6 * PCB, interactive printed circuit board design
7 * Copyright (C) 1994,1995,1996 Thomas Nau
8 * Copyright (C) 1998,1999,2000,2001 harry eaton
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Contact addresses for paper mail and Email:
25 * harry eaton, 6697 Buttonhole Ct, Columbia, MD 21044 USA
26 * haceaton@aplcomm.jhuapl.edu
31 * This moduel, autoplace.c, was written by and is
32 * Copyright (c) 2001 C. Scott Ananian
35 /* functions used to autoplace elements.
49 #include "autoplace.h"
55 #include "intersect.h"
66 #ifdef HAVE_LIBDMALLOC
72 #define EXPANDRECTXY(r1, x1, y1, x2, y2) { \
73 r1->X1=MIN(r1->X1, x1); r1->Y1=MIN(r1->Y1, y1); \
74 r1->X2=MAX(r1->X2, x2); r1->Y2=MAX(r1->Y2, y2); \
76 #define EXPANDRECT(r1, r2) EXPANDRECTXY(r1, r2->X1, r2->Y1, r2->X2, r2->Y2)
78 /* ---------------------------------------------------------------------------
79 * some local prototypes
81 static double ComputeCost (NetListTypePtr Nets
, double T0
, double T
);
83 /* ---------------------------------------------------------------------------
89 float congestion_penalty
; /* penalty length / unit area */
90 float overlap_penalty_min
; /* penalty length / unit area at start */
91 float overlap_penalty_max
; /* penalty length / unit area at end */
92 float out_of_bounds_penalty
; /* assessed for each component oob */
93 float overall_area_penalty
; /* penalty length / unit area */
94 float matching_neighbor_bonus
; /* length bonus per same-type neigh. */
95 float aligned_neighbor_bonus
; /* length bonus per aligned neigh. */
96 float oriented_neighbor_bonus
; /* length bonus per same-rot neigh. */
98 float pin_alignment_bonus
; /* length bonus per exact alignment */
99 float bound_alignment_bonus
; /* length bonus per exact alignment */
101 float m
; /* annealing stage cutoff constant */
102 float gamma
; /* annealing schedule constant */
103 int good_ratio
; /* ratio of moves to good moves for halting */
104 Boolean fast
; /* ignore SMD/pin conflicts */
105 int large_grid_size
; /*snap perturbations to this grid when T is high */
106 int small_grid_size
; /* snap to this grid when T is small. */
108 /* wire cost is manhattan distance (in mils), thus 1 inch = 1000 */
112 2e-2, /* congestion penalty */
113 1e-2, /* initial overlap penalty */
114 1e2
, /* final overlap penalty */
115 1e3
, /* out of bounds penalty */
116 1e0
, /* penalty for total area used */
117 1e0
, /* subtract 1000 from cost for every same-type neighbor */
118 1e0
, /* subtract 1000 from cost for every aligned neighbor */
119 1e0
, /* subtract 1000 from cost for every same-rotation neighbor */
120 20, /* move on when each module has been profitably moved 20 times */
121 0.75, /* annealing schedule constant: 0.85 */
122 40, /* halt when there are 60 times as many moves as good moves */
123 False
, /* don't ignore SMD/pin conflicts */
124 100, /* coarse grid is 100 mils */
125 10, /* fine grid is 10 mils */
130 ElementTypePtr
*element
;
137 ElementTypePtr element
;
139 { SHIFT
, ROTATE
, EXCHANGE
}
141 LocationType DX
, DY
; /* for shift */
142 BYTE rotate
; /* for rotate/flip */
143 ElementTypePtr other
; /* for exchange */
147 /* ---------------------------------------------------------------------------
148 * some local identifiers
151 /* ---------------------------------------------------------------------------
152 * Update the X, Y and group position information stored in the NetList after
153 * elements have possibly been moved, rotated, flipped, etc.
156 UpdateXY (NetListTypePtr Nets
)
158 Cardinal SLayer
, CLayer
;
160 /* find layer groups of the component side and solder side */
161 SLayer
= GetLayerGroupNumberByNumber (max_layer
+ SOLDER_LAYER
);
162 CLayer
= GetLayerGroupNumberByNumber (max_layer
+ COMPONENT_LAYER
);
163 /* update all nets */
164 for (i
= 0; i
< Nets
->NetN
; i
++)
166 for (j
= 0; j
< Nets
->Net
[i
].ConnectionN
; j
++)
168 ConnectionTypePtr c
= &(Nets
->Net
[i
].Connection
[j
]);
172 c
->group
= TEST_FLAG (ONSOLDERFLAG
,
173 (ElementTypePtr
) c
->ptr1
)
175 c
->X
= ((PadTypePtr
) c
->ptr2
)->Point1
.X
;
176 c
->Y
= ((PadTypePtr
) c
->ptr2
)->Point1
.Y
;
179 c
->group
= SLayer
; /* any layer will do */
180 c
->X
= ((PinTypePtr
) c
->ptr2
)->X
;
181 c
->Y
= ((PinTypePtr
) c
->ptr2
)->Y
;
184 Message ("Odd connection type encountered in " "UpdateXY");
191 /* ---------------------------------------------------------------------------
192 * Create a list of selected elements.
194 static PointerListType
195 collectSelectedElements ()
197 PointerListType list
= { 0, 0, NULL
};
198 ELEMENT_LOOP (PCB
->Data
);
200 if (TEST_FLAG (SELECTEDFLAG
, element
))
202 ElementTypePtr
*epp
= (ElementTypePtr
*) GetPointerMemory (&list
);
210 #if 0 /* only for debugging box lists */
212 /* makes a line on the solder layer surrounding all boxes in blist */
214 showboxes (BoxListTypePtr blist
)
217 LayerTypePtr SLayer
= &(PCB
->Data
->Layer
[max_layer
+ SOLDER_LAYER
]);
218 for (i
= 0; i
< blist
->BoxN
; i
++)
220 CreateNewLineOnLayer (SLayer
, blist
->Box
[i
].X1
, blist
->Box
[i
].Y1
,
221 blist
->Box
[i
].X2
, blist
->Box
[i
].Y1
, 1, 1, 0);
222 CreateNewLineOnLayer (SLayer
, blist
->Box
[i
].X1
, blist
->Box
[i
].Y2
,
223 blist
->Box
[i
].X2
, blist
->Box
[i
].Y2
, 1, 1, 0);
224 CreateNewLineOnLayer (SLayer
, blist
->Box
[i
].X1
, blist
->Box
[i
].Y1
,
225 blist
->Box
[i
].X1
, blist
->Box
[i
].Y2
, 1, 1, 0);
226 CreateNewLineOnLayer (SLayer
, blist
->Box
[i
].X2
, blist
->Box
[i
].Y1
,
227 blist
->Box
[i
].X2
, blist
->Box
[i
].Y2
, 1, 1, 0);
232 /* ---------------------------------------------------------------------------
233 * Helper function to compute "closest neighbor" for a box in a rtree.
234 * The closest neighbor on a certain side is the closest one in a trapezoid
235 * emanating from that side.
237 /*------ r_find_neighbor ------*/
238 struct r_neighbor_info
240 const BoxType
*neighbor
;
242 direction_t search_dir
;
244 #define ROTATEBOX(box) { LocationType t;\
245 t = (box).X1; (box).X1 = - (box).Y1; (box).Y1 = t;\
246 t = (box).X2; (box).X2 = - (box).Y2; (box).Y2 = t;\
247 t = (box).X1; (box).X1 = (box).X2; (box).X2 = t;\
249 /* helper methods for __r_find_neighbor */
251 __r_find_neighbor_reg_in_sea (const BoxType
* region
, void *cl
)
253 struct r_neighbor_info
*ni
= (struct r_neighbor_info
*) cl
;
254 BoxType query
= *region
;
255 ROTATEBOX_TO_NORTH (query
, ni
->search_dir
);
256 /* ______________ __ trap.y1 __
257 * \ / |__| query rect.
258 * \__________/ __ trap.y2
260 * trap.x1 trap.x2 sides at 45-degree angle
262 return (query
.Y2
> ni
->trap
.Y1
) && (query
.Y1
< ni
->trap
.Y2
) &&
263 (query
.X2
+ ni
->trap
.Y2
> ni
->trap
.X1
+ query
.Y1
) &&
264 (query
.X1
+ query
.Y1
< ni
->trap
.X2
+ ni
->trap
.Y2
);
267 __r_find_neighbor_rect_in_reg (const BoxType
* box
, void *cl
)
269 struct r_neighbor_info
*ni
= (struct r_neighbor_info
*) cl
;
270 BoxType query
= *box
;
272 ROTATEBOX_TO_NORTH (query
, ni
->search_dir
);
273 /* ______________ __ trap.y1 __
274 * \ / |__| query rect.
275 * \__________/ __ trap.y2
277 * trap.x1 trap.x2 sides at 45-degree angle
279 r
= (query
.Y2
> ni
->trap
.Y1
) && (query
.Y1
< ni
->trap
.Y2
) &&
280 (query
.X2
+ ni
->trap
.Y2
> ni
->trap
.X1
+ query
.Y1
) &&
281 (query
.X1
+ query
.Y1
< ni
->trap
.X2
+ ni
->trap
.Y2
);
282 r
= r
&& (query
.Y2
<= ni
->trap
.Y2
);
285 ni
->trap
.Y1
= query
.Y2
;
291 /* main r_find_neighbor routine. Returns NULL if no neighbor in the
292 * requested direction. */
293 static const BoxType
*
294 r_find_neighbor (rtree_t
* rtree
, const BoxType
* box
,
295 direction_t search_direction
)
297 struct r_neighbor_info ni
;
302 ni
.search_dir
= search_direction
;
304 bbox
.X1
= bbox
.Y1
= 0;
305 bbox
.X2
= PCB
->MaxWidth
;
306 bbox
.Y2
= PCB
->MaxHeight
;
307 /* rotate so that we can use the 'north' case for everything */
308 ROTATEBOX_TO_NORTH (bbox
, search_direction
);
309 ROTATEBOX_TO_NORTH (ni
.trap
, search_direction
);
310 /* shift Y's such that trap contains full bounds of trapezoid */
311 ni
.trap
.Y2
= ni
.trap
.Y1
;
312 ni
.trap
.Y1
= bbox
.Y1
;
314 r_search (rtree
, NULL
,
315 __r_find_neighbor_reg_in_sea
, __r_find_neighbor_rect_in_reg
, &ni
);
319 /* ---------------------------------------------------------------------------
320 * Compute cost function.
321 * note that area overlap cost is correct for SMD devices: SMD devices on
322 * opposite sides of the board don't overlap.
324 * Algorithms follow those described in sections 4.1 of
325 * "Placement and Routing of Electronic Modules" edited by Michael Pecht
326 * Marcel Dekker, Inc. 1993. ISBN: 0-8247-8916-4 TK7868.P7.P57 1993
329 ComputeCost (NetListTypePtr Nets
, double T0
, double T
)
331 double W
= 0; /* wire cost */
332 double delta1
= 0; /* wire congestion penalty function */
333 double delta2
= 0; /* module overlap penalty function */
334 double delta3
= 0; /* out of bounds penalty */
335 double delta4
= 0; /* alignment bonus */
336 double delta5
= 0; /* total area penalty */
338 LocationType minx
, maxx
, miny
, maxy
;
339 Boolean allpads
, allsameside
;
341 BoxListType bounds
= { 0, 0, NULL
}; /* save bounding rectangles here */
342 BoxListType solderside
= { 0, 0, NULL
}; /* solder side component bounds */
343 BoxListType componentside
= { 0, 0, NULL
}; /* component side bounds */
344 /* make sure the NetList have the proper updated X and Y coords */
346 /* wire length term. approximated by half-perimeter of minimum
347 * rectangle enclosing the net. Note that we penalize vias in
348 * all-SMD nets by making the rectangle a cube and weighting
349 * the "layer height" of the net. */
350 for (i
= 0; i
< Nets
->NetN
; i
++)
352 NetTypePtr n
= &Nets
->Net
[i
];
353 if (n
->ConnectionN
< 2)
354 continue; /* no cost to go nowhere */
355 minx
= maxx
= n
->Connection
[0].X
;
356 miny
= maxy
= n
->Connection
[0].Y
;
357 thegroup
= n
->Connection
[0].group
;
358 allpads
= (n
->Connection
[0].type
== PAD_TYPE
);
360 for (j
= 1; j
< n
->ConnectionN
; j
++)
362 ConnectionTypePtr c
= &(n
->Connection
[j
]);
363 MAKEMIN (minx
, c
->X
);
364 MAKEMAX (maxx
, c
->X
);
365 MAKEMIN (miny
, c
->Y
);
366 MAKEMAX (maxy
, c
->Y
);
367 if (c
->type
!= PAD_TYPE
)
369 if (c
->group
!= thegroup
)
372 /* save bounding rectangle */
374 BoxTypePtr box
= GetBoxMemory (&bounds
);
380 /* okay, add half-perimeter to cost! */
381 W
+= (maxx
- minx
) / 100 + (maxy
- miny
) / 100 +
382 ((allpads
&& !allsameside
) ? CostParameter
.via_cost
: 0);
384 /* now compute penalty function Wc which is proportional to
385 * amount of overlap and congestion. */
386 /* delta1 is congestion penalty function */
387 delta1
= CostParameter
.congestion_penalty
*
388 sqrt (fabs (ComputeIntersectionArea (&bounds
)));
390 printf ("Wire Congestion Area: %f\n", ComputeIntersectionArea (&bounds
));
392 /* free bounding rectangles */
393 FreeBoxListMemory (&bounds
);
394 /* now collect module areas (bounding rect of pins/pads) */
395 /* two lists for solder side / component side. */
397 ELEMENT_LOOP (PCB
->Data
);
399 BoxListTypePtr thisside
;
400 BoxListTypePtr otherside
;
402 BoxTypePtr lastbox
= NULL
;
403 BDimension thickness
;
404 BDimension clearance
;
405 if (TEST_FLAG (ONSOLDERFLAG
, element
))
407 thisside
= &solderside
;
408 otherside
= &componentside
;
412 thisside
= &componentside
;
413 otherside
= &solderside
;
415 box
= GetBoxMemory (thisside
);
416 /* protect against elements with no pins/pads */
417 if (element
->PinN
== 0 && element
->PadN
== 0)
419 /* initialize box so that it will take the dimensions of
420 * the first pin/pad */
423 box
->X2
= -MAX_COORD
;
424 box
->Y2
= -MAX_COORD
;
427 thickness
= pin
->Thickness
/ 2;
428 clearance
= pin
->Clearance
* 2;
430 pin
->X
- (thickness
+ clearance
),
431 pin
->Y
- (thickness
+ clearance
),
432 pin
->X
+ (thickness
+ clearance
),
433 pin
->Y
+ (thickness
+ clearance
))}
437 thickness
= pad
->Thickness
/ 2;
438 clearance
= pad
->Clearance
* 2;
441 pad
->Point2
.X
) - (thickness
+
444 pad
->Point2
.Y
) - (thickness
+
447 pad
->Point2
.X
) + (thickness
+
450 pad
->Point2
.Y
) + (thickness
+ clearance
))}
452 /* add a box for each pin to the "opposite side":
453 * surface mount components can't sit on top of pins */
454 if (!CostParameter
.fast
)
457 box
= GetBoxMemory (otherside
);
458 thickness
= pin
->Thickness
/ 2;
459 clearance
= pin
->Clearance
* 2;
460 /* we ignore clearance here */
461 /* (otherwise pins don't fit next to each other) */
462 box
->X1
= pin
->X
- thickness
;
463 box
->Y1
= pin
->Y
- thickness
;
464 box
->X2
= pin
->X
+ thickness
;
465 box
->Y2
= pin
->Y
+ thickness
;
466 /* speed hack! coalesce with last box if we can */
467 if (lastbox
!= NULL
&&
468 ((lastbox
->X1
== box
->X1
&&
469 lastbox
->X2
== box
->X2
&&
470 MIN (abs (lastbox
->Y1
- box
->Y2
),
471 abs (box
->Y1
- lastbox
->Y2
)) <
472 clearance
) || (lastbox
->Y1
== box
->Y1
473 && lastbox
->Y2
== box
->Y2
478 abs (box
->X1
- lastbox
->X2
)) < clearance
)))
480 EXPANDRECT (lastbox
, box
);
487 /* assess out of bounds penalty */
488 if (element
->VBox
.X1
< 0 ||
489 element
->VBox
.Y1
< 0 ||
490 element
->VBox
.X2
> PCB
->MaxWidth
|| element
->VBox
.Y2
> PCB
->MaxHeight
)
491 delta3
+= CostParameter
.out_of_bounds_penalty
;
494 /* compute intersection area of module areas box list */
495 delta2
= sqrt (fabs (ComputeIntersectionArea (&solderside
) +
496 ComputeIntersectionArea (&componentside
))) *
497 (CostParameter
.overlap_penalty_min
+
498 (1 - (T
/ T0
)) * CostParameter
.overlap_penalty_max
);
500 printf ("Module Overlap Area (solder): %f\n",
501 ComputeIntersectionArea (&solderside
));
502 printf ("Module Overlap Area (component): %f\n",
503 ComputeIntersectionArea (&componentside
));
505 FreeBoxListMemory (&solderside
);
506 FreeBoxListMemory (&componentside
);
507 /* reward pin/pad x/y alignment */
508 /* score higher if pins/pads belong to same *type* of component */
509 /* XXX: subkey should be *distance* from thing aligned with, so that
510 * aligning to something far away isn't profitable */
513 PointerListType seboxes
= { 0, 0, NULL
}
520 ElementTypePtr element
;
522 direction_t dir
[4] = { NORTH
, EAST
, SOUTH
, WEST
};
523 struct ebox
**boxpp
, *boxp
;
524 rtree_t
*rt_s
, *rt_c
;
526 ELEMENT_LOOP (PCB
->Data
);
528 boxpp
= (struct ebox
**)
529 GetPointerMemory (TEST_FLAG (ONSOLDERFLAG
, element
) ?
530 &seboxes
: &ceboxes
);
531 *boxpp
= malloc (sizeof (**boxpp
));
534 fprintf (stderr
, "malloc() failed in %s\n", __FUNCTION__
);
538 (*boxpp
)->box
= element
->VBox
;
539 (*boxpp
)->element
= element
;
542 rt_s
= r_create_tree ((const BoxType
**) seboxes
.Ptr
, seboxes
.PtrN
, 1);
543 rt_c
= r_create_tree ((const BoxType
**) ceboxes
.Ptr
, ceboxes
.PtrN
, 1);
544 FreePointerListMemory (&seboxes
);
545 FreePointerListMemory (&ceboxes
);
546 /* now, for each element, find its neighbor on all four sides */
548 for (i
= 0; i
< 4; i
++)
549 ELEMENT_LOOP (PCB
->Data
);
551 boxp
= (struct ebox
*)
552 r_find_neighbor (TEST_FLAG (ONSOLDERFLAG
, element
) ?
553 rt_s
: rt_c
, &element
->VBox
, dir
[i
]);
554 /* score bounding box alignments */
558 if (element
->Name
[0].TextString
&&
559 boxp
->element
->Name
[0].TextString
&&
560 0 == NSTRCMP (element
->Name
[0].TextString
,
561 boxp
->element
->Name
[0].TextString
))
563 delta4
+= CostParameter
.matching_neighbor_bonus
;
566 if (element
->Name
[0].Direction
== boxp
->element
->Name
[0].Direction
)
567 delta4
+= factor
* CostParameter
.oriented_neighbor_bonus
;
568 if (element
->VBox
.X1
==
569 boxp
->element
->VBox
.X1
||
571 boxp
->element
->VBox
.X2
||
573 boxp
->element
->VBox
.X1
||
575 boxp
->element
->VBox
.X2
||
577 boxp
->element
->VBox
.Y1
||
579 boxp
->element
->VBox
.Y2
||
581 boxp
->element
->VBox
.Y1
||
582 element
->VBox
.Y2
== boxp
->element
->VBox
.Y2
)
583 delta4
+= factor
* CostParameter
.aligned_neighbor_bonus
;
586 /* free k-d tree memory */
587 r_destroy_tree (&rt_s
);
588 r_destroy_tree (&rt_c
);
590 /* penalize total area used by this layout */
592 LocationType minX
= MAX_COORD
, minY
= MAX_COORD
;
593 LocationType maxX
= -MAX_COORD
, maxY
= -MAX_COORD
;
594 ELEMENT_LOOP (PCB
->Data
);
596 MAKEMIN (minX
, element
->VBox
.X1
);
597 MAKEMIN (minY
, element
->VBox
.Y1
);
598 MAKEMAX (maxX
, element
->VBox
.X2
);
599 MAKEMAX (maxY
, element
->VBox
.Y2
);
602 if (minX
< maxX
&& minY
< maxY
)
603 delta5
= CostParameter
.overall_area_penalty
*
604 sqrt ((double) (maxX
- minX
) * (maxY
- minY
) * 0.0001);
608 T
= W
+ delta1
+ delta2
+ delta3
- delta4
+ delta5
;
609 printf ("cost components are %.3f %.3f %.3f %.3f %.3f %.3f\n",
610 W
/ T
, delta1
/ T
, delta2
/ T
, delta3
/ T
, -delta4
/ T
,
614 return W
+ (delta1
+ delta2
+ delta3
- delta4
+ delta5
);
617 /* ---------------------------------------------------------------------------
619 * 1) flip SMD from solder side to component side or vice-versa.
620 * 2) rotate component 90, 180, or 270 degrees.
621 * 3) shift component random + or - amount in random direction.
622 * (magnitude of shift decreases over time)
623 * -- Only perturb selected elements (need count/list of selected?) --
626 createPerturbation (PointerListTypePtr selected
, double T
)
628 PerturbationType pt
= { 0 };
629 /* pick element to perturb */
630 pt
.element
= (ElementTypePtr
) selected
->Ptr
[random () % selected
->PtrN
];
631 /* exchange, flip/rotate or shift? */
632 switch (random () % ((selected
->PtrN
> 1) ? 3 : 2))
637 double scaleX
= MAX (250, MIN (sqrt (T
), PCB
->MaxWidth
/ 3));
638 double scaleY
= MAX (250, MIN (sqrt (T
), PCB
->MaxHeight
/ 3));
640 pt
.DX
= scaleX
* 2 * ((((double) random ()) / RAND_MAX
) - 0.5);
641 pt
.DY
= scaleY
* 2 * ((((double) random ()) / RAND_MAX
) - 0.5);
642 /* snap to grid. different grids for "high" and "low" T */
643 grid
= (T
> 1000) ? CostParameter
.large_grid_size
:
644 CostParameter
.small_grid_size
;
645 /* (round away from zero) */
646 pt
.DX
= ((pt
.DX
/ grid
) + SGN (pt
.DX
)) * grid
;
647 pt
.DY
= ((pt
.DY
/ grid
) + SGN (pt
.DY
)) * grid
;
648 /* limit DX/DY so we don't fall off board */
649 pt
.DX
= MAX (pt
.DX
, -pt
.element
->VBox
.X1
);
650 pt
.DX
= MIN (pt
.DX
, PCB
->MaxWidth
- pt
.element
->VBox
.X2
);
651 pt
.DY
= MAX (pt
.DY
, -pt
.element
->VBox
.Y1
);
652 pt
.DY
= MIN (pt
.DY
, PCB
->MaxHeight
- pt
.element
->VBox
.Y2
);
653 /* all done but the movin' */
658 /* only flip if it's an SMD component */
659 Boolean isSMD
= pt
.element
->PadN
!= 0;
661 pt
.rotate
= isSMD
? (random () & 3) : (1 + (random () % 3));
662 /* 0 - flip; 1-3, rotate. */
668 pt
.other
= (ElementTypePtr
)
669 selected
->Ptr
[random () % (selected
->PtrN
- 1)];
670 if (pt
.other
== pt
.element
)
671 pt
.other
= (ElementTypePtr
) selected
->Ptr
[selected
->PtrN
- 1];
672 /* don't allow exchanging a solderside-side SMD component
673 * with a non-SMD component. */
674 if ((pt
.element
->PinN
!= 0 /* non-SMD */ &&
675 TEST_FLAG (ONSOLDERFLAG
, pt
.other
)) ||
676 (pt
.other
->PinN
!= 0 /* non-SMD */ &&
677 TEST_FLAG (ONSOLDERFLAG
, pt
.element
)))
678 return createPerturbation (selected
, T
);
688 doPerturb (PerturbationType
* pt
, Boolean undo
)
690 LocationType bbcx
, bbcy
;
691 /* compute center of element bounding box */
692 bbcx
= (pt
->element
->VBox
.X1
+ pt
->element
->VBox
.X2
) / 2;
693 bbcy
= (pt
->element
->VBox
.Y1
+ pt
->element
->VBox
.Y2
) / 2;
694 /* do exchange, shift or flip/rotate */
699 LocationType DX
= pt
->DX
, DY
= pt
->DY
;
705 MoveElementLowLevel (PCB
->Data
, pt
->element
, DX
, DY
);
713 /* 0 - flip; 1-3, rotate. */
715 RotateElementLowLevel (PCB
->Data
, pt
->element
, bbcx
, bbcy
, b
);
718 LocationType y
= pt
->element
->VBox
.Y1
;
719 MirrorElementCoordinates (PCB
->Data
, pt
->element
, 0);
720 /* mirroring moves the element. move it back. */
721 MoveElementLowLevel (PCB
->Data
, pt
->element
, 0,
722 y
- pt
->element
->VBox
.Y1
);
728 /* first exchange positions */
729 LocationType x1
= pt
->element
->VBox
.X1
;
730 LocationType y1
= pt
->element
->VBox
.Y1
;
731 LocationType x2
= pt
->other
->BoundingBox
.X1
;
732 LocationType y2
= pt
->other
->BoundingBox
.Y1
;
733 MoveElementLowLevel (PCB
->Data
, pt
->element
, x2
- x1
, y2
- y1
);
734 MoveElementLowLevel (PCB
->Data
, pt
->other
, x1
- x2
, y1
- y2
);
735 /* then flip both elements if they are on opposite sides */
736 if (TEST_FLAG (ONSOLDERFLAG
, pt
->element
) !=
737 TEST_FLAG (ONSOLDERFLAG
, pt
->other
))
739 PerturbationType mypt
;
740 mypt
.element
= pt
->element
;
742 mypt
.rotate
= 0; /* flip */
743 doPerturb (&mypt
, undo
);
744 mypt
.element
= pt
->other
;
745 doPerturb (&mypt
, undo
);
755 /* ---------------------------------------------------------------------------
756 * Auto-place selected components.
759 AutoPlaceSelected (void)
762 PointerListType Selected
= { 0, 0, NULL
};
765 Boolean changed
= False
;
767 /* (initial netlist processing copied from AddAllRats) */
768 /* the netlist library has the text form
769 * ProcNetlist fills in the Netlist
770 * structure the way the final routing
771 * is supposed to look
773 Nets
= ProcNetlist (&PCB
->NetlistLib
);
776 Message (_("Can't add rat lines because no netlist is loaded.\n"));
780 Selected
= collectSelectedElements ();
781 if (Selected
.PtrN
== 0)
783 Message (_("No elements selected to autoplace.\n"));
787 /* simulated annealing */
788 { /* compute T0 by doing a random series of moves. */
789 const int TRIALS
= 10;
790 const double Tx
= 3e5
, P
= 0.95;
793 C0
= ComputeCost (Nets
, Tx
, Tx
);
794 for (i
= 0; i
< TRIALS
; i
++)
796 pt
= createPerturbation (&Selected
, 1e6
);
797 doPerturb (&pt
, False
);
798 Cs
+= fabs (ComputeCost (Nets
, Tx
, Tx
) - C0
);
799 doPerturb (&pt
, True
);
801 T0
= -(Cs
/ TRIALS
) / log (P
);
802 printf ("Initial T: %f\n", T0
);
804 /* now anneal in earnest */
808 int good_moves
= 0, moves
= 0;
809 const int good_move_cutoff
= CostParameter
.m
* Selected
.PtrN
;
810 const int move_cutoff
= 2 * good_move_cutoff
;
811 printf ("Starting cost is %.0f\n", ComputeCost (Nets
, T0
, 5));
812 C0
= ComputeCost (Nets
, T0
, T
);
816 pt
= createPerturbation (&Selected
, T
);
817 doPerturb (&pt
, False
);
818 Cprime
= ComputeCost (Nets
, T0
, T
);
825 else if ((random () / (double) RAND_MAX
) <
826 exp (MIN (MAX (-20, (C0
- Cprime
) / T
), 20)))
828 /* not good but keep it anyway */
833 doPerturb (&pt
, True
); /* undo last change */
835 /* are we at the end of a stage? */
836 if (good_moves
>= good_move_cutoff
|| moves
>= move_cutoff
)
838 printf ("END OF STAGE: COST %.0f\t"
839 "GOOD_MOVES %d\tMOVES %d\t"
840 "T: %.1f\n", C0
, good_moves
, moves
, T
);
841 /* is this the end? */
842 if (T
< 5 || good_moves
< moves
/ CostParameter
.good_ratio
)
844 /* nope, adjust T and continue */
845 moves
= good_moves
= 0;
846 T
*= CostParameter
.gamma
;
847 /* cost is T dependent, so recompute */
848 C0
= ComputeCost (Nets
, T0
, T
);
851 changed
= (steps
> 0);
857 AddAllRats (False
, NULL
);
858 ClearAndRedrawOutput ();
860 FreePointerListMemory (&Selected
);