
127 load_subtree(t, l, *tree, *n);
128 free(l);
129 return note_tree_search(t, tree, n, key_sha1);
131 /* fall through */
132 default:
133 return &((*tree)->a[i]);
138 * To find a leaf_node:
139 * Search to the tree location appropriate for the given key:
140 * If a note entry with matching key, return the note entry, else return NULL.
142 static struct leaf_node *note_tree_find(struct notes_tree *t,
143 struct int_node *tree, unsigned char n,
144 const unsigned char *key_sha1)
146 void **p = note_tree_search(t, &tree, &n, key_sha1);
147 if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
148 struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
149 if (!hashcmp(key_sha1, l->key_oid.hash))
150 return l;
152 return NULL;
156 * How to consolidate an int_node:
157 * If there are > 1 non-NULL entries, give up and return non-zero.
158 * Otherwise replace the int_node at the given index in the given parent node
159 * with the only NOTE entry (or a NULL entry if no entries) from the given
160 * tree, and return 0.
162 static int note_tree_consolidate(struct int_node *tree,
163 struct int_node *parent, unsigned char index)
165 unsigned int i;
166 void *p = NULL;
168 assert(tree && parent);
169 assert(CLR_PTR_TYPE(parent->a[index]) == tree);
171 for (i = 0; i < 16; i++) {
172 if (GET_PTR_TYPE(tree->a[i]) != PTR_TYPE_NULL) {
173 if (p) /* more than one entry */
174 return -2;
175 p = tree->a[i];
179 if (p && (GET_PTR_TYPE(p) != PTR_TYPE_NOTE))
180 return -2;
181 /* replace tree with p in parent[index] */
182 parent->a[index] = p;
183 free(tree);
184 return 0;
188 * To remove a leaf_node:
189 * Search to the tree location appropriate for the given leaf_node's key:
190 * - If location does not hold a matching entry, abort and do nothing.
191 * - Copy the matching entry's value into the given entry.
192 * - Replace the matching leaf_node with a NULL entry (and free the leaf_node).
193 * - Consolidate int_nodes repeatedly, while walking up the tree towards root.
195 static void note_tree_remove(struct notes_tree *t,
196 struct int_node *tree, unsigned char n,
197 struct leaf_node *entry)
199 struct leaf_node *l;
200 struct int_node *parent_stack[GIT_SHA1_RAWSZ];
201 unsigned char i, j;
202 void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
204 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
205 if (GET_PTR_TYPE(*p) != PTR_TYPE_NOTE)
206 return; /* type mismatch, nothing to remove */
207 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
208 if (oidcmp(&l->key_oid, &entry->key_oid))
209 return; /* key mismatch, nothing to remove */
211 /* we have found a matching entry */
212 oidcpy(&entry->val_oid, &l->val_oid);
213 free(l);
214 *p = SET_PTR_TYPE(NULL, PTR_TYPE_NULL);
216 /* consolidate this tree level, and parent levels, if possible */
217 if (!n)
218 return; /* cannot consolidate top level */
219 /* first, build stack of ancestors between root and current node */
220 parent_stack[0] = t->root;
221 for (i = 0; i < n; i++) {
222 j = GET_NIBBLE(i, entry->key_oid.hash);
223 parent_stack[i + 1] = CLR_PTR_TYPE(parent_stack[i]->a[j]);
225 assert(i == n && parent_stack[i] == tree);
226 /* next, unwind stack until note_tree_consolidate() is done */
227 while (i > 0 &&
228 !note_tree_consolidate(parent_stack[i], parent_stack[i - 1],
229 GET_NIBBLE(i - 1, entry->key_oid.hash)))
230 i--;
234 * To insert a leaf_node:
235 * Search to the tree location appropriate for the given leaf_node's key:
236 * - If location is unused (NULL), store the tweaked pointer directly there
237 * - If location holds a note entry that matches the note-to-be-inserted, then
238 * combine the two notes (by calling the given combine_notes function).
239 * - If location holds a note entry that matches the subtree-to-be-inserted,
240 * then unpack the subtree-to-be-inserted into the location.
241 * - If location holds a matching subtree entry, unpack the subtree at that
242 * location, and restart the insert operation from that level.
243 * - Else, create a new int_node, holding both the node-at-location and the
244 * node-to-be-inserted, and store the new int_node into the location.
246 static int note_tree_insert(struct notes_tree *t, struct int_node *tree,
247 unsigned char n, struct leaf_node *entry, unsigned char type,
248 combine_notes_fn combine_notes)
250 struct int_node *new_node;
251 struct leaf_node *l;
252 void **p = note_tree_search(t, &tree, &n, entry->key_oid.hash);
253 int ret = 0;
255 assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
256 l = (struct leaf_node *) CLR_PTR_TYPE(*p);
257 switch (GET_PTR_TYPE(*p)) {
258 case PTR_TYPE_NULL:
259 assert(!*p);
260 if (is_null_oid(&entry->val_oid))
261 free(entry);
262 else
263 *p = SET_PTR_TYPE(entry, type);
264 return 0;
265 case PTR_TYPE_NOTE:
266 switch (type) {
267 case PTR_TYPE_NOTE:
268 if (!oidcmp(&l->key_oid, &entry->key_oid)) {
269 /* skip concatenation if l == entry */
270 if (!oidcmp(&l->val_oid, &entry->val_oid))
271 return 0;
273 ret = combine_notes(l->val_oid.hash,
274 entry->val_oid.hash);
275 if (!ret && is_null_oid(&l->val_oid))
276 note_tree_remove(t, tree, n, entry);
277 free(entry);
278 return ret;
280 break;
281 case PTR_TYPE_SUBTREE:
282 if (!SUBTREE_SHA1_PREFIXCMP(l->key_oid.hash,
283 entry->key_oid.hash)) {
284 /* unpack 'entry' */
285 load_subtree(t, entry, tree, n);
286 free(entry);
287 return 0;
289 break;
291 break;
292 case PTR_TYPE_SUBTREE:
293 if (!SUBTREE_SHA1_PREFIXCMP(entry->key_oid.hash, l->key_oid.hash)) {
294 /* unpack 'l' and restart insert */
295 *p = NULL;
296 load_subtree(t, l, tree, n);
297 free(l);
298 return note_tree_insert(t, tree, n, entry, type,
299 combine_notes);
301 break;
304 /* non-matching leaf_node */
305 assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
306 GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
307 if (is_null_oid(&entry->val_oid)) { /* skip insertion of empty note */
308 free(entry);
309 return 0;
311 new_node = (struct int_node *) xcalloc(1, sizeof(struct int_node));
312 ret = note_tree_insert(t, new_node, n + 1, l, GET_PTR_TYPE(*p),
313 combine_notes);
314 if (ret)
315 return ret;
316 *p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
317 return note_tree_insert(t, new_node, n + 1, entry, type, combine_notes);
320 /* Free the entire notes data contained in the given tree */
321 static void note_tree_free(struct int_node *tree)
323 unsigned int i;
324 for (i = 0; i < 16; i++) {
325 void *p = tree->a[i];
326 switch (GET_PTR_TYPE(p)) {
327 case PTR_TYPE_INTERNAL:
328 note_tree_free(CLR_PTR_TYPE(p));
329 /* fall through */
330 case PTR_TYPE_NOTE:
331 case PTR_TYPE_SUBTREE:
332 free(CLR_PTR_TYPE(p));
338 * Convert a partial SHA1 hex string to the corresponding partial SHA1 value.
339 * - hex - Partial SHA1 segment in ASCII hex format
340 * - hex_len - Length of above segment. Must be multiple of 2 between 0 and 40
341 * - sha1 - Partial SHA1 value is written here
342 * - sha1_len - Max #bytes to store in sha1, Must be >= hex_len / 2, and < 20
343 * Returns -1 on error (invalid arguments or invalid SHA1 (not in hex format)).
344 * Otherwise, returns number of bytes written to sha1 (i.e. hex_len / 2).
345 * Pads sha1 with NULs up to sha1_len (not included in returned length).
347 static int get_oid_hex_segment(const char *hex, unsigned int hex_len,
348 unsigned char *oid, unsigned int oid_len)
350 unsigned int i, len = hex_len >> 1;
351 if (hex_len % 2 != 0 || len > oid_len)
352 return -1;
353 for (i = 0; i < len; i++) {
354 unsigned int val = (hexval(hex[0]) << 4) | hexval(hex[1]);
355 if (val & ~0xff)
356 return -1;
357 *oid++ = val;
358 hex += 2;
360 for (; i < oid_len; i++)
361 *oid++ = 0;
362 return len;
365 static int non_note_cmp(const struct non_note *a, const struct non_note *b)
367 return strcmp(a->path, b->path);
370 /* note: takes ownership of path string */
371 static void add_non_note(struct notes_tree *t, char *path,
372 unsigned int mode, const unsigned char *sha1)
374 struct non_note *p = t->prev_non_note, *n;
375 n = (struct non_note *) xmalloc(sizeof(struct non_note));
376 n->next = NULL;
377 n->path = path;
378 n->mode = mode;
379 hashcpy(n->oid.hash, sha1);
380 t->prev_non_note = n;
382 if (!t->first_non_note) {
383 t->first_non_note = n;
384 return;
387 if (non_note_cmp(p, n) < 0)
388 ; /* do nothing */
389 else if (non_note_cmp(t->first_non_note, n) <= 0)
390 p = t->first_non_note;
391 else {
392 /* n sorts before t->first_non_note */
393 n->next = t->first_non_note;
394 t->first_non_note = n;
395 return;
398 /* n sorts equal or after p */
399 while (p->next && non_note_cmp(p->next, n) <= 0)
400 p = p->next;
402 if (non_note_cmp(p, n) == 0) { /* n ~= p; overwrite p with n */
403 assert(strcmp(p->path, n->path) == 0);
404 p->mode = n->mode;
405 oidcpy(&p->oid, &n->oid);
406 free(n);
407 t->prev_non_note = p;
408 return;
411 /* n sorts between p and p->next */
412 n->next = p->next;
413 p->next = n;
416 static void load_subtree(struct notes_tree *t, struct leaf_node *subtree,
417 struct int_node *node, unsigned int n)
419 struct object_id object_oid;
420 unsigned int prefix_len;
421 void *buf;
422 struct tree_desc desc;
423 struct name_entry entry;
425 buf = fill_tree_descriptor(&desc, subtree->val_oid.hash);
426 if (!buf)
427 die("Could not read %s for notes-index",
428 oid_to_hex(&subtree->val_oid));
430 prefix_len = subtree->key_oid.hash[KEY_INDEX];
431 assert(prefix_len * 2 >= n);
432 memcpy(object_oid.hash, subtree->key_oid.hash, prefix_len);
433 while (tree_entry(&desc, &entry)) {
434 unsigned char type;
435 struct leaf_node *l;
436 int path_len = strlen(entry.path);
438 if (path_len == 2 * (GIT_SHA1_RAWSZ - prefix_len)) {
439 /* This is potentially the remainder of the SHA-1 */
440 if (get_oid_hex_segment(entry.path, path_len,
441 object_oid.hash + prefix_len,
442 GIT_SHA1_RAWSZ - prefix_len) < 0)
443 goto handle_non_note; /* entry.path is not a SHA1 */
445 type = PTR_TYPE_NOTE;
446 l = (struct leaf_node *)
447 xcalloc(1, sizeof(struct leaf_node));
448 oidcpy(&l->key_oid, &object_oid);
449 oidcpy(&l->val_oid, entry.oid);
450 } else if (path_len == 2) {
451 /* This is potentially an internal node */
453 if (!S_ISDIR(entry.mode))
454 /* internal nodes must be trees */
455 goto handle_non_note;
457 if (get_oid_hex_segment(entry.path, 2,
458 object_oid.hash + prefix_len,
459 GIT_SHA1_RAWSZ - prefix_len) < 0)
460 goto handle_non_note; /* entry.path is not a SHA1 */
462 type = PTR_TYPE_SUBTREE;
463 l = (struct leaf_node *)
464 xcalloc(1, sizeof(struct leaf_node));
465 oidcpy(&l->key_oid, &object_oid);
466 oidcpy(&l->val_oid, entry.oid);
467 l->key_oid.hash[KEY_INDEX] = (unsigned char) (prefix_len + 1);
468 } else {
469 /* This can't be part of a note */
470 goto handle_non_note;
473 if (note_tree_insert(t, node, n, l, type,
474 combine_notes_concatenate))
475 die("Failed to load %s %s into notes tree "
476 "from %s",
477 type == PTR_TYPE_NOTE ? "note" : "subtree",
478 oid_to_hex(&l->key_oid), t->ref);
480 continue;
482 handle_non_note:
484 * Determine full path for this non-note entry. The
485 * filename is already found in entry.path, but the
486 * directory part of the path must be deduced from the
487 * subtree containing this entry based on our
488 * knowledge that the overall notes tree follows a
489 * strict byte-based progressive fanout structure
490 * (i.e. using 2/38, 2/2/36, etc. fanouts).
493 struct strbuf non_note_path = STRBUF_INIT;
494 const char *q = oid_to_hex(&subtree->key_oid);
495 int i;
496 for (i = 0; i < prefix_len; i++) {
497 strbuf_addch(&non_note_path, *q++);
498 strbuf_addch(&non_note_path, *q++);
499 strbuf_addch(&non_note_path, '/');
501 strbuf_addstr(&non_note_path, entry.path);
502 add_non_note(t, strbuf_detach(&non_note_path, NULL),
503 entry.mode, entry.oid->hash);
506 free(buf);
510 * Determine optimal on-disk fanout for this part of the notes tree
512 * Given a (sub)tree and the level in the internal tree structure, determine
513 * whether or not the given existing fanout should be expanded for this
514 * (sub)tree.
516 * Values of the 'fanout' variable:
517 * - 0: No fanout (all notes are stored directly in the root notes tree)
518 * - 1: 2/38 fanout
519 * - 2: 2/2/36 fanout
520 * - 3: 2/2/2/34 fanout
521 * etc.
523 static unsigned char determine_fanout(struct int_node *tree, unsigned char n,
524 unsigned char fanout)
527 * The following is a simple heuristic that works well in practice:
528 * For each even-numbered 16-tree level (remember that each on-disk
529 * fanout level corresponds to _two_ 16-tree levels), peek at all 16
530 * entries at that tree level. If all of them are either int_nodes or
531 * subtree entries, then there are likely plenty of notes below this
532 * level, so we return an incremented fanout.
534 unsigned int i;
535 if ((n % 2) || (n > 2 * fanout))
536 return fanout;
537 for (i = 0; i < 16; i++) {
538 switch (GET_PTR_TYPE(tree->a[i])) {
539 case PTR_TYPE_SUBTREE:
540 case PTR_TYPE_INTERNAL:
541 continue;
542 default:
543 return fanout;
546 return fanout + 1;
549 /* hex SHA1 + 19 * '/' + NUL */
550 #define FANOUT_PATH_MAX GIT_SHA1_HEXSZ + FANOUT_PATH_SEPARATORS + 1
552 static void construct_path_with_fanout(const unsigned char *sha1,
553 unsigned char fanout, char *path)
555 unsigned int i = 0, j = 0;
556 const char *hex_sha1 = sha1_to_hex(sha1);
557 assert(fanout < GIT_SHA1_RAWSZ);
558 while (fanout) {
559 path[i++] = hex_sha1[j++];
560 path[i++] = hex_sha1[j++];
561 path[i++] = '/';
562 fanout--;
564 xsnprintf(path + i, FANOUT_PATH_MAX - i, "%s", hex_sha1 + j);
567 static int for_each_note_helper(struct notes_tree *t, struct int_node *tree,
568 unsigned char n, unsigned char fanout, int flags,
569 each_note_fn fn, void *cb_data)
571 unsigned int i;
572 void *p;
573 int ret = 0;
574 struct leaf_node *l;
575 static char path[FANOUT_PATH_MAX];
577 fanout = determine_fanout(tree, n, fanout);
578 for (i = 0; i < 16; i++) {
579 redo:
580 p = tree->a[i];
581 switch (GET_PTR_TYPE(p)) {
582 case PTR_TYPE_INTERNAL:
583 /* recurse into int_node */
584 ret = for_each_note_helper(t, CLR_PTR_TYPE(p), n + 1,
585 fanout, flags, fn, cb_data);
586 break;
587 case PTR_TYPE_SUBTREE:
588 l = (struct leaf_node *) CLR_PTR_TYPE(p);
590 * Subtree entries in the note tree represent parts of
591 * the note tree that have not yet been explored. There
592 * is a direct relationship between subtree entries at
593 * level 'n' in the tree, and the 'fanout' variable:
594 * Subtree entries at level 'n <= 2 * fanout' should be
595 * preserved, since they correspond exactly to a fanout
596 * directory in the on-disk structure. However, subtree
597 * entries at level 'n > 2 * fanout' should NOT be
598 * preserved, but rather consolidated into the above
599 * notes tree level. We achieve this by unconditionally
600 * unpacking subtree entries that exist below the
601 * threshold level at 'n = 2 * fanout'.
603 if (n <= 2 * fanout &&
604 flags & FOR_EACH_NOTE_YIELD_SUBTREES) {
605 /* invoke callback with subtree */
606 unsigned int path_len =
607 l->key_oid.hash[KEY_INDEX] * 2 + fanout;
608 assert(path_len < FANOUT_PATH_MAX - 1);
609 construct_path_with_fanout(l->key_oid.hash,
610 fanout,
611 path);
612 /* Create trailing slash, if needed */
613 if (path[path_len - 1] != '/')
614 path[path_len++] = '/';
615 path[path_len] = '\0';
616 ret = fn(&l->key_oid, &l->val_oid,
617 path,
618 cb_data);
620 if (n > fanout * 2 ||
621 !(flags & FOR_EACH_NOTE_DONT_UNPACK_SUBTREES)) {
622 /* unpack subtree and resume traversal */
623 tree->a[i] = NULL;
624 load_subtree(t, l, tree, n);
625 free(l);
626 goto redo;
628 break;
629 case PTR_TYPE_NOTE:
630 l = (struct leaf_node *) CLR_PTR_TYPE(p);
631 construct_path_with_fanout(l->key_oid.hash, fanout,
632 path);
633 ret = fn(&l->key_oid, &l->val_oid, path,
634 cb_data);
635 break;
637 if (ret)
638 return ret;
640 return 0;
643 struct tree_write_stack {
644 struct tree_write_stack *next;
645 struct strbuf buf;
646 char path[2]; /* path to subtree in next, if any */
649 static inline int matches_tree_write_stack(struct tree_write_stack *tws,
650 const char *full_path)
652 return full_path[0] == tws->path[0] &&
653 full_path[1] == tws->path[1] &&
654 full_path[2] == '/';
657 static void write_tree_entry(struct strbuf *buf, unsigned int mode,
658 const char *path, unsigned int path_len, const
659 unsigned char *sha1)
661 strbuf_addf(buf, "%o %.*s%c", mode, path_len, path, '\0');
662 strbuf_add(buf, sha1, GIT_SHA1_RAWSZ);
665 static void tree_write_stack_init_subtree(struct tree_write_stack *tws,
666 const char *path)
668 struct tree_write_stack *n;
669 assert(!tws->next);
670 assert(tws->path[0] == '\0' && tws->path[1] == '\0');
671 n = (struct tree_write_stack *)
672 xmalloc(sizeof(struct tree_write_stack));
673 n->next = NULL;
674 strbuf_init(&n->buf, 256 * (32 + GIT_SHA1_HEXSZ)); /* assume 256 entries per tree */
675 n->path[0] = n->path[1] = '\0';
676 tws->next = n;
677 tws->path[0] = path[0];
678 tws->path[1] = path[1];
681 static int tree_write_stack_finish_subtree(struct tree_write_stack *tws)
683 int ret;
684 struct tree_write_stack *n = tws->next;
685 struct object_id s;
686 if (n) {
687 ret = tree_write_stack_finish_subtree(n);
688 if (ret)
689 return ret;
690 ret = write_sha1_file(n->buf.buf, n->buf.len, tree_type, s.hash);
691 if (ret)
692 return ret;
693 strbuf_release(&n->buf);
694 free(n);
695 tws->next = NULL;
696 write_tree_entry(&tws->buf, 040000, tws->path, 2, s.hash);
697 tws->path[0] = tws->path[1] = '\0';
699 return 0;
702 static int write_each_note_helper(struct tree_write_stack *tws,
703 const char *path, unsigned int mode,
704 const struct object_id *oid)
706 size_t path_len = strlen(path);
707 unsigned int n = 0;
708 int ret;
710 /* Determine common part of tree write stack */
711 while (tws && 3 * n < path_len &&
712 matches_tree_write_stack(tws, path + 3 * n)) {
713 n++;
714 tws = tws->next;
717 /* tws point to last matching tree_write_stack entry */
718 ret = tree_write_stack_finish_subtree(tws);
719 if (ret)
720 return ret;
722 /* Start subtrees needed to satisfy path */
723 while (3 * n + 2 < path_len && path[3 * n + 2] == '/') {
724 tree_write_stack_init_subtree(tws, path + 3 * n);
725 n++;
726 tws = tws->next;
729 /* There should be no more directory components in the given path */
730 assert(memchr(path + 3 * n, '/', path_len - (3 * n)) == NULL);
732 /* Finally add given entry to the current tree object */
733 write_tree_entry(&tws->buf, mode, path + 3 * n, path_len - (3 * n),
734 oid->hash);
736 return 0;
739 struct write_each_note_data {
740 struct tree_write_stack *root;
741 struct non_note *next_non_note;
744 static int write_each_non_note_until(const char *note_path,
745 struct write_each_note_data *d)
747 struct non_note *n = d->next_non_note;
748 int cmp = 0, ret;
749 while (n && (!note_path || (cmp = strcmp(n->path, note_path)) <= 0)) {
750 if (note_path && cmp == 0)
751 ; /* do nothing, prefer note to non-note */
752 else {
753 ret = write_each_note_helper(d->root, n->path, n->mode,
754 &n->oid);
755 if (ret)
756 return ret;
758 n = n->next;
760 d->next_non_note = n;
761 return 0;
764 static int write_each_note(const struct object_id *object_oid,
765 const struct object_id *note_oid, char *note_path,
766 void *cb_data)
768 struct write_each_note_data *d =
769 (struct write_each_note_data *) cb_data;
770 size_t note_path_len = strlen(note_path);
771 unsigned int mode = 0100644;
773 if (note_path[note_path_len - 1] == '/') {
774 /* subtree entry */
775 note_path_len--;
776 note_path[note_path_len] = '\0';
777 mode = 040000;
779 assert(note_path_len <= GIT_SHA1_HEXSZ + FANOUT_PATH_SEPARATORS);
781 /* Weave non-note entries into note entries */
782 return write_each_non_note_until(note_path, d) ||
783 write_each_note_helper(d->root, note_path, mode, note_oid);
786 struct note_delete_list {
787 struct note_delete_list *next;
788 const unsigned char *sha1;
791 static int prune_notes_helper(const struct object_id *object_oid,
792 const struct object_id *note_oid, char *note_path,
793 void *cb_data)
795 struct note_delete_list **l = (struct note_delete_list **) cb_data;
796 struct note_delete_list *n;
798 if (has_object_file(object_oid))
799 return 0; /* nothing to do for this note */
801 /* failed to find object => prune this note */
802 n = (struct note_delete_list *) xmalloc(sizeof(*n));
803 n->next = *l;
804 n->sha1 = object_oid->hash;
805 *l = n;
806 return 0;
809 int combine_notes_concatenate(unsigned char *cur_sha1,
810 const unsigned char *new_sha1)
812 char *cur_msg = NULL, *new_msg = NULL, *buf;
813 unsigned long cur_len, new_len, buf_len;
814 enum object_type cur_type, new_type;
815 int ret;
817 /* read in both note blob objects */
818 if (!is_null_sha1(new_sha1))
819 new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
820 if (!new_msg || !new_len || new_type != OBJ_BLOB) {
821 free(new_msg);
822 return 0;
824 if (!is_null_sha1(cur_sha1))
825 cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
826 if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
827 free(cur_msg);
828 free(new_msg);
829 hashcpy(cur_sha1, new_sha1);
830 return 0;
833 /* we will separate the notes by two newlines anyway */
834 if (cur_msg[cur_len - 1] == '\n')
835 cur_len--;
837 /* concatenate cur_msg and new_msg into buf */
838 buf_len = cur_len + 2 + new_len;
839 buf = (char *) xmalloc(buf_len);
840 memcpy(buf, cur_msg, cur_len);
841 buf[cur_len] = '\n';
842 buf[cur_len + 1] = '\n';
843 memcpy(buf + cur_len + 2, new_msg, new_len);
844 free(cur_msg);
845 free(new_msg);
847 /* create a new blob object from buf */
848 ret = write_sha1_file(buf, buf_len, blob_type, cur_sha1);
849 free(buf);
850 return ret;
853 int combine_notes_overwrite(unsigned char *cur_sha1,
854 const unsigned char *new_sha1)
856 hashcpy(cur_sha1, new_sha1);
857 return 0;
860 int combine_notes_ignore(unsigned char *cur_sha1,
861 const unsigned char *new_sha1)
863 return 0;
867 * Add the lines from the named object to list, with trailing
868 * newlines removed.
870 static int string_list_add_note_lines(struct string_list *list,
871 const unsigned char *sha1)
873 char *data;
874 unsigned long len;
875 enum object_type t;
877 if (is_null_sha1(sha1))
878 return 0;
880 /* read_sha1_file NUL-terminates */
881 data = read_sha1_file(sha1, &t, &len);
882 if (t != OBJ_BLOB || !data || !len) {
883 free(data);
884 return t != OBJ_BLOB || !data;
888 * If the last line of the file is EOL-terminated, this will
889 * add an empty string to the list. But it will be removed
890 * later, along with any empty strings that came from empty
891 * lines within the file.
893 string_list_split(list, data, '\n', -1);
894 free(data);
895 return 0;
898 static int string_list_join_lines_helper(struct string_list_item *item,
899 void *cb_data)
901 struct strbuf *buf = cb_data;
902 strbuf_addstr(buf, item->string);
903 strbuf_addch(buf, '\n');
904 return 0;
907 int combine_notes_cat_sort_uniq(unsigned char *cur_sha1,
908 const unsigned char *new_sha1)
910 struct string_list sort_uniq_list = STRING_LIST_INIT_DUP;
911 struct strbuf buf = STRBUF_INIT;
912 int ret = 1;
914 /* read both note blob objects into unique_lines */
915 if (string_list_add_note_lines(&sort_uniq_list, cur_sha1))
916 goto out;
917 if (string_list_add_note_lines(&sort_uniq_list, new_sha1))
918 goto out;
919 string_list_remove_empty_items(&sort_uniq_list, 0);
920 string_list_sort(&sort_uniq_list);
921 string_list_remove_duplicates(&sort_uniq_list, 0);
923 /* create a new blob object from sort_uniq_list */
924 if (for_each_string_list(&sort_uniq_list,
925 string_list_join_lines_helper, &buf))
926 goto out;
928 ret = write_sha1_file(buf.buf, buf.len, blob_type, cur_sha1);
930 out:
931 strbuf_release(&buf);
932 string_list_clear(&sort_uniq_list, 0);
933 return ret;
936 static int string_list_add_one_ref(const char *refname, const struct object_id *oid,
937 int flag, void *cb)
939 struct string_list *refs = cb;
940 if (!unsorted_string_list_has_string(refs, refname))
941 string_list_append(refs, refname);
942 return 0;
946 * The list argument must have strdup_strings set on it.
948 void string_list_add_refs_by_glob(struct string_list *list, const char *glob)
950 assert(list->strdup_strings);
951 if (has_glob_specials(glob)) {
952 for_each_glob_ref(string_list_add_one_ref, glob, list);
953 } else {
954 struct object_id oid;
955 if (get_oid(glob, &oid))
956 warning("notes ref %s is invalid", glob);
957 if (!unsorted_string_list_has_string(list, glob))
958 string_list_append(list, glob);
962 void string_list_add_refs_from_colon_sep(struct string_list *list,
963 const char *globs)
965 struct string_list split = STRING_LIST_INIT_NODUP;
966 char *globs_copy = xstrdup(globs);
967 int i;
969 string_list_split_in_place(&split, globs_copy, ':', -1);
970 string_list_remove_empty_items(&split, 0);
972 for (i = 0; i < split.nr; i++)
973 string_list_add_refs_by_glob(list, split.items[i].string);
975 string_list_clear(&split, 0);
976 free(globs_copy);
979 static int notes_display_config(const char *k, const char *v, void *cb)
981 int *load_refs = cb;
983 if (*load_refs && !strcmp(k, "notes.displayref")) {
984 if (!v)
985 config_error_nonbool(k);
986 string_list_add_refs_by_glob(&display_notes_refs, v);
989 return 0;
992 const char *default_notes_ref(void)
994 const char *notes_ref = NULL;
995 if (!notes_ref)
996 notes_ref = getenv(GIT_NOTES_REF_ENVIRONMENT);
997 if (!notes_ref)
998 notes_ref = notes_ref_name; /* value of core.notesRef config */
999 if (!notes_ref)
1000 notes_ref = GIT_NOTES_DEFAULT_REF;
1001 return notes_ref;
1004 void init_notes(struct notes_tree *t, const char *notes_ref,
1005 combine_notes_fn combine_notes, int flags)
1007 struct object_id oid, object_oid;
1008 unsigned mode;
1009 struct leaf_node root_tree;
1011 if (!t)
1012 t = &default_notes_tree;
1013 assert(!t->initialized);
1015 if (!notes_ref)
1016 notes_ref = default_notes_ref();
1018 if (!combine_notes)
1019 combine_notes = combine_notes_concatenate;
1021 t->root = (struct int_node *) xcalloc(1, sizeof(struct int_node));
1022 t->first_non_note = NULL;
1023 t->prev_non_note = NULL;
1024 t->ref = xstrdup_or_null(notes_ref);
1025 t->update_ref = (flags & NOTES_INIT_WRITABLE) ? t->ref : NULL;
1026 t->combine_notes = combine_notes;
1027 t->initialized = 1;
1028 t->dirty = 0;
1030 if (flags & NOTES_INIT_EMPTY || !notes_ref ||
1031 get_sha1_treeish(notes_ref, object_oid.hash))
1032 return;
1033 if (flags & NOTES_INIT_WRITABLE && read_ref(notes_ref, object_oid.hash))
1034 die("Cannot use notes ref %s", notes_ref);
1035 if (get_tree_entry(object_oid.hash, "", oid.hash, &mode))
1036 die("Failed to read notes tree referenced by %s (%s)",
1037 notes_ref, oid_to_hex(&object_oid));
1039 oidclr(&root_tree.key_oid);
1040 oidcpy(&root_tree.val_oid, &oid);
1041 load_subtree(t, &root_tree, t->root, 0);
1044 struct notes_tree **load_notes_trees(struct string_list *refs, int flags)
1046 struct string_list_item *item;
1047 int counter = 0;
1048 struct notes_tree **trees;
1049 ALLOC_ARRAY(trees, refs->nr + 1);
1050 for_each_string_list_item(item, refs) {
1051 struct notes_tree *t = xcalloc(1, sizeof(struct notes_tree));
1052 init_notes(t, item->string, combine_notes_ignore, flags);
1053 trees[counter++] = t;
1055 trees[counter] = NULL;
1056 return trees;
1059 void init_display_notes(struct display_notes_opt *opt)
1061 char *display_ref_env;
1062 int load_config_refs = 0;
1063 display_notes_refs.strdup_strings = 1;
1065 assert(!display_notes_trees);
1067 if (!opt || opt->use_default_notes > 0 ||
1068 (opt->use_default_notes == -1 && !opt->extra_notes_refs.nr)) {
1069 string_list_append(&display_notes_refs, default_notes_ref());
1070 display_ref_env = getenv(GIT_NOTES_DISPLAY_REF_ENVIRONMENT);
1071 if (display_ref_env) {
1072 string_list_add_refs_from_colon_sep(&display_notes_refs,
1073 display_ref_env);
1074 load_config_refs = 0;
1075 } else
1076 load_config_refs = 1;
1079 git_config(notes_display_config, &load_config_refs);
1081 if (opt) {
1082 struct string_list_item *item;
1083 for_each_string_list_item(item, &opt->extra_notes_refs)
1084 string_list_add_refs_by_glob(&display_notes_refs,
1085 item->string);
1088 display_notes_trees = load_notes_trees(&display_notes_refs, 0);
1089 string_list_clear(&display_notes_refs, 0);
1092 int add_note(struct notes_tree *t, const struct object_id *object_oid,
1093 const struct object_id *note_oid, combine_notes_fn combine_notes)
1095 struct leaf_node *l;
1097 if (!t)
1098 t = &default_notes_tree;
1099 assert(t->initialized);
1100 t->dirty = 1;
1101 if (!combine_notes)
1102 combine_notes = t->combine_notes;
1103 l = (struct leaf_node *) xmalloc(sizeof(struct leaf_node));
1104 oidcpy(&l->key_oid, object_oid);
1105 oidcpy(&l->val_oid, note_oid);
1106 return note_tree_insert(t, t->root, 0, l, PTR_TYPE_NOTE, combine_notes);
1109 int remove_note(struct notes_tree *t, const unsigned char *object_sha1)
1111 struct leaf_node l;
1113 if (!t)
1114 t = &default_notes_tree;
1115 assert(t->initialized);
1116 hashcpy(l.key_oid.hash, object_sha1);
1117 oidclr(&l.val_oid);
1118 note_tree_remove(t, t->root, 0, &l);
1119 if (is_null_oid(&l.val_oid)) /* no note was removed */
1120 return 1;
1121 t->dirty = 1;
1122 return 0;
1125 const struct object_id *get_note(struct notes_tree *t,
1126 const struct object_id *oid)
1128 struct leaf_node *found;
1130 if (!t)
1131 t = &default_notes_tree;
1132 assert(t->initialized);
1133 found = note_tree_find(t, t->root, 0, oid->hash);
1134 return found ? &found->val_oid : NULL;
1137 int for_each_note(struct notes_tree *t, int flags, each_note_fn fn,
1138 void *cb_data)
1140 if (!t)
1141 t = &default_notes_tree;
1142 assert(t->initialized);
1143 return for_each_note_helper(t, t->root, 0, 0, flags, fn, cb_data);
1146 int write_notes_tree(struct notes_tree *t, unsigned char *result)
1148 struct tree_write_stack root;
1149 struct write_each_note_data cb_data;
1150 int ret;
1152 if (!t)
1153 t = &default_notes_tree;
1154 assert(t->initialized);
1156 /* Prepare for traversal of current notes tree */
1157 root.next = NULL; /* last forward entry in list is grounded */
1158 strbuf_init(&root.buf, 256 * (32 + GIT_SHA1_HEXSZ)); /* assume 256 entries */
1159 root.path[0] = root.path[1] = '\0';
1160 cb_data.root = &root;
1161 cb_data.next_non_note = t->first_non_note;
1163 /* Write tree objects representing current notes tree */
1164 ret = for_each_note(t, FOR_EACH_NOTE_DONT_UNPACK_SUBTREES |
1165 FOR_EACH_NOTE_YIELD_SUBTREES,
1166 write_each_note, &cb_data) ||
1167 write_each_non_note_until(NULL, &cb_data) ||
1168 tree_write_stack_finish_subtree(&root) ||
1169 write_sha1_file(root.buf.buf, root.buf.len, tree_type, result);
1170 strbuf_release(&root.buf);
1171 return ret;
1174 void prune_notes(struct notes_tree *t, int flags)
1176 struct note_delete_list *l = NULL;
1178 if (!t)
1179 t = &default_notes_tree;
1180 assert(t->initialized);
1182 for_each_note(t, 0, prune_notes_helper, &l);
1184 while (l) {
1185 if (flags & NOTES_PRUNE_VERBOSE)
1186 printf("%s\n", sha1_to_hex(l->sha1));
1187 if (!(flags & NOTES_PRUNE_DRYRUN))
1188 remove_note(t, l->sha1);
1189 l = l->next;
1193 void free_notes(struct notes_tree *t)
1195 if (!t)
1196 t = &default_notes_tree;
1197 if (t->root)
1198 note_tree_free(t->root);
1199 free(t->root);
1200 while (t->first_non_note) {
1201 t->prev_non_note = t->first_non_note->next;
1202 free(t->first_non_note->path);
1203 free(t->first_non_note);
1204 t->first_non_note = t->prev_non_note;
1206 free(t->ref);
1207 memset(t, 0, sizeof(struct notes_tree));
1211 * Fill the given strbuf with the notes associated with the given object.
1213 * If the given notes_tree structure is not initialized, it will be auto-
1214 * initialized to the default value (see documentation for init_notes() above).
1215 * If the given notes_tree is NULL, the internal/default notes_tree will be
1216 * used instead.
1218 * (raw != 0) gives the %N userformat; otherwise, the note message is given
1219 * for human consumption.
1221 static void format_note(struct notes_tree *t, const struct object_id *object_oid,
1222 struct strbuf *sb, const char *output_encoding, int raw)
1224 static const char utf8[] = "utf-8";
1225 const struct object_id *oid;
1226 char *msg, *msg_p;
1227 unsigned long linelen, msglen;
1228 enum object_type type;
1230 if (!t)
1231 t = &default_notes_tree;
1232 if (!t->initialized)
1233 init_notes(t, NULL, NULL, 0);
1235 oid = get_note(t, object_oid);
1236 if (!oid)
1237 return;
1239 if (!(msg = read_sha1_file(oid->hash, &type, &msglen)) || type != OBJ_BLOB) {
1240 free(msg);
1241 return;
1244 if (output_encoding && *output_encoding &&
1245 !is_encoding_utf8(output_encoding)) {
1246 char *reencoded = reencode_string(msg, output_encoding, utf8);
1247 if (reencoded) {
1248 free(msg);
1249 msg = reencoded;
1250 msglen = strlen(msg);
1254 /* we will end the annotation by a newline anyway */
1255 if (msglen && msg[msglen - 1] == '\n')
1256 msglen--;
1258 if (!raw) {
1259 const char *ref = t->ref;
1260 if (!ref || !strcmp(ref, GIT_NOTES_DEFAULT_REF)) {
1261 strbuf_addstr(sb, "\nNotes:\n");
1262 } else {
1263 if (starts_with(ref, "refs/"))
1264 ref += 5;
1265 if (starts_with(ref, "notes/"))
1266 ref += 6;
1267 strbuf_addf(sb, "\nNotes (%s):\n", ref);
1271 for (msg_p = msg; msg_p < msg + msglen; msg_p += linelen + 1) {
1272 linelen = strchrnul(msg_p, '\n') - msg_p;
1274 if (!raw)
1275 strbuf_addstr(sb, " ");
1276 strbuf_add(sb, msg_p, linelen);
1277 strbuf_addch(sb, '\n');
1280 free(msg);
1283 void format_display_notes(const struct object_id *object_oid,
1284 struct strbuf *sb, const char *output_encoding, int raw)
1286 int i;
1287 assert(display_notes_trees);
1288 for (i = 0; display_notes_trees[i]; i++)
1289 format_note(display_notes_trees[i], object_oid, sb,
1290 output_encoding, raw);
1293 int copy_note(struct notes_tree *t,
1294 const struct object_id *from_obj, const struct object_id *to_obj,
1295 int force, combine_notes_fn combine_notes)
1297 const struct object_id *note = get_note(t, from_obj);
1298 const struct object_id *existing_note = get_note(t, to_obj);
1300 if (!force && existing_note)
1301 return 1;
1303 if (note)
1304 return add_note(t, to_obj, note, combine_notes);
1305 else if (existing_note)
1306 return add_note(t, to_obj, &null_oid, combine_notes);
1308 return 0;
1311 void expand_notes_ref(struct strbuf *sb)
1313 if (starts_with(sb->buf, "refs/notes/"))
1314 return; /* we're happy */
1315 else if (starts_with(sb->buf, "notes/"))
1316 strbuf_insert(sb, 0, "refs/", 5);
1317 else
1318 strbuf_insert(sb, 0, "refs/notes/", 11);
1321 void expand_loose_notes_ref(struct strbuf *sb)
1323 struct object_id object;
1325 if (get_oid(sb->buf, &object)) {
1326 /* fallback to expand_notes_ref */
1327 expand_notes_ref(sb);