coverity: detect and report when the token or project is incorrect
[git.git] / builtin / fsmonitor--daemon.c
blob7e99c4d61ba95942014d8ab2681568f53658fd0d
1 #include "builtin.h"
2 #include "abspath.h"
3 #include "config.h"
4 #include "environment.h"
5 #include "gettext.h"
6 #include "parse-options.h"
7 #include "fsmonitor-ll.h"
8 #include "fsmonitor-ipc.h"
9 #include "fsmonitor-path-utils.h"
10 #include "fsmonitor-settings.h"
11 #include "compat/fsmonitor/fsm-health.h"
12 #include "compat/fsmonitor/fsm-listen.h"
13 #include "fsmonitor--daemon.h"
14 #include "simple-ipc.h"
15 #include "khash.h"
16 #include "pkt-line.h"
17 #include "trace.h"
18 #include "trace2.h"
20 static const char * const builtin_fsmonitor__daemon_usage[] = {
21 N_("git fsmonitor--daemon start [<options>]"),
22 N_("git fsmonitor--daemon run [<options>]"),
23 "git fsmonitor--daemon stop",
24 "git fsmonitor--daemon status",
25 NULL
28 #ifdef HAVE_FSMONITOR_DAEMON_BACKEND
30 * Global state loaded from config.
32 #define FSMONITOR__IPC_THREADS "fsmonitor.ipcthreads"
33 static int fsmonitor__ipc_threads = 8;
35 #define FSMONITOR__START_TIMEOUT "fsmonitor.starttimeout"
36 static int fsmonitor__start_timeout_sec = 60;
38 #define FSMONITOR__ANNOUNCE_STARTUP "fsmonitor.announcestartup"
39 static int fsmonitor__announce_startup = 0;
41 static int fsmonitor_config(const char *var, const char *value,
42 const struct config_context *ctx, void *cb)
44 if (!strcmp(var, FSMONITOR__IPC_THREADS)) {
45 int i = git_config_int(var, value, ctx->kvi);
46 if (i < 1)
47 return error(_("value of '%s' out of range: %d"),
48 FSMONITOR__IPC_THREADS, i);
49 fsmonitor__ipc_threads = i;
50 return 0;
53 if (!strcmp(var, FSMONITOR__START_TIMEOUT)) {
54 int i = git_config_int(var, value, ctx->kvi);
55 if (i < 0)
56 return error(_("value of '%s' out of range: %d"),
57 FSMONITOR__START_TIMEOUT, i);
58 fsmonitor__start_timeout_sec = i;
59 return 0;
62 if (!strcmp(var, FSMONITOR__ANNOUNCE_STARTUP)) {
63 int is_bool;
64 int i = git_config_bool_or_int(var, value, ctx->kvi, &is_bool);
65 if (i < 0)
66 return error(_("value of '%s' not bool or int: %d"),
67 var, i);
68 fsmonitor__announce_startup = i;
69 return 0;
72 return git_default_config(var, value, ctx, cb);
76 * Acting as a CLIENT.
78 * Send a "quit" command to the `git-fsmonitor--daemon` (if running)
79 * and wait for it to shutdown.
81 static int do_as_client__send_stop(void)
83 struct strbuf answer = STRBUF_INIT;
84 int ret;
86 ret = fsmonitor_ipc__send_command("quit", &answer);
88 /* The quit command does not return any response data. */
89 strbuf_release(&answer);
91 if (ret)
92 return ret;
94 trace2_region_enter("fsm_client", "polling-for-daemon-exit", NULL);
95 while (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING)
96 sleep_millisec(50);
97 trace2_region_leave("fsm_client", "polling-for-daemon-exit", NULL);
99 return 0;
102 static int do_as_client__status(void)
104 enum ipc_active_state state = fsmonitor_ipc__get_state();
106 switch (state) {
107 case IPC_STATE__LISTENING:
108 printf(_("fsmonitor-daemon is watching '%s'\n"),
109 the_repository->worktree);
110 return 0;
112 default:
113 printf(_("fsmonitor-daemon is not watching '%s'\n"),
114 the_repository->worktree);
115 return 1;
119 enum fsmonitor_cookie_item_result {
120 FCIR_ERROR = -1, /* could not create cookie file ? */
121 FCIR_INIT,
122 FCIR_SEEN,
123 FCIR_ABORT,
126 struct fsmonitor_cookie_item {
127 struct hashmap_entry entry;
128 char *name;
129 enum fsmonitor_cookie_item_result result;
132 static int cookies_cmp(const void *data, const struct hashmap_entry *he1,
133 const struct hashmap_entry *he2, const void *keydata)
135 const struct fsmonitor_cookie_item *a =
136 container_of(he1, const struct fsmonitor_cookie_item, entry);
137 const struct fsmonitor_cookie_item *b =
138 container_of(he2, const struct fsmonitor_cookie_item, entry);
140 return strcmp(a->name, keydata ? keydata : b->name);
143 static enum fsmonitor_cookie_item_result with_lock__wait_for_cookie(
144 struct fsmonitor_daemon_state *state)
146 /* assert current thread holding state->main_lock */
148 int fd;
149 struct fsmonitor_cookie_item *cookie;
150 struct strbuf cookie_pathname = STRBUF_INIT;
151 struct strbuf cookie_filename = STRBUF_INIT;
152 enum fsmonitor_cookie_item_result result;
153 int my_cookie_seq;
155 CALLOC_ARRAY(cookie, 1);
157 my_cookie_seq = state->cookie_seq++;
159 strbuf_addf(&cookie_filename, "%i-%i", getpid(), my_cookie_seq);
161 strbuf_addbuf(&cookie_pathname, &state->path_cookie_prefix);
162 strbuf_addbuf(&cookie_pathname, &cookie_filename);
164 cookie->name = strbuf_detach(&cookie_filename, NULL);
165 cookie->result = FCIR_INIT;
166 hashmap_entry_init(&cookie->entry, strhash(cookie->name));
168 hashmap_add(&state->cookies, &cookie->entry);
170 trace_printf_key(&trace_fsmonitor, "cookie-wait: '%s' '%s'",
171 cookie->name, cookie_pathname.buf);
174 * Create the cookie file on disk and then wait for a notification
175 * that the listener thread has seen it.
177 fd = open(cookie_pathname.buf, O_WRONLY | O_CREAT | O_EXCL, 0600);
178 if (fd < 0) {
179 error_errno(_("could not create fsmonitor cookie '%s'"),
180 cookie->name);
182 cookie->result = FCIR_ERROR;
183 goto done;
187 * Technically, close() and unlink() can fail, but we don't
188 * care here. We only created the file to trigger a watch
189 * event from the FS to know that when we're up to date.
191 close(fd);
192 unlink(cookie_pathname.buf);
195 * Technically, this is an infinite wait (well, unless another
196 * thread sends us an abort). I'd like to change this to
197 * use `pthread_cond_timedwait()` and return an error/timeout
198 * and let the caller do the trivial response thing, but we
199 * don't have that routine in our thread-utils.
201 * After extensive beta testing I'm not really worried about
202 * this. Also note that the above open() and unlink() calls
203 * will cause at least two FS events on that path, so the odds
204 * of getting stuck are pretty slim.
206 while (cookie->result == FCIR_INIT)
207 pthread_cond_wait(&state->cookies_cond,
208 &state->main_lock);
210 done:
211 hashmap_remove(&state->cookies, &cookie->entry, NULL);
213 result = cookie->result;
215 free(cookie->name);
216 free(cookie);
217 strbuf_release(&cookie_pathname);
219 return result;
223 * Mark these cookies as _SEEN and wake up the corresponding client threads.
225 static void with_lock__mark_cookies_seen(struct fsmonitor_daemon_state *state,
226 const struct string_list *cookie_names)
228 /* assert current thread holding state->main_lock */
230 int k;
231 int nr_seen = 0;
233 for (k = 0; k < cookie_names->nr; k++) {
234 struct fsmonitor_cookie_item key;
235 struct fsmonitor_cookie_item *cookie;
237 key.name = cookie_names->items[k].string;
238 hashmap_entry_init(&key.entry, strhash(key.name));
240 cookie = hashmap_get_entry(&state->cookies, &key, entry, NULL);
241 if (cookie) {
242 trace_printf_key(&trace_fsmonitor, "cookie-seen: '%s'",
243 cookie->name);
244 cookie->result = FCIR_SEEN;
245 nr_seen++;
249 if (nr_seen)
250 pthread_cond_broadcast(&state->cookies_cond);
254 * Set _ABORT on all pending cookies and wake up all client threads.
256 static void with_lock__abort_all_cookies(struct fsmonitor_daemon_state *state)
258 /* assert current thread holding state->main_lock */
260 struct hashmap_iter iter;
261 struct fsmonitor_cookie_item *cookie;
262 int nr_aborted = 0;
264 hashmap_for_each_entry(&state->cookies, &iter, cookie, entry) {
265 trace_printf_key(&trace_fsmonitor, "cookie-abort: '%s'",
266 cookie->name);
267 cookie->result = FCIR_ABORT;
268 nr_aborted++;
271 if (nr_aborted)
272 pthread_cond_broadcast(&state->cookies_cond);
276 * Requests to and from a FSMonitor Protocol V2 provider use an opaque
277 * "token" as a virtual timestamp. Clients can request a summary of all
278 * created/deleted/modified files relative to a token. In the response,
279 * clients receive a new token for the next (relative) request.
282 * Token Format
283 * ============
285 * The contents of the token are private and provider-specific.
287 * For the built-in fsmonitor--daemon, we define a token as follows:
289 * "builtin" ":" <token_id> ":" <sequence_nr>
291 * The "builtin" prefix is used as a namespace to avoid conflicts
292 * with other providers (such as Watchman).
294 * The <token_id> is an arbitrary OPAQUE string, such as a GUID,
295 * UUID, or {timestamp,pid}. It is used to group all filesystem
296 * events that happened while the daemon was monitoring (and in-sync
297 * with the filesystem).
299 * Unlike FSMonitor Protocol V1, it is not defined as a timestamp
300 * and does not define less-than/greater-than relationships.
301 * (There are too many race conditions to rely on file system
302 * event timestamps.)
304 * The <sequence_nr> is a simple integer incremented whenever the
305 * daemon needs to make its state public. For example, if 1000 file
306 * system events come in, but no clients have requested the data,
307 * the daemon can continue to accumulate file changes in the same
308 * bin and does not need to advance the sequence number. However,
309 * as soon as a client does arrive, the daemon needs to start a new
310 * bin and increment the sequence number.
312 * The sequence number serves as the boundary between 2 sets
313 * of bins -- the older ones that the client has already seen
314 * and the newer ones that it hasn't.
316 * When a new <token_id> is created, the <sequence_nr> is reset to
317 * zero.
320 * About Token Ids
321 * ===============
323 * A new token_id is created:
325 * [1] each time the daemon is started.
327 * [2] any time that the daemon must re-sync with the filesystem
328 * (such as when the kernel drops or we miss events on a very
329 * active volume).
331 * [3] in response to a client "flush" command (for dropped event
332 * testing).
334 * When a new token_id is created, the daemon is free to discard all
335 * cached filesystem events associated with any previous token_ids.
336 * Events associated with a non-current token_id will never be sent
337 * to a client. A token_id change implicitly means that the daemon
338 * has gap in its event history.
340 * Therefore, clients that present a token with a stale (non-current)
341 * token_id will always be given a trivial response.
343 struct fsmonitor_token_data {
344 struct strbuf token_id;
345 struct fsmonitor_batch *batch_head;
346 struct fsmonitor_batch *batch_tail;
347 uint64_t client_ref_count;
350 struct fsmonitor_batch {
351 struct fsmonitor_batch *next;
352 uint64_t batch_seq_nr;
353 const char **interned_paths;
354 size_t nr, alloc;
355 time_t pinned_time;
358 static struct fsmonitor_token_data *fsmonitor_new_token_data(void)
360 static int test_env_value = -1;
361 static uint64_t flush_count = 0;
362 struct fsmonitor_token_data *token;
363 struct fsmonitor_batch *batch;
365 CALLOC_ARRAY(token, 1);
366 batch = fsmonitor_batch__new();
368 strbuf_init(&token->token_id, 0);
369 token->batch_head = batch;
370 token->batch_tail = batch;
371 token->client_ref_count = 0;
373 if (test_env_value < 0)
374 test_env_value = git_env_bool("GIT_TEST_FSMONITOR_TOKEN", 0);
376 if (!test_env_value) {
377 struct timeval tv;
378 struct tm tm;
379 time_t secs;
381 gettimeofday(&tv, NULL);
382 secs = tv.tv_sec;
383 gmtime_r(&secs, &tm);
385 strbuf_addf(&token->token_id,
386 "%"PRIu64".%d.%4d%02d%02dT%02d%02d%02d.%06ldZ",
387 flush_count++,
388 getpid(),
389 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
390 tm.tm_hour, tm.tm_min, tm.tm_sec,
391 (long)tv.tv_usec);
392 } else {
393 strbuf_addf(&token->token_id, "test_%08x", test_env_value++);
397 * We created a new <token_id> and are starting a new series
398 * of tokens with a zero <seq_nr>.
400 * Since clients cannot guess our new (non test) <token_id>
401 * they will always receive a trivial response (because of the
402 * mismatch on the <token_id>). The trivial response will
403 * tell them our new <token_id> so that subsequent requests
404 * will be relative to our new series. (And when sending that
405 * response, we pin the current head of the batch list.)
407 * Even if the client correctly guesses the <token_id>, their
408 * request of "builtin:<token_id>:0" asks for all changes MORE
409 * RECENT than batch/bin 0.
411 * This implies that it is a waste to accumulate paths in the
412 * initial batch/bin (because they will never be transmitted).
414 * So the daemon could be running for days and watching the
415 * file system, but doesn't need to actually accumulate any
416 * paths UNTIL we need to set a reference point for a later
417 * relative request.
419 * However, it is very useful for testing to always have a
420 * reference point set. Pin batch 0 to force early file system
421 * events to accumulate.
423 if (test_env_value)
424 batch->pinned_time = time(NULL);
426 return token;
429 struct fsmonitor_batch *fsmonitor_batch__new(void)
431 struct fsmonitor_batch *batch;
433 CALLOC_ARRAY(batch, 1);
435 return batch;
438 void fsmonitor_batch__free_list(struct fsmonitor_batch *batch)
440 while (batch) {
441 struct fsmonitor_batch *next = batch->next;
444 * The actual strings within the array of this batch
445 * are interned, so we don't own them. We only own
446 * the array.
448 free(batch->interned_paths);
449 free(batch);
451 batch = next;
455 void fsmonitor_batch__add_path(struct fsmonitor_batch *batch,
456 const char *path)
458 const char *interned_path = strintern(path);
460 trace_printf_key(&trace_fsmonitor, "event: %s", interned_path);
462 ALLOC_GROW(batch->interned_paths, batch->nr + 1, batch->alloc);
463 batch->interned_paths[batch->nr++] = interned_path;
466 static void fsmonitor_batch__combine(struct fsmonitor_batch *batch_dest,
467 const struct fsmonitor_batch *batch_src)
469 size_t k;
471 ALLOC_GROW(batch_dest->interned_paths,
472 batch_dest->nr + batch_src->nr + 1,
473 batch_dest->alloc);
475 for (k = 0; k < batch_src->nr; k++)
476 batch_dest->interned_paths[batch_dest->nr++] =
477 batch_src->interned_paths[k];
481 * To keep the batch list from growing unbounded in response to filesystem
482 * activity, we try to truncate old batches from the end of the list as
483 * they become irrelevant.
485 * We assume that the .git/index will be updated with the most recent token
486 * any time the index is updated. And future commands will only ask for
487 * recent changes *since* that new token. So as tokens advance into the
488 * future, older batch items will never be requested/needed. So we can
489 * truncate them without loss of functionality.
491 * However, multiple commands may be talking to the daemon concurrently
492 * or perform a slow command, so a little "token skew" is possible.
493 * Therefore, we want this to be a little bit lazy and have a generous
494 * delay.
496 * The current reader thread walked backwards in time from `token->batch_head`
497 * back to `batch_marker` somewhere in the middle of the batch list.
499 * Let's walk backwards in time from that marker an arbitrary delay
500 * and truncate the list there. Note that these timestamps are completely
501 * artificial (based on when we pinned the batch item) and not on any
502 * filesystem activity.
504 * Return the obsolete portion of the list after we have removed it from
505 * the official list so that the caller can free it after leaving the lock.
507 #define MY_TIME_DELAY_SECONDS (5 * 60) /* seconds */
509 static struct fsmonitor_batch *with_lock__truncate_old_batches(
510 struct fsmonitor_daemon_state *state,
511 const struct fsmonitor_batch *batch_marker)
513 /* assert current thread holding state->main_lock */
515 const struct fsmonitor_batch *batch;
516 struct fsmonitor_batch *remainder;
518 if (!batch_marker)
519 return NULL;
521 trace_printf_key(&trace_fsmonitor, "Truncate: mark (%"PRIu64",%"PRIu64")",
522 batch_marker->batch_seq_nr,
523 (uint64_t)batch_marker->pinned_time);
525 for (batch = batch_marker; batch; batch = batch->next) {
526 time_t t;
528 if (!batch->pinned_time) /* an overflow batch */
529 continue;
531 t = batch->pinned_time + MY_TIME_DELAY_SECONDS;
532 if (t > batch_marker->pinned_time) /* too close to marker */
533 continue;
535 goto truncate_past_here;
538 return NULL;
540 truncate_past_here:
541 state->current_token_data->batch_tail = (struct fsmonitor_batch *)batch;
543 remainder = ((struct fsmonitor_batch *)batch)->next;
544 ((struct fsmonitor_batch *)batch)->next = NULL;
546 return remainder;
549 static void fsmonitor_free_token_data(struct fsmonitor_token_data *token)
551 if (!token)
552 return;
554 assert(token->client_ref_count == 0);
556 strbuf_release(&token->token_id);
558 fsmonitor_batch__free_list(token->batch_head);
560 free(token);
564 * Flush all of our cached data about the filesystem. Call this if we
565 * lose sync with the filesystem and miss some notification events.
567 * [1] If we are missing events, then we no longer have a complete
568 * history of the directory (relative to our current start token).
569 * We should create a new token and start fresh (as if we just
570 * booted up).
572 * [2] Some of those lost events may have been for cookie files. We
573 * should assume the worst and abort them rather letting them starve.
575 * If there are no concurrent threads reading the current token data
576 * series, we can free it now. Otherwise, let the last reader free
577 * it.
579 * Either way, the old token data series is no longer associated with
580 * our state data.
582 static void with_lock__do_force_resync(struct fsmonitor_daemon_state *state)
584 /* assert current thread holding state->main_lock */
586 struct fsmonitor_token_data *free_me = NULL;
587 struct fsmonitor_token_data *new_one = NULL;
589 new_one = fsmonitor_new_token_data();
591 if (state->current_token_data->client_ref_count == 0)
592 free_me = state->current_token_data;
593 state->current_token_data = new_one;
595 fsmonitor_free_token_data(free_me);
597 with_lock__abort_all_cookies(state);
600 void fsmonitor_force_resync(struct fsmonitor_daemon_state *state)
602 pthread_mutex_lock(&state->main_lock);
603 with_lock__do_force_resync(state);
604 pthread_mutex_unlock(&state->main_lock);
608 * Format an opaque token string to send to the client.
610 static void with_lock__format_response_token(
611 struct strbuf *response_token,
612 const struct strbuf *response_token_id,
613 const struct fsmonitor_batch *batch)
615 /* assert current thread holding state->main_lock */
617 strbuf_reset(response_token);
618 strbuf_addf(response_token, "builtin:%s:%"PRIu64,
619 response_token_id->buf, batch->batch_seq_nr);
623 * Parse an opaque token from the client.
624 * Returns -1 on error.
626 static int fsmonitor_parse_client_token(const char *buf_token,
627 struct strbuf *requested_token_id,
628 uint64_t *seq_nr)
630 const char *p;
631 char *p_end;
633 strbuf_reset(requested_token_id);
634 *seq_nr = 0;
636 if (!skip_prefix(buf_token, "builtin:", &p))
637 return -1;
639 while (*p && *p != ':')
640 strbuf_addch(requested_token_id, *p++);
641 if (!*p++)
642 return -1;
644 *seq_nr = (uint64_t)strtoumax(p, &p_end, 10);
645 if (*p_end)
646 return -1;
648 return 0;
651 KHASH_INIT(str, const char *, int, 0, kh_str_hash_func, kh_str_hash_equal)
653 static int do_handle_client(struct fsmonitor_daemon_state *state,
654 const char *command,
655 ipc_server_reply_cb *reply,
656 struct ipc_server_reply_data *reply_data)
658 struct fsmonitor_token_data *token_data = NULL;
659 struct strbuf response_token = STRBUF_INIT;
660 struct strbuf requested_token_id = STRBUF_INIT;
661 struct strbuf payload = STRBUF_INIT;
662 uint64_t requested_oldest_seq_nr = 0;
663 uint64_t total_response_len = 0;
664 const char *p;
665 const struct fsmonitor_batch *batch_head;
666 const struct fsmonitor_batch *batch;
667 struct fsmonitor_batch *remainder = NULL;
668 intmax_t count = 0, duplicates = 0;
669 kh_str_t *shown;
670 int hash_ret;
671 int do_trivial = 0;
672 int do_flush = 0;
673 int do_cookie = 0;
674 enum fsmonitor_cookie_item_result cookie_result;
677 * We expect `command` to be of the form:
679 * <command> := quit NUL
680 * | flush NUL
681 * | <V1-time-since-epoch-ns> NUL
682 * | <V2-opaque-fsmonitor-token> NUL
685 if (!strcmp(command, "quit")) {
687 * A client has requested over the socket/pipe that the
688 * daemon shutdown.
690 * Tell the IPC thread pool to shutdown (which completes
691 * the await in the main thread (which can stop the
692 * fsmonitor listener thread)).
694 * There is no reply to the client.
696 return SIMPLE_IPC_QUIT;
698 } else if (!strcmp(command, "flush")) {
700 * Flush all of our cached data and generate a new token
701 * just like if we lost sync with the filesystem.
703 * Then send a trivial response using the new token.
705 do_flush = 1;
706 do_trivial = 1;
708 } else if (!skip_prefix(command, "builtin:", &p)) {
709 /* assume V1 timestamp or garbage */
711 char *p_end;
713 strtoumax(command, &p_end, 10);
714 trace_printf_key(&trace_fsmonitor,
715 ((*p_end) ?
716 "fsmonitor: invalid command line '%s'" :
717 "fsmonitor: unsupported V1 protocol '%s'"),
718 command);
719 do_trivial = 1;
720 do_cookie = 1;
722 } else {
723 /* We have "builtin:*" */
724 if (fsmonitor_parse_client_token(command, &requested_token_id,
725 &requested_oldest_seq_nr)) {
726 trace_printf_key(&trace_fsmonitor,
727 "fsmonitor: invalid V2 protocol token '%s'",
728 command);
729 do_trivial = 1;
730 do_cookie = 1;
732 } else {
734 * We have a V2 valid token:
735 * "builtin:<token_id>:<seq_nr>"
737 do_cookie = 1;
741 pthread_mutex_lock(&state->main_lock);
743 if (!state->current_token_data)
744 BUG("fsmonitor state does not have a current token");
747 * Write a cookie file inside the directory being watched in
748 * an effort to flush out existing filesystem events that we
749 * actually care about. Suspend this client thread until we
750 * see the filesystem events for this cookie file.
752 * Creating the cookie lets us guarantee that our FS listener
753 * thread has drained the kernel queue and we are caught up
754 * with the kernel.
756 * If we cannot create the cookie (or otherwise guarantee that
757 * we are caught up), we send a trivial response. We have to
758 * assume that there might be some very, very recent activity
759 * on the FS still in flight.
761 if (do_cookie) {
762 cookie_result = with_lock__wait_for_cookie(state);
763 if (cookie_result != FCIR_SEEN) {
764 error(_("fsmonitor: cookie_result '%d' != SEEN"),
765 cookie_result);
766 do_trivial = 1;
770 if (do_flush)
771 with_lock__do_force_resync(state);
774 * We mark the current head of the batch list as "pinned" so
775 * that the listener thread will treat this item as read-only
776 * (and prevent any more paths from being added to it) from
777 * now on.
779 token_data = state->current_token_data;
780 batch_head = token_data->batch_head;
781 ((struct fsmonitor_batch *)batch_head)->pinned_time = time(NULL);
784 * FSMonitor Protocol V2 requires that we send a response header
785 * with a "new current token" and then all of the paths that changed
786 * since the "requested token". We send the seq_nr of the just-pinned
787 * head batch so that future requests from a client will be relative
788 * to it.
790 with_lock__format_response_token(&response_token,
791 &token_data->token_id, batch_head);
793 reply(reply_data, response_token.buf, response_token.len + 1);
794 total_response_len += response_token.len + 1;
796 trace2_data_string("fsmonitor", the_repository, "response/token",
797 response_token.buf);
798 trace_printf_key(&trace_fsmonitor, "response token: %s",
799 response_token.buf);
801 if (!do_trivial) {
802 if (strcmp(requested_token_id.buf, token_data->token_id.buf)) {
804 * The client last spoke to a different daemon
805 * instance -OR- the daemon had to resync with
806 * the filesystem (and lost events), so reject.
808 trace2_data_string("fsmonitor", the_repository,
809 "response/token", "different");
810 do_trivial = 1;
812 } else if (requested_oldest_seq_nr <
813 token_data->batch_tail->batch_seq_nr) {
815 * The client wants older events than we have for
816 * this token_id. This means that the end of our
817 * batch list was truncated and we cannot give the
818 * client a complete snapshot relative to their
819 * request.
821 trace_printf_key(&trace_fsmonitor,
822 "client requested truncated data");
823 do_trivial = 1;
827 if (do_trivial) {
828 pthread_mutex_unlock(&state->main_lock);
830 reply(reply_data, "/", 2);
832 trace2_data_intmax("fsmonitor", the_repository,
833 "response/trivial", 1);
835 goto cleanup;
839 * We're going to hold onto a pointer to the current
840 * token-data while we walk the list of batches of files.
841 * During this time, we will NOT be under the lock.
842 * So we ref-count it.
844 * This allows the listener thread to continue prepending
845 * new batches of items to the token-data (which we'll ignore).
847 * AND it allows the listener thread to do a token-reset
848 * (and install a new `current_token_data`).
850 token_data->client_ref_count++;
852 pthread_mutex_unlock(&state->main_lock);
855 * The client request is relative to the token that they sent,
856 * so walk the batch list backwards from the current head back
857 * to the batch (sequence number) they named.
859 * We use khash to de-dup the list of pathnames.
861 * NEEDSWORK: each batch contains a list of interned strings,
862 * so we only need to do pointer comparisons here to build the
863 * hash table. Currently, we're still comparing the string
864 * values.
866 shown = kh_init_str();
867 for (batch = batch_head;
868 batch && batch->batch_seq_nr > requested_oldest_seq_nr;
869 batch = batch->next) {
870 size_t k;
872 for (k = 0; k < batch->nr; k++) {
873 const char *s = batch->interned_paths[k];
874 size_t s_len;
876 if (kh_get_str(shown, s) != kh_end(shown))
877 duplicates++;
878 else {
879 kh_put_str(shown, s, &hash_ret);
881 trace_printf_key(&trace_fsmonitor,
882 "send[%"PRIuMAX"]: %s",
883 count, s);
885 /* Each path gets written with a trailing NUL */
886 s_len = strlen(s) + 1;
888 if (payload.len + s_len >=
889 LARGE_PACKET_DATA_MAX) {
890 reply(reply_data, payload.buf,
891 payload.len);
892 total_response_len += payload.len;
893 strbuf_reset(&payload);
896 strbuf_add(&payload, s, s_len);
897 count++;
902 if (payload.len) {
903 reply(reply_data, payload.buf, payload.len);
904 total_response_len += payload.len;
907 kh_release_str(shown);
909 pthread_mutex_lock(&state->main_lock);
911 if (token_data->client_ref_count > 0)
912 token_data->client_ref_count--;
914 if (token_data->client_ref_count == 0) {
915 if (token_data != state->current_token_data) {
917 * The listener thread did a token-reset while we were
918 * walking the batch list. Therefore, this token is
919 * stale and can be discarded completely. If we are
920 * the last reader thread using this token, we own
921 * that work.
923 fsmonitor_free_token_data(token_data);
924 } else if (batch) {
926 * We are holding the lock and are the only
927 * reader of the ref-counted portion of the
928 * list, so we get the honor of seeing if the
929 * list can be truncated to save memory.
931 * The main loop did not walk to the end of the
932 * list, so this batch is the first item in the
933 * batch-list that is older than the requested
934 * end-point sequence number. See if the tail
935 * end of the list is obsolete.
937 remainder = with_lock__truncate_old_batches(state,
938 batch);
942 pthread_mutex_unlock(&state->main_lock);
944 if (remainder)
945 fsmonitor_batch__free_list(remainder);
947 trace2_data_intmax("fsmonitor", the_repository, "response/length", total_response_len);
948 trace2_data_intmax("fsmonitor", the_repository, "response/count/files", count);
949 trace2_data_intmax("fsmonitor", the_repository, "response/count/duplicates", duplicates);
951 cleanup:
952 strbuf_release(&response_token);
953 strbuf_release(&requested_token_id);
954 strbuf_release(&payload);
956 return 0;
959 static ipc_server_application_cb handle_client;
961 static int handle_client(void *data,
962 const char *command, size_t command_len,
963 ipc_server_reply_cb *reply,
964 struct ipc_server_reply_data *reply_data)
966 struct fsmonitor_daemon_state *state = data;
967 int result;
970 * The Simple IPC API now supports {char*, len} arguments, but
971 * FSMonitor always uses proper null-terminated strings, so
972 * we can ignore the command_len argument. (Trust, but verify.)
974 if (command_len != strlen(command))
975 BUG("FSMonitor assumes text messages");
977 trace_printf_key(&trace_fsmonitor, "requested token: %s", command);
979 trace2_region_enter("fsmonitor", "handle_client", the_repository);
980 trace2_data_string("fsmonitor", the_repository, "request", command);
982 result = do_handle_client(state, command, reply, reply_data);
984 trace2_region_leave("fsmonitor", "handle_client", the_repository);
986 return result;
989 #define FSMONITOR_DIR "fsmonitor--daemon"
990 #define FSMONITOR_COOKIE_DIR "cookies"
991 #define FSMONITOR_COOKIE_PREFIX (FSMONITOR_DIR "/" FSMONITOR_COOKIE_DIR "/")
993 enum fsmonitor_path_type fsmonitor_classify_path_workdir_relative(
994 const char *rel)
996 if (fspathncmp(rel, ".git", 4))
997 return IS_WORKDIR_PATH;
998 rel += 4;
1000 if (!*rel)
1001 return IS_DOT_GIT;
1002 if (*rel != '/')
1003 return IS_WORKDIR_PATH; /* e.g. .gitignore */
1004 rel++;
1006 if (!fspathncmp(rel, FSMONITOR_COOKIE_PREFIX,
1007 strlen(FSMONITOR_COOKIE_PREFIX)))
1008 return IS_INSIDE_DOT_GIT_WITH_COOKIE_PREFIX;
1010 return IS_INSIDE_DOT_GIT;
1013 enum fsmonitor_path_type fsmonitor_classify_path_gitdir_relative(
1014 const char *rel)
1016 if (!fspathncmp(rel, FSMONITOR_COOKIE_PREFIX,
1017 strlen(FSMONITOR_COOKIE_PREFIX)))
1018 return IS_INSIDE_GITDIR_WITH_COOKIE_PREFIX;
1020 return IS_INSIDE_GITDIR;
1023 static enum fsmonitor_path_type try_classify_workdir_abs_path(
1024 struct fsmonitor_daemon_state *state,
1025 const char *path)
1027 const char *rel;
1029 if (fspathncmp(path, state->path_worktree_watch.buf,
1030 state->path_worktree_watch.len))
1031 return IS_OUTSIDE_CONE;
1033 rel = path + state->path_worktree_watch.len;
1035 if (!*rel)
1036 return IS_WORKDIR_PATH; /* it is the root dir exactly */
1037 if (*rel != '/')
1038 return IS_OUTSIDE_CONE;
1039 rel++;
1041 return fsmonitor_classify_path_workdir_relative(rel);
1044 enum fsmonitor_path_type fsmonitor_classify_path_absolute(
1045 struct fsmonitor_daemon_state *state,
1046 const char *path)
1048 const char *rel;
1049 enum fsmonitor_path_type t;
1051 t = try_classify_workdir_abs_path(state, path);
1052 if (state->nr_paths_watching == 1)
1053 return t;
1054 if (t != IS_OUTSIDE_CONE)
1055 return t;
1057 if (fspathncmp(path, state->path_gitdir_watch.buf,
1058 state->path_gitdir_watch.len))
1059 return IS_OUTSIDE_CONE;
1061 rel = path + state->path_gitdir_watch.len;
1063 if (!*rel)
1064 return IS_GITDIR; /* it is the <gitdir> exactly */
1065 if (*rel != '/')
1066 return IS_OUTSIDE_CONE;
1067 rel++;
1069 return fsmonitor_classify_path_gitdir_relative(rel);
1073 * We try to combine small batches at the front of the batch-list to avoid
1074 * having a long list. This hopefully makes it a little easier when we want
1075 * to truncate and maintain the list. However, we don't want the paths array
1076 * to just keep growing and growing with realloc, so we insert an arbitrary
1077 * limit.
1079 #define MY_COMBINE_LIMIT (1024)
1081 void fsmonitor_publish(struct fsmonitor_daemon_state *state,
1082 struct fsmonitor_batch *batch,
1083 const struct string_list *cookie_names)
1085 if (!batch && !cookie_names->nr)
1086 return;
1088 pthread_mutex_lock(&state->main_lock);
1090 if (batch) {
1091 struct fsmonitor_batch *head;
1093 head = state->current_token_data->batch_head;
1094 if (!head) {
1095 BUG("token does not have batch");
1096 } else if (head->pinned_time) {
1098 * We cannot alter the current batch list
1099 * because:
1101 * [a] it is being transmitted to at least one
1102 * client and the handle_client() thread has a
1103 * ref-count, but not a lock on the batch list
1104 * starting with this item.
1106 * [b] it has been transmitted in the past to
1107 * at least one client such that future
1108 * requests are relative to this head batch.
1110 * So, we can only prepend a new batch onto
1111 * the front of the list.
1113 batch->batch_seq_nr = head->batch_seq_nr + 1;
1114 batch->next = head;
1115 state->current_token_data->batch_head = batch;
1116 } else if (!head->batch_seq_nr) {
1118 * Batch 0 is unpinned. See the note in
1119 * `fsmonitor_new_token_data()` about why we
1120 * don't need to accumulate these paths.
1122 fsmonitor_batch__free_list(batch);
1123 } else if (head->nr + batch->nr > MY_COMBINE_LIMIT) {
1125 * The head batch in the list has never been
1126 * transmitted to a client, but folding the
1127 * contents of the new batch onto it would
1128 * exceed our arbitrary limit, so just prepend
1129 * the new batch onto the list.
1131 batch->batch_seq_nr = head->batch_seq_nr + 1;
1132 batch->next = head;
1133 state->current_token_data->batch_head = batch;
1134 } else {
1136 * We are free to add the paths in the given
1137 * batch onto the end of the current head batch.
1139 fsmonitor_batch__combine(head, batch);
1140 fsmonitor_batch__free_list(batch);
1144 if (cookie_names->nr)
1145 with_lock__mark_cookies_seen(state, cookie_names);
1147 pthread_mutex_unlock(&state->main_lock);
1150 static void *fsm_health__thread_proc(void *_state)
1152 struct fsmonitor_daemon_state *state = _state;
1154 trace2_thread_start("fsm-health");
1156 fsm_health__loop(state);
1158 trace2_thread_exit();
1159 return NULL;
1162 static void *fsm_listen__thread_proc(void *_state)
1164 struct fsmonitor_daemon_state *state = _state;
1166 trace2_thread_start("fsm-listen");
1168 trace_printf_key(&trace_fsmonitor, "Watching: worktree '%s'",
1169 state->path_worktree_watch.buf);
1170 if (state->nr_paths_watching > 1)
1171 trace_printf_key(&trace_fsmonitor, "Watching: gitdir '%s'",
1172 state->path_gitdir_watch.buf);
1174 fsm_listen__loop(state);
1176 pthread_mutex_lock(&state->main_lock);
1177 if (state->current_token_data &&
1178 state->current_token_data->client_ref_count == 0)
1179 fsmonitor_free_token_data(state->current_token_data);
1180 state->current_token_data = NULL;
1181 pthread_mutex_unlock(&state->main_lock);
1183 trace2_thread_exit();
1184 return NULL;
1187 static int fsmonitor_run_daemon_1(struct fsmonitor_daemon_state *state)
1189 struct ipc_server_opts ipc_opts = {
1190 .nr_threads = fsmonitor__ipc_threads,
1193 * We know that there are no other active threads yet,
1194 * so we can let the IPC layer temporarily chdir() if
1195 * it needs to when creating the server side of the
1196 * Unix domain socket.
1198 .uds_disallow_chdir = 0
1200 int health_started = 0;
1201 int listener_started = 0;
1202 int err = 0;
1205 * Start the IPC thread pool before the we've started the file
1206 * system event listener thread so that we have the IPC handle
1207 * before we need it.
1209 if (ipc_server_run_async(&state->ipc_server_data,
1210 state->path_ipc.buf, &ipc_opts,
1211 handle_client, state))
1212 return error_errno(
1213 _("could not start IPC thread pool on '%s'"),
1214 state->path_ipc.buf);
1217 * Start the fsmonitor listener thread to collect filesystem
1218 * events.
1220 if (pthread_create(&state->listener_thread, NULL,
1221 fsm_listen__thread_proc, state)) {
1222 ipc_server_stop_async(state->ipc_server_data);
1223 err = error(_("could not start fsmonitor listener thread"));
1224 goto cleanup;
1226 listener_started = 1;
1229 * Start the health thread to watch over our process.
1231 if (pthread_create(&state->health_thread, NULL,
1232 fsm_health__thread_proc, state)) {
1233 ipc_server_stop_async(state->ipc_server_data);
1234 err = error(_("could not start fsmonitor health thread"));
1235 goto cleanup;
1237 health_started = 1;
1240 * The daemon is now fully functional in background threads.
1241 * Our primary thread should now just wait while the threads
1242 * do all the work.
1244 cleanup:
1246 * Wait for the IPC thread pool to shutdown (whether by client
1247 * request, from filesystem activity, or an error).
1249 ipc_server_await(state->ipc_server_data);
1252 * The fsmonitor listener thread may have received a shutdown
1253 * event from the IPC thread pool, but it doesn't hurt to tell
1254 * it again. And wait for it to shutdown.
1256 if (listener_started) {
1257 fsm_listen__stop_async(state);
1258 pthread_join(state->listener_thread, NULL);
1261 if (health_started) {
1262 fsm_health__stop_async(state);
1263 pthread_join(state->health_thread, NULL);
1266 if (err)
1267 return err;
1268 if (state->listen_error_code)
1269 return state->listen_error_code;
1270 if (state->health_error_code)
1271 return state->health_error_code;
1272 return 0;
1275 static int fsmonitor_run_daemon(void)
1277 struct fsmonitor_daemon_state state;
1278 const char *home;
1279 int err;
1281 memset(&state, 0, sizeof(state));
1283 hashmap_init(&state.cookies, cookies_cmp, NULL, 0);
1284 pthread_mutex_init(&state.main_lock, NULL);
1285 pthread_cond_init(&state.cookies_cond, NULL);
1286 state.listen_error_code = 0;
1287 state.health_error_code = 0;
1288 state.current_token_data = fsmonitor_new_token_data();
1290 /* Prepare to (recursively) watch the <worktree-root> directory. */
1291 strbuf_init(&state.path_worktree_watch, 0);
1292 strbuf_addstr(&state.path_worktree_watch, absolute_path(get_git_work_tree()));
1293 state.nr_paths_watching = 1;
1295 strbuf_init(&state.alias.alias, 0);
1296 strbuf_init(&state.alias.points_to, 0);
1297 if ((err = fsmonitor__get_alias(state.path_worktree_watch.buf, &state.alias)))
1298 goto done;
1301 * We create and delete cookie files somewhere inside the .git
1302 * directory to help us keep sync with the file system. If
1303 * ".git" is not a directory, then <gitdir> is not inside the
1304 * cone of <worktree-root>, so set up a second watch to watch
1305 * the <gitdir> so that we get events for the cookie files.
1307 strbuf_init(&state.path_gitdir_watch, 0);
1308 strbuf_addbuf(&state.path_gitdir_watch, &state.path_worktree_watch);
1309 strbuf_addstr(&state.path_gitdir_watch, "/.git");
1310 if (!is_directory(state.path_gitdir_watch.buf)) {
1311 strbuf_reset(&state.path_gitdir_watch);
1312 strbuf_addstr(&state.path_gitdir_watch, absolute_path(get_git_dir()));
1313 state.nr_paths_watching = 2;
1317 * We will write filesystem syncing cookie files into
1318 * <gitdir>/<fsmonitor-dir>/<cookie-dir>/<pid>-<seq>.
1320 * The extra layers of subdirectories here keep us from
1321 * changing the mtime on ".git/" or ".git/foo/" when we create
1322 * or delete cookie files.
1324 * There have been problems with some IDEs that do a
1325 * non-recursive watch of the ".git/" directory and run a
1326 * series of commands any time something happens.
1328 * For example, if we place our cookie files directly in
1329 * ".git/" or ".git/foo/" then a `git status` (or similar
1330 * command) from the IDE will cause a cookie file to be
1331 * created in one of those dirs. This causes the mtime of
1332 * those dirs to change. This triggers the IDE's watch
1333 * notification. This triggers the IDE to run those commands
1334 * again. And the process repeats and the machine never goes
1335 * idle.
1337 * Adding the extra layers of subdirectories prevents the
1338 * mtime of ".git/" and ".git/foo" from changing when a
1339 * cookie file is created.
1341 strbuf_init(&state.path_cookie_prefix, 0);
1342 strbuf_addbuf(&state.path_cookie_prefix, &state.path_gitdir_watch);
1344 strbuf_addch(&state.path_cookie_prefix, '/');
1345 strbuf_addstr(&state.path_cookie_prefix, FSMONITOR_DIR);
1346 mkdir(state.path_cookie_prefix.buf, 0777);
1348 strbuf_addch(&state.path_cookie_prefix, '/');
1349 strbuf_addstr(&state.path_cookie_prefix, FSMONITOR_COOKIE_DIR);
1350 mkdir(state.path_cookie_prefix.buf, 0777);
1352 strbuf_addch(&state.path_cookie_prefix, '/');
1355 * We create a named-pipe or unix domain socket inside of the
1356 * ".git" directory. (Well, on Windows, we base our named
1357 * pipe in the NPFS on the absolute path of the git
1358 * directory.)
1360 strbuf_init(&state.path_ipc, 0);
1361 strbuf_addstr(&state.path_ipc,
1362 absolute_path(fsmonitor_ipc__get_path(the_repository)));
1365 * Confirm that we can create platform-specific resources for the
1366 * filesystem listener before we bother starting all the threads.
1368 if (fsm_listen__ctor(&state)) {
1369 err = error(_("could not initialize listener thread"));
1370 goto done;
1373 if (fsm_health__ctor(&state)) {
1374 err = error(_("could not initialize health thread"));
1375 goto done;
1379 * CD out of the worktree root directory.
1381 * The common Git startup mechanism causes our CWD to be the
1382 * root of the worktree. On Windows, this causes our process
1383 * to hold a locked handle on the CWD. This prevents the
1384 * worktree from being moved or deleted while the daemon is
1385 * running.
1387 * We assume that our FS and IPC listener threads have either
1388 * opened all of the handles that they need or will do
1389 * everything using absolute paths.
1391 home = getenv("HOME");
1392 if (home && *home && chdir(home))
1393 die_errno(_("could not cd home '%s'"), home);
1395 err = fsmonitor_run_daemon_1(&state);
1397 done:
1398 pthread_cond_destroy(&state.cookies_cond);
1399 pthread_mutex_destroy(&state.main_lock);
1400 fsm_listen__dtor(&state);
1401 fsm_health__dtor(&state);
1403 ipc_server_free(state.ipc_server_data);
1405 strbuf_release(&state.path_worktree_watch);
1406 strbuf_release(&state.path_gitdir_watch);
1407 strbuf_release(&state.path_cookie_prefix);
1408 strbuf_release(&state.path_ipc);
1409 strbuf_release(&state.alias.alias);
1410 strbuf_release(&state.alias.points_to);
1412 return err;
1415 static int try_to_run_foreground_daemon(int detach_console)
1418 * Technically, we don't need to probe for an existing daemon
1419 * process, since we could just call `fsmonitor_run_daemon()`
1420 * and let it fail if the pipe/socket is busy.
1422 * However, this method gives us a nicer error message for a
1423 * common error case.
1425 if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING)
1426 die(_("fsmonitor--daemon is already running '%s'"),
1427 the_repository->worktree);
1429 if (fsmonitor__announce_startup) {
1430 fprintf(stderr, _("running fsmonitor-daemon in '%s'\n"),
1431 the_repository->worktree);
1432 fflush(stderr);
1435 #ifdef GIT_WINDOWS_NATIVE
1436 if (detach_console)
1437 FreeConsole();
1438 #endif
1440 return !!fsmonitor_run_daemon();
1443 static start_bg_wait_cb bg_wait_cb;
1445 static int bg_wait_cb(const struct child_process *cp, void *cb_data)
1447 enum ipc_active_state s = fsmonitor_ipc__get_state();
1449 switch (s) {
1450 case IPC_STATE__LISTENING:
1451 /* child is "ready" */
1452 return 0;
1454 case IPC_STATE__NOT_LISTENING:
1455 case IPC_STATE__PATH_NOT_FOUND:
1456 /* give child more time */
1457 return 1;
1459 default:
1460 case IPC_STATE__INVALID_PATH:
1461 case IPC_STATE__OTHER_ERROR:
1462 /* all the time in world won't help */
1463 return -1;
1467 static int try_to_start_background_daemon(void)
1469 struct child_process cp = CHILD_PROCESS_INIT;
1470 enum start_bg_result sbgr;
1473 * Before we try to create a background daemon process, see
1474 * if a daemon process is already listening. This makes it
1475 * easier for us to report an already-listening error to the
1476 * console, since our spawn/daemon can only report the success
1477 * of creating the background process (and not whether it
1478 * immediately exited).
1480 if (fsmonitor_ipc__get_state() == IPC_STATE__LISTENING)
1481 die(_("fsmonitor--daemon is already running '%s'"),
1482 the_repository->worktree);
1484 if (fsmonitor__announce_startup) {
1485 fprintf(stderr, _("starting fsmonitor-daemon in '%s'\n"),
1486 the_repository->worktree);
1487 fflush(stderr);
1490 cp.git_cmd = 1;
1492 strvec_push(&cp.args, "fsmonitor--daemon");
1493 strvec_push(&cp.args, "run");
1494 strvec_push(&cp.args, "--detach");
1495 strvec_pushf(&cp.args, "--ipc-threads=%d", fsmonitor__ipc_threads);
1497 cp.no_stdin = 1;
1498 cp.no_stdout = 1;
1499 cp.no_stderr = 1;
1501 sbgr = start_bg_command(&cp, bg_wait_cb, NULL,
1502 fsmonitor__start_timeout_sec);
1504 switch (sbgr) {
1505 case SBGR_READY:
1506 return 0;
1508 default:
1509 case SBGR_ERROR:
1510 case SBGR_CB_ERROR:
1511 return error(_("daemon failed to start"));
1513 case SBGR_TIMEOUT:
1514 return error(_("daemon not online yet"));
1516 case SBGR_DIED:
1517 return error(_("daemon terminated"));
1521 int cmd_fsmonitor__daemon(int argc, const char **argv, const char *prefix)
1523 const char *subcmd;
1524 enum fsmonitor_reason reason;
1525 int detach_console = 0;
1527 struct option options[] = {
1528 OPT_BOOL(0, "detach", &detach_console, N_("detach from console")),
1529 OPT_INTEGER(0, "ipc-threads",
1530 &fsmonitor__ipc_threads,
1531 N_("use <n> ipc worker threads")),
1532 OPT_INTEGER(0, "start-timeout",
1533 &fsmonitor__start_timeout_sec,
1534 N_("max seconds to wait for background daemon startup")),
1536 OPT_END()
1539 git_config(fsmonitor_config, NULL);
1541 argc = parse_options(argc, argv, prefix, options,
1542 builtin_fsmonitor__daemon_usage, 0);
1543 if (argc != 1)
1544 usage_with_options(builtin_fsmonitor__daemon_usage, options);
1545 subcmd = argv[0];
1547 if (fsmonitor__ipc_threads < 1)
1548 die(_("invalid 'ipc-threads' value (%d)"),
1549 fsmonitor__ipc_threads);
1551 prepare_repo_settings(the_repository);
1553 * If the repo is fsmonitor-compatible, explicitly set IPC-mode
1554 * (without bothering to load the `core.fsmonitor` config settings).
1556 * If the repo is not compatible, the repo-settings will be set to
1557 * incompatible rather than IPC, so we can use one of the __get
1558 * routines to detect the discrepancy.
1560 fsm_settings__set_ipc(the_repository);
1562 reason = fsm_settings__get_reason(the_repository);
1563 if (reason > FSMONITOR_REASON_OK)
1564 die("%s",
1565 fsm_settings__get_incompatible_msg(the_repository,
1566 reason));
1568 if (!strcmp(subcmd, "start"))
1569 return !!try_to_start_background_daemon();
1571 if (!strcmp(subcmd, "run"))
1572 return !!try_to_run_foreground_daemon(detach_console);
1574 if (!strcmp(subcmd, "stop"))
1575 return !!do_as_client__send_stop();
1577 if (!strcmp(subcmd, "status"))
1578 return !!do_as_client__status();
1580 die(_("Unhandled subcommand '%s'"), subcmd);
1583 #else
1584 int cmd_fsmonitor__daemon(int argc, const char **argv, const char *prefix UNUSED)
1586 struct option options[] = {
1587 OPT_END()
1590 if (argc == 2 && !strcmp(argv[1], "-h"))
1591 usage_with_options(builtin_fsmonitor__daemon_usage, options);
1593 die(_("fsmonitor--daemon not supported on this platform"));
1595 #endif