1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 //---------------------------------------------------------------------------
9 //---------------------------------------------------------------------------
11 // This file defines HashMap<Key, Value> and HashSet<T>, hash tables that are
12 // fast and have a nice API.
14 // Both hash tables have two optional template parameters.
16 // - HashPolicy. This defines the operations for hashing and matching keys. The
17 // default HashPolicy is appropriate when both of the following two
18 // conditions are true.
20 // - The key type stored in the table (|Key| for |HashMap<Key, Value>|, |T|
21 // for |HashSet<T>|) is an integer, pointer, UniquePtr, float, or double.
23 // - The type used for lookups (|Lookup|) is the same as the key type. This
24 // is usually the case, but not always.
26 // There is also a |CStringHasher| policy for |char*| keys. If your keys
27 // don't match any of the above cases, you must provide your own hash policy;
28 // see the "Hash Policy" section below.
30 // - AllocPolicy. This defines how allocations are done by the table.
32 // - |MallocAllocPolicy| is the default and is usually appropriate; note that
33 // operations (such as insertions) that might cause allocations are
34 // fallible and must be checked for OOM. These checks are enforced by the
35 // use of [[nodiscard]].
37 // - |InfallibleAllocPolicy| is another possibility; it allows the
38 // abovementioned OOM checks to be done with MOZ_ALWAYS_TRUE().
40 // Note that entry storage allocation is lazy, and not done until the first
41 // lookupForAdd(), put(), or putNew() is performed.
43 // See AllocPolicy.h for more details.
45 // Documentation on how to use HashMap and HashSet, including examples, is
46 // present within those classes. Search for "class HashMap" and "class
49 // Both HashMap and HashSet are implemented on top of a third class, HashTable.
50 // You only need to look at HashTable if you want to understand the
53 // How does mozilla::HashTable (this file) compare with PLDHashTable (and its
54 // subclasses, such as nsTHashtable)?
56 // - mozilla::HashTable is a lot faster, largely because it uses templates
57 // throughout *and* inlines everything. PLDHashTable inlines operations much
58 // less aggressively, and also uses "virtual ops" for operations like hashing
59 // and matching entries that require function calls.
61 // - Correspondingly, mozilla::HashTable use is likely to increase executable
62 // size much more than PLDHashTable.
64 // - mozilla::HashTable has a nicer API, with a proper HashSet vs. HashMap
67 // - mozilla::HashTable requires more explicit OOM checking. As mentioned
68 // above, the use of |InfallibleAllocPolicy| can simplify things.
70 // - mozilla::HashTable has a default capacity on creation of 32 and a minimum
71 // capacity of 4. PLDHashTable has a default capacity on creation of 8 and a
72 // minimum capacity of 8.
74 #ifndef mozilla_HashTable_h
75 #define mozilla_HashTable_h
78 #include <type_traits>
80 #include "mozilla/AllocPolicy.h"
81 #include "mozilla/Assertions.h"
82 #include "mozilla/Attributes.h"
83 #include "mozilla/Casting.h"
84 #include "mozilla/HashFunctions.h"
85 #include "mozilla/MathAlgorithms.h"
86 #include "mozilla/Maybe.h"
87 #include "mozilla/MemoryChecking.h"
88 #include "mozilla/MemoryReporting.h"
89 #include "mozilla/Opaque.h"
90 #include "mozilla/OperatorNewExtensions.h"
91 #include "mozilla/ReentrancyGuard.h"
92 #include "mozilla/UniquePtr.h"
93 #include "mozilla/WrappingOperations.h"
97 template <class, class = void>
100 template <class, class>
105 template <typename T
>
106 class HashTableEntry
;
108 template <class T
, class HashPolicy
, class AllocPolicy
>
111 } // namespace detail
113 // The "generation" of a hash table is an opaque value indicating the state of
114 // modification of the hash table through its lifetime. If the generation of
115 // a hash table compares equal at times T1 and T2, then lookups in the hash
116 // table, pointers to (or into) hash table entries, etc. at time T1 are valid
117 // at time T2. If the generation compares unequal, these computations are all
118 // invalid and must be performed again to be used.
120 // Generations are meaningfully comparable only with respect to a single hash
121 // table. It's always nonsensical to compare the generation of distinct hash
123 using Generation
= Opaque
<uint64_t>;
125 //---------------------------------------------------------------------------
127 //---------------------------------------------------------------------------
129 // HashMap is a fast hash-based map from keys to values.
131 // Template parameter requirements:
132 // - Key/Value: movable, destructible, assignable.
133 // - HashPolicy: see the "Hash Policy" section below.
134 // - AllocPolicy: see AllocPolicy.h.
137 // - HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members
138 // called by HashMap must not call back into the same HashMap object.
140 template <class Key
, class Value
, class HashPolicy
= DefaultHasher
<Key
>,
141 class AllocPolicy
= MallocAllocPolicy
>
143 // -- Implementation details -----------------------------------------------
145 // HashMap is not copyable or assignable.
146 HashMap(const HashMap
& hm
) = delete;
147 HashMap
& operator=(const HashMap
& hm
) = delete;
149 using TableEntry
= HashMapEntry
<Key
, Value
>;
151 struct MapHashPolicy
: HashPolicy
{
152 using Base
= HashPolicy
;
155 static const Key
& getKey(TableEntry
& aEntry
) { return aEntry
.key(); }
157 static void setKey(TableEntry
& aEntry
, Key
& aKey
) {
158 HashPolicy::rekey(aEntry
.mutableKey(), aKey
);
162 using Impl
= detail::HashTable
<TableEntry
, MapHashPolicy
, AllocPolicy
>;
165 friend class Impl::Enum
;
168 using Lookup
= typename
HashPolicy::Lookup
;
169 using Entry
= TableEntry
;
171 // -- Initialization -------------------------------------------------------
173 explicit HashMap(AllocPolicy aAllocPolicy
= AllocPolicy(),
174 uint32_t aLen
= Impl::sDefaultLen
)
175 : mImpl(std::move(aAllocPolicy
), aLen
) {}
177 explicit HashMap(uint32_t aLen
) : mImpl(AllocPolicy(), aLen
) {}
179 // HashMap is movable.
180 HashMap(HashMap
&& aRhs
) = default;
181 HashMap
& operator=(HashMap
&& aRhs
) = default;
183 // -- Status and sizing ----------------------------------------------------
185 // The map's current generation.
186 Generation
generation() const { return mImpl
.generation(); }
189 bool empty() const { return mImpl
.empty(); }
191 // Number of keys/values in the map.
192 uint32_t count() const { return mImpl
.count(); }
194 // Number of key/value slots in the map. Note: resize will happen well before
195 // count() == capacity().
196 uint32_t capacity() const { return mImpl
.capacity(); }
198 // The size of the map's entry storage, in bytes. If the keys/values contain
199 // pointers to other heap blocks, you must iterate over the map and measure
200 // them separately; hence the "shallow" prefix.
201 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf
) const {
202 return mImpl
.shallowSizeOfExcludingThis(aMallocSizeOf
);
204 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
205 return aMallocSizeOf(this) +
206 mImpl
.shallowSizeOfExcludingThis(aMallocSizeOf
);
209 // Attempt to minimize the capacity(). If the table is empty, this will free
210 // the empty storage and upon regrowth it will be given the minimum capacity.
211 void compact() { mImpl
.compact(); }
213 // Attempt to reserve enough space to fit at least |aLen| elements. Does
214 // nothing if the map already has sufficient capacity.
215 [[nodiscard
]] bool reserve(uint32_t aLen
) { return mImpl
.reserve(aLen
); }
217 // -- Lookups --------------------------------------------------------------
219 // Does the map contain a key/value matching |aLookup|?
220 bool has(const Lookup
& aLookup
) const {
221 return mImpl
.lookup(aLookup
).found();
224 // Return a Ptr indicating whether a key/value matching |aLookup| is
225 // present in the map. E.g.:
227 // using HM = HashMap<int,char>;
229 // if (HM::Ptr p = h.lookup(3)) {
230 // assert(p->key() == 3);
231 // char val = p->value();
234 using Ptr
= typename
Impl::Ptr
;
235 MOZ_ALWAYS_INLINE Ptr
lookup(const Lookup
& aLookup
) const {
236 return mImpl
.lookup(aLookup
);
239 // Like lookup(), but does not assert if two threads call it at the same
240 // time. Only use this method when none of the threads will modify the map.
241 MOZ_ALWAYS_INLINE Ptr
readonlyThreadsafeLookup(const Lookup
& aLookup
) const {
242 return mImpl
.readonlyThreadsafeLookup(aLookup
);
245 // -- Insertions -----------------------------------------------------------
247 // Overwrite existing value with |aValue|, or add it if not present. Returns
249 template <typename KeyInput
, typename ValueInput
>
250 [[nodiscard
]] bool put(KeyInput
&& aKey
, ValueInput
&& aValue
) {
251 AddPtr p
= lookupForAdd(aKey
);
253 p
->value() = std::forward
<ValueInput
>(aValue
);
256 return add(p
, std::forward
<KeyInput
>(aKey
),
257 std::forward
<ValueInput
>(aValue
));
260 // Like put(), but slightly faster. Must only be used when the given key is
261 // not already present. (In debug builds, assertions check this.)
262 template <typename KeyInput
, typename ValueInput
>
263 [[nodiscard
]] bool putNew(KeyInput
&& aKey
, ValueInput
&& aValue
) {
264 return mImpl
.putNew(aKey
, std::forward
<KeyInput
>(aKey
),
265 std::forward
<ValueInput
>(aValue
));
268 template <typename KeyInput
, typename ValueInput
>
269 [[nodiscard
]] bool putNew(const Lookup
& aLookup
, KeyInput
&& aKey
,
270 ValueInput
&& aValue
) {
271 return mImpl
.putNew(aLookup
, std::forward
<KeyInput
>(aKey
),
272 std::forward
<ValueInput
>(aValue
));
275 // Like putNew(), but should be only used when the table is known to be big
276 // enough for the insertion, and hashing cannot fail. Typically this is used
277 // to populate an empty map with known-unique keys after reserving space with
280 // using HM = HashMap<int,char>;
282 // if (!h.reserve(3)) {
285 // h.putNewInfallible(1, 'a'); // unique key
286 // h.putNewInfallible(2, 'b'); // unique key
287 // h.putNewInfallible(3, 'c'); // unique key
289 template <typename KeyInput
, typename ValueInput
>
290 void putNewInfallible(KeyInput
&& aKey
, ValueInput
&& aValue
) {
291 mImpl
.putNewInfallible(aKey
, std::forward
<KeyInput
>(aKey
),
292 std::forward
<ValueInput
>(aValue
));
295 // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
296 // insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using
297 // |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new key/value. E.g.:
299 // using HM = HashMap<int,char>;
301 // HM::AddPtr p = h.lookupForAdd(3);
303 // if (!h.add(p, 3, 'a')) {
307 // assert(p->key() == 3);
308 // char val = p->value();
310 // N.B. The caller must ensure that no mutating hash table operations occur
311 // between a pair of lookupForAdd() and add() calls. To avoid looking up the
312 // key a second time, the caller may use the more efficient relookupOrAdd()
313 // method. This method reuses part of the hashing computation to more
314 // efficiently insert the key if it has not been added. For example, a
315 // mutation-handling version of the previous example:
317 // HM::AddPtr p = h.lookupForAdd(3);
319 // call_that_may_mutate_h();
320 // if (!h.relookupOrAdd(p, 3, 'a')) {
324 // assert(p->key() == 3);
325 // char val = p->value();
327 using AddPtr
= typename
Impl::AddPtr
;
328 MOZ_ALWAYS_INLINE AddPtr
lookupForAdd(const Lookup
& aLookup
) {
329 return mImpl
.lookupForAdd(aLookup
);
332 // Add a key/value. Returns false on OOM.
333 template <typename KeyInput
, typename ValueInput
>
334 [[nodiscard
]] bool add(AddPtr
& aPtr
, KeyInput
&& aKey
, ValueInput
&& aValue
) {
335 return mImpl
.add(aPtr
, std::forward
<KeyInput
>(aKey
),
336 std::forward
<ValueInput
>(aValue
));
339 // See the comment above lookupForAdd() for details.
340 template <typename KeyInput
, typename ValueInput
>
341 [[nodiscard
]] bool relookupOrAdd(AddPtr
& aPtr
, KeyInput
&& aKey
,
342 ValueInput
&& aValue
) {
343 return mImpl
.relookupOrAdd(aPtr
, aKey
, std::forward
<KeyInput
>(aKey
),
344 std::forward
<ValueInput
>(aValue
));
347 // -- Removal --------------------------------------------------------------
349 // Lookup and remove the key/value matching |aLookup|, if present.
350 void remove(const Lookup
& aLookup
) {
351 if (Ptr p
= lookup(aLookup
)) {
356 // Remove a previously found key/value (assuming aPtr.found()). The map must
357 // not have been mutated in the interim.
358 void remove(Ptr aPtr
) { mImpl
.remove(aPtr
); }
360 // Remove all keys/values without changing the capacity.
361 void clear() { mImpl
.clear(); }
363 // Like clear() followed by compact().
364 void clearAndCompact() { mImpl
.clearAndCompact(); }
366 // -- Rekeying -------------------------------------------------------------
368 // Infallibly rekey one entry, if necessary. Requires that template
369 // parameters Key and HashPolicy::Lookup are the same type.
370 void rekeyIfMoved(const Key
& aOldKey
, const Key
& aNewKey
) {
371 if (aOldKey
!= aNewKey
) {
372 rekeyAs(aOldKey
, aNewKey
, aNewKey
);
376 // Infallibly rekey one entry if present, and return whether that happened.
377 bool rekeyAs(const Lookup
& aOldLookup
, const Lookup
& aNewLookup
,
378 const Key
& aNewKey
) {
379 if (Ptr p
= lookup(aOldLookup
)) {
380 mImpl
.rekeyAndMaybeRehash(p
, aNewLookup
, aNewKey
);
386 // -- Iteration ------------------------------------------------------------
388 // |iter()| returns an Iterator:
390 // HashMap<int, char> h;
391 // for (auto iter = h.iter(); !iter.done(); iter.next()) {
392 // char c = iter.get().value();
395 using Iterator
= typename
Impl::Iterator
;
396 Iterator
iter() const { return mImpl
.iter(); }
398 // |modIter()| returns a ModIterator:
400 // HashMap<int, char> h;
401 // for (auto iter = h.modIter(); !iter.done(); iter.next()) {
402 // if (iter.get().value() == 'l') {
407 // Table resize may occur in ModIterator's destructor.
408 using ModIterator
= typename
Impl::ModIterator
;
409 ModIterator
modIter() { return mImpl
.modIter(); }
411 // These are similar to Iterator/ModIterator/iter(), but use different
413 using Range
= typename
Impl::Range
;
414 using Enum
= typename
Impl::Enum
;
415 Range
all() const { return mImpl
.all(); }
418 //---------------------------------------------------------------------------
420 //---------------------------------------------------------------------------
422 // HashSet is a fast hash-based set of values.
424 // Template parameter requirements:
425 // - T: movable, destructible, assignable.
426 // - HashPolicy: see the "Hash Policy" section below.
427 // - AllocPolicy: see AllocPolicy.h
430 // - HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by
431 // HashSet must not call back into the same HashSet object.
433 template <class T
, class HashPolicy
= DefaultHasher
<T
>,
434 class AllocPolicy
= MallocAllocPolicy
>
436 // -- Implementation details -----------------------------------------------
438 // HashSet is not copyable or assignable.
439 HashSet(const HashSet
& hs
) = delete;
440 HashSet
& operator=(const HashSet
& hs
) = delete;
442 struct SetHashPolicy
: HashPolicy
{
443 using Base
= HashPolicy
;
446 static const KeyType
& getKey(const T
& aT
) { return aT
; }
448 static void setKey(T
& aT
, KeyType
& aKey
) { HashPolicy::rekey(aT
, aKey
); }
451 using Impl
= detail::HashTable
<const T
, SetHashPolicy
, AllocPolicy
>;
454 friend class Impl::Enum
;
457 using Lookup
= typename
HashPolicy::Lookup
;
460 // -- Initialization -------------------------------------------------------
462 explicit HashSet(AllocPolicy aAllocPolicy
= AllocPolicy(),
463 uint32_t aLen
= Impl::sDefaultLen
)
464 : mImpl(std::move(aAllocPolicy
), aLen
) {}
466 explicit HashSet(uint32_t aLen
) : mImpl(AllocPolicy(), aLen
) {}
468 // HashSet is movable.
469 HashSet(HashSet
&& aRhs
) = default;
470 HashSet
& operator=(HashSet
&& aRhs
) = default;
472 // -- Status and sizing ----------------------------------------------------
474 // The set's current generation.
475 Generation
generation() const { return mImpl
.generation(); }
478 bool empty() const { return mImpl
.empty(); }
480 // Number of elements in the set.
481 uint32_t count() const { return mImpl
.count(); }
483 // Number of element slots in the set. Note: resize will happen well before
484 // count() == capacity().
485 uint32_t capacity() const { return mImpl
.capacity(); }
487 // The size of the set's entry storage, in bytes. If the elements contain
488 // pointers to other heap blocks, you must iterate over the set and measure
489 // them separately; hence the "shallow" prefix.
490 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf
) const {
491 return mImpl
.shallowSizeOfExcludingThis(aMallocSizeOf
);
493 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
494 return aMallocSizeOf(this) +
495 mImpl
.shallowSizeOfExcludingThis(aMallocSizeOf
);
498 // Attempt to minimize the capacity(). If the table is empty, this will free
499 // the empty storage and upon regrowth it will be given the minimum capacity.
500 void compact() { mImpl
.compact(); }
502 // Attempt to reserve enough space to fit at least |aLen| elements. Does
503 // nothing if the map already has sufficient capacity.
504 [[nodiscard
]] bool reserve(uint32_t aLen
) { return mImpl
.reserve(aLen
); }
506 // -- Lookups --------------------------------------------------------------
508 // Does the set contain an element matching |aLookup|?
509 bool has(const Lookup
& aLookup
) const {
510 return mImpl
.lookup(aLookup
).found();
513 // Return a Ptr indicating whether an element matching |aLookup| is present
516 // using HS = HashSet<int>;
518 // if (HS::Ptr p = h.lookup(3)) {
519 // assert(*p == 3); // p acts like a pointer to int
522 using Ptr
= typename
Impl::Ptr
;
523 MOZ_ALWAYS_INLINE Ptr
lookup(const Lookup
& aLookup
) const {
524 return mImpl
.lookup(aLookup
);
527 // Like lookup(), but does not assert if two threads call it at the same
528 // time. Only use this method when none of the threads will modify the set.
529 MOZ_ALWAYS_INLINE Ptr
readonlyThreadsafeLookup(const Lookup
& aLookup
) const {
530 return mImpl
.readonlyThreadsafeLookup(aLookup
);
533 // -- Insertions -----------------------------------------------------------
535 // Add |aU| if it is not present already. Returns false on OOM.
536 template <typename U
>
537 [[nodiscard
]] bool put(U
&& aU
) {
538 AddPtr p
= lookupForAdd(aU
);
539 return p
? true : add(p
, std::forward
<U
>(aU
));
542 // Like put(), but slightly faster. Must only be used when the given element
543 // is not already present. (In debug builds, assertions check this.)
544 template <typename U
>
545 [[nodiscard
]] bool putNew(U
&& aU
) {
546 return mImpl
.putNew(aU
, std::forward
<U
>(aU
));
549 // Like the other putNew(), but for when |Lookup| is different to |T|.
550 template <typename U
>
551 [[nodiscard
]] bool putNew(const Lookup
& aLookup
, U
&& aU
) {
552 return mImpl
.putNew(aLookup
, std::forward
<U
>(aU
));
555 // Like putNew(), but should be only used when the table is known to be big
556 // enough for the insertion, and hashing cannot fail. Typically this is used
557 // to populate an empty set with known-unique elements after reserving space
558 // with reserve(), e.g.
560 // using HS = HashMap<int>;
562 // if (!h.reserve(3)) {
565 // h.putNewInfallible(1); // unique element
566 // h.putNewInfallible(2); // unique element
567 // h.putNewInfallible(3); // unique element
569 template <typename U
>
570 void putNewInfallible(const Lookup
& aLookup
, U
&& aU
) {
571 mImpl
.putNewInfallible(aLookup
, std::forward
<U
>(aU
));
574 // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
575 // insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using
576 // |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.:
578 // using HS = HashSet<int>;
580 // HS::AddPtr p = h.lookupForAdd(3);
582 // if (!h.add(p, 3)) {
586 // assert(*p == 3); // p acts like a pointer to int
588 // N.B. The caller must ensure that no mutating hash table operations occur
589 // between a pair of lookupForAdd() and add() calls. To avoid looking up the
590 // key a second time, the caller may use the more efficient relookupOrAdd()
591 // method. This method reuses part of the hashing computation to more
592 // efficiently insert the key if it has not been added. For example, a
593 // mutation-handling version of the previous example:
595 // HS::AddPtr p = h.lookupForAdd(3);
597 // call_that_may_mutate_h();
598 // if (!h.relookupOrAdd(p, 3, 3)) {
604 // Note that relookupOrAdd(p,l,t) performs Lookup using |l| and adds the
605 // entry |t|, where the caller ensures match(l,t).
606 using AddPtr
= typename
Impl::AddPtr
;
607 MOZ_ALWAYS_INLINE AddPtr
lookupForAdd(const Lookup
& aLookup
) {
608 return mImpl
.lookupForAdd(aLookup
);
611 // Add an element. Returns false on OOM.
612 template <typename U
>
613 [[nodiscard
]] bool add(AddPtr
& aPtr
, U
&& aU
) {
614 return mImpl
.add(aPtr
, std::forward
<U
>(aU
));
617 // See the comment above lookupForAdd() for details.
618 template <typename U
>
619 [[nodiscard
]] bool relookupOrAdd(AddPtr
& aPtr
, const Lookup
& aLookup
,
621 return mImpl
.relookupOrAdd(aPtr
, aLookup
, std::forward
<U
>(aU
));
624 // -- Removal --------------------------------------------------------------
626 // Lookup and remove the element matching |aLookup|, if present.
627 void remove(const Lookup
& aLookup
) {
628 if (Ptr p
= lookup(aLookup
)) {
633 // Remove a previously found element (assuming aPtr.found()). The set must
634 // not have been mutated in the interim.
635 void remove(Ptr aPtr
) { mImpl
.remove(aPtr
); }
637 // Remove all keys/values without changing the capacity.
638 void clear() { mImpl
.clear(); }
640 // Like clear() followed by compact().
641 void clearAndCompact() { mImpl
.clearAndCompact(); }
643 // -- Rekeying -------------------------------------------------------------
645 // Infallibly rekey one entry, if present. Requires that template parameters
646 // T and HashPolicy::Lookup are the same type.
647 void rekeyIfMoved(const Lookup
& aOldValue
, const T
& aNewValue
) {
648 if (aOldValue
!= aNewValue
) {
649 rekeyAs(aOldValue
, aNewValue
, aNewValue
);
653 // Infallibly rekey one entry if present, and return whether that happened.
654 bool rekeyAs(const Lookup
& aOldLookup
, const Lookup
& aNewLookup
,
655 const T
& aNewValue
) {
656 if (Ptr p
= lookup(aOldLookup
)) {
657 mImpl
.rekeyAndMaybeRehash(p
, aNewLookup
, aNewValue
);
663 // Infallibly replace the current key at |aPtr| with an equivalent key.
664 // Specifically, both HashPolicy::hash and HashPolicy::match must return
665 // identical results for the new and old key when applied against all
666 // possible matching values.
667 void replaceKey(Ptr aPtr
, const Lookup
& aLookup
, const T
& aNewValue
) {
668 MOZ_ASSERT(aPtr
.found());
669 MOZ_ASSERT(*aPtr
!= aNewValue
);
670 MOZ_ASSERT(HashPolicy::match(*aPtr
, aLookup
));
671 MOZ_ASSERT(HashPolicy::match(aNewValue
, aLookup
));
672 const_cast<T
&>(*aPtr
) = aNewValue
;
673 MOZ_ASSERT(*lookup(aLookup
) == aNewValue
);
675 void replaceKey(Ptr aPtr
, const T
& aNewValue
) {
676 replaceKey(aPtr
, aNewValue
, aNewValue
);
679 // -- Iteration ------------------------------------------------------------
681 // |iter()| returns an Iterator:
684 // for (auto iter = h.iter(); !iter.done(); iter.next()) {
685 // int i = iter.get();
688 using Iterator
= typename
Impl::Iterator
;
689 Iterator
iter() const { return mImpl
.iter(); }
691 // |modIter()| returns a ModIterator:
694 // for (auto iter = h.modIter(); !iter.done(); iter.next()) {
695 // if (iter.get() == 42) {
700 // Table resize may occur in ModIterator's destructor.
701 using ModIterator
= typename
Impl::ModIterator
;
702 ModIterator
modIter() { return mImpl
.modIter(); }
704 // These are similar to Iterator/ModIterator/iter(), but use different
706 using Range
= typename
Impl::Range
;
707 using Enum
= typename
Impl::Enum
;
708 Range
all() const { return mImpl
.all(); }
711 //---------------------------------------------------------------------------
713 //---------------------------------------------------------------------------
715 // A hash policy |HP| for a hash table with key-type |Key| must provide:
717 // - a type |HP::Lookup| to use to lookup table entries;
719 // - a static member function |HP::hash| that hashes lookup values:
721 // static mozilla::HashNumber hash(const Lookup&);
723 // - a static member function |HP::match| that tests equality of key and
726 // static bool match(const Key&, const Lookup&);
728 // Normally, Lookup = Key. In general, though, different values and types of
729 // values can be used to lookup and store. If a Lookup value |l| is not equal
730 // to the added Key value |k|, the user must ensure that |HP::match(k,l)| is
733 // mozilla::HashSet<Key, HP>::AddPtr p = h.lookup(l);
735 // assert(HP::match(k, l)); // must hold
739 // A pointer hashing policy that uses HashGeneric() to create good hashes for
740 // pointers. Note that we don't shift out the lowest k bits because we don't
741 // want to assume anything about the alignment of the pointers.
742 template <typename Key
>
743 struct PointerHasher
{
746 static HashNumber
hash(const Lookup
& aLookup
) {
747 size_t word
= reinterpret_cast<size_t>(aLookup
);
748 return HashGeneric(word
);
751 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
752 return aKey
== aLookup
;
755 static void rekey(Key
& aKey
, const Key
& aNewKey
) { aKey
= aNewKey
; }
758 // The default hash policy, which only works with integers.
759 template <class Key
, typename
>
760 struct DefaultHasher
{
763 static HashNumber
hash(const Lookup
& aLookup
) {
764 // Just convert the integer to a HashNumber and use that as is. (This
765 // discards the high 32-bits of 64-bit integers!) ScrambleHashCode() is
766 // subsequently called on the value to improve the distribution.
770 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
771 // Use builtin or overloaded operator==.
772 return aKey
== aLookup
;
775 static void rekey(Key
& aKey
, const Key
& aNewKey
) { aKey
= aNewKey
; }
778 // A DefaultHasher specialization for enums.
780 struct DefaultHasher
<T
, std::enable_if_t
<std::is_enum_v
<T
>>> {
784 static HashNumber
hash(const Lookup
& aLookup
) { return HashGeneric(aLookup
); }
786 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
787 // Use builtin or overloaded operator==.
788 return aKey
== static_cast<Key
>(aLookup
);
791 static void rekey(Key
& aKey
, const Key
& aNewKey
) { aKey
= aNewKey
; }
794 // A DefaultHasher specialization for pointers.
796 struct DefaultHasher
<T
*> : PointerHasher
<T
*> {};
798 // A DefaultHasher specialization for mozilla::UniquePtr.
799 template <class T
, class D
>
800 struct DefaultHasher
<UniquePtr
<T
, D
>> {
801 using Key
= UniquePtr
<T
, D
>;
803 using PtrHasher
= PointerHasher
<T
*>;
805 static HashNumber
hash(const Lookup
& aLookup
) {
806 return PtrHasher::hash(aLookup
.get());
809 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
810 return PtrHasher::match(aKey
.get(), aLookup
.get());
813 static void rekey(UniquePtr
<T
, D
>& aKey
, UniquePtr
<T
, D
>&& aNewKey
) {
814 aKey
= std::move(aNewKey
);
818 // A DefaultHasher specialization for doubles.
820 struct DefaultHasher
<double> {
824 static HashNumber
hash(const Lookup
& aLookup
) {
825 // Just xor the high bits with the low bits, and then treat the bits of the
826 // result as a uint32_t.
827 static_assert(sizeof(HashNumber
) == 4,
828 "subsequent code assumes a four-byte hash");
829 uint64_t u
= BitwiseCast
<uint64_t>(aLookup
);
830 return HashNumber(u
^ (u
>> 32));
833 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
834 return BitwiseCast
<uint64_t>(aKey
) == BitwiseCast
<uint64_t>(aLookup
);
838 // A DefaultHasher specialization for floats.
840 struct DefaultHasher
<float> {
844 static HashNumber
hash(const Lookup
& aLookup
) {
845 // Just use the value as if its bits form an integer. ScrambleHashCode() is
846 // subsequently called on the value to improve the distribution.
847 static_assert(sizeof(HashNumber
) == 4,
848 "subsequent code assumes a four-byte hash");
849 return HashNumber(BitwiseCast
<uint32_t>(aLookup
));
852 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
853 return BitwiseCast
<uint32_t>(aKey
) == BitwiseCast
<uint32_t>(aLookup
);
857 // A hash policy for C strings.
858 struct CStringHasher
{
859 using Key
= const char*;
860 using Lookup
= const char*;
862 static HashNumber
hash(const Lookup
& aLookup
) { return HashString(aLookup
); }
864 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
865 return strcmp(aKey
, aLookup
) == 0;
869 //---------------------------------------------------------------------------
870 // Fallible Hashing Interface
871 //---------------------------------------------------------------------------
873 // Most of the time generating a hash code is infallible so this class provides
874 // default methods that always succeed. Specialize this class for your own hash
875 // policy to provide fallible hashing.
877 // This is used by MovableCellHasher to handle the fact that generating a unique
878 // ID for cell pointer may fail due to OOM.
879 template <typename HashPolicy
>
880 struct FallibleHashMethods
{
881 // Return true if a hashcode is already available for its argument. Once
882 // this returns true for a specific argument it must continue to do so.
883 template <typename Lookup
>
884 static bool hasHash(Lookup
&& aLookup
) {
888 // Fallible method to ensure a hashcode exists for its argument and create
889 // one if not. Returns false on error, e.g. out of memory.
890 template <typename Lookup
>
891 static bool ensureHash(Lookup
&& aLookup
) {
896 template <typename HashPolicy
, typename Lookup
>
897 static bool HasHash(Lookup
&& aLookup
) {
898 return FallibleHashMethods
<typename
HashPolicy::Base
>::hasHash(
899 std::forward
<Lookup
>(aLookup
));
902 template <typename HashPolicy
, typename Lookup
>
903 static bool EnsureHash(Lookup
&& aLookup
) {
904 return FallibleHashMethods
<typename
HashPolicy::Base
>::ensureHash(
905 std::forward
<Lookup
>(aLookup
));
908 //---------------------------------------------------------------------------
909 // Implementation Details (HashMapEntry, HashTableEntry, HashTable)
910 //---------------------------------------------------------------------------
912 // Both HashMap and HashSet are implemented by a single HashTable that is even
913 // more heavily parameterized than the other two. This leaves HashTable gnarly
914 // and extremely coupled to HashMap and HashSet; thus code should not use
915 // HashTable directly.
917 template <class Key
, class Value
>
922 template <class, class, class>
923 friend class detail::HashTable
;
925 friend class detail::HashTableEntry
;
926 template <class, class, class, class>
927 friend class HashMap
;
930 template <typename KeyInput
, typename ValueInput
>
931 HashMapEntry(KeyInput
&& aKey
, ValueInput
&& aValue
)
932 : key_(std::forward
<KeyInput
>(aKey
)),
933 value_(std::forward
<ValueInput
>(aValue
)) {}
935 HashMapEntry(HashMapEntry
&& aRhs
) = default;
936 HashMapEntry
& operator=(HashMapEntry
&& aRhs
) = default;
939 using ValueType
= Value
;
941 const Key
& key() const { return key_
; }
943 // Use this method with caution! If the key is changed such that its hash
944 // value also changes, the map will be left in an invalid state.
945 Key
& mutableKey() { return key_
; }
947 const Value
& value() const { return value_
; }
948 Value
& value() { return value_
; }
951 HashMapEntry(const HashMapEntry
&) = delete;
952 void operator=(const HashMapEntry
&) = delete;
957 template <class T
, class HashPolicy
, class AllocPolicy
>
960 template <typename T
>
963 template <typename T
>
964 class HashTableEntry
{
966 using NonConstT
= std::remove_const_t
<T
>;
968 // Instead of having a hash table entry store that looks like this:
970 // +--------+--------+--------+--------+
971 // | entry0 | entry1 | .... | entryN |
972 // +--------+--------+--------+--------+
974 // where the entries contained their cached hash code, we're going to lay out
975 // the entry store thusly:
977 // +-------+-------+-------+-------+--------+--------+--------+--------+
978 // | hash0 | hash1 | ... | hashN | entry0 | entry1 | .... | entryN |
979 // +-------+-------+-------+-------+--------+--------+--------+--------+
981 // with all the cached hashes prior to the actual entries themselves.
983 // We do this because implementing the first strategy requires us to make
984 // HashTableEntry look roughly like:
986 // template <typename T>
987 // class HashTableEntry {
988 // HashNumber mKeyHash;
992 // The problem with this setup is that, depending on the layout of `T`, there
993 // may be platform ABI-mandated padding between `mKeyHash` and the first
994 // member of `T`. This ABI-mandated padding is wasted space, and can be
995 // surprisingly common, e.g. when `T` is a single pointer on 64-bit platforms.
996 // In such cases, we're throwing away a quarter of our entry store on padding,
997 // which is undesirable.
999 // The second layout above, namely:
1001 // +-------+-------+-------+-------+--------+--------+--------+--------+
1002 // | hash0 | hash1 | ... | hashN | entry0 | entry1 | .... | entryN |
1003 // +-------+-------+-------+-------+--------+--------+--------+--------+
1005 // means there is no wasted space between the hashes themselves, and no wasted
1006 // space between the entries themselves. However, we would also like there to
1007 // be no gap between the last hash and the first entry. The memory allocator
1008 // guarantees the alignment of the start of the hashes. The use of a
1009 // power-of-two capacity of at least 4 guarantees that the alignment of the
1010 // *end* of the hash array is no less than the alignment of the start.
1011 // Finally, the static_asserts here guarantee that the entries themselves
1012 // don't need to be any more aligned than the alignment of the entry store
1015 // This assertion is safe for 32-bit builds because on both Windows and Linux
1016 // (including Android), the minimum alignment for allocations larger than 8
1017 // bytes is 8 bytes, and the actual data for entries in our entry store is
1018 // guaranteed to have that alignment as well, thanks to the power-of-two
1019 // number of cached hash values stored prior to the entry data.
1021 // The allocation policy must allocate a table with at least this much
1023 static constexpr size_t kMinimumAlignment
= 8;
1025 static_assert(alignof(HashNumber
) <= kMinimumAlignment
,
1026 "[N*2 hashes, N*2 T values] allocation's alignment must be "
1027 "enough to align each hash");
1028 static_assert(alignof(NonConstT
) <= 2 * sizeof(HashNumber
),
1029 "subsequent N*2 T values must not require more than an even "
1030 "number of HashNumbers provides");
1032 static const HashNumber sFreeKey
= 0;
1033 static const HashNumber sRemovedKey
= 1;
1034 static const HashNumber sCollisionBit
= 1;
1036 alignas(NonConstT
) unsigned char mValueData
[sizeof(NonConstT
)];
1039 template <class, class, class>
1040 friend class HashTable
;
1042 friend class EntrySlot
;
1044 // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
1045 // -Werror compile error) to reinterpret_cast<> |mValueData| to |T*|, even
1046 // through |void*|. Placing the latter cast in these separate functions
1047 // breaks the chain such that affected GCC versions no longer warn/error.
1048 void* rawValuePtr() { return mValueData
; }
1050 static bool isLiveHash(HashNumber hash
) { return hash
> sRemovedKey
; }
1052 HashTableEntry(const HashTableEntry
&) = delete;
1053 void operator=(const HashTableEntry
&) = delete;
1055 NonConstT
* valuePtr() { return reinterpret_cast<NonConstT
*>(rawValuePtr()); }
1057 void destroyStoredT() {
1058 NonConstT
* ptr
= valuePtr();
1060 MOZ_MAKE_MEM_UNDEFINED(ptr
, sizeof(*ptr
));
1064 HashTableEntry() = default;
1066 ~HashTableEntry() { MOZ_MAKE_MEM_UNDEFINED(this, sizeof(*this)); }
1068 void destroy() { destroyStoredT(); }
1070 void swap(HashTableEntry
* aOther
, bool aIsLive
) {
1071 // This allows types to use Argument-Dependent-Lookup, and thus use a custom
1072 // std::swap, which is needed by types like JS::Heap and such.
1075 if (this == aOther
) {
1079 swap(*valuePtr(), *aOther
->valuePtr());
1081 *aOther
->valuePtr() = std::move(*valuePtr());
1086 T
& get() { return *valuePtr(); }
1088 NonConstT
& getMutable() { return *valuePtr(); }
1091 // A slot represents a cached hash value and its associated entry stored
1092 // in the hash table. These two things are not stored in contiguous memory.
1095 using NonConstT
= std::remove_const_t
<T
>;
1097 using Entry
= HashTableEntry
<T
>;
1100 HashNumber
* mKeyHash
;
1102 template <class, class, class>
1103 friend class HashTable
;
1105 EntrySlot(Entry
* aEntry
, HashNumber
* aKeyHash
)
1106 : mEntry(aEntry
), mKeyHash(aKeyHash
) {}
1109 static bool isLiveHash(HashNumber hash
) { return hash
> Entry::sRemovedKey
; }
1111 EntrySlot(const EntrySlot
&) = default;
1112 EntrySlot(EntrySlot
&& aOther
) = default;
1114 EntrySlot
& operator=(const EntrySlot
&) = default;
1115 EntrySlot
& operator=(EntrySlot
&&) = default;
1117 bool operator==(const EntrySlot
& aRhs
) const { return mEntry
== aRhs
.mEntry
; }
1119 bool operator<(const EntrySlot
& aRhs
) const { return mEntry
< aRhs
.mEntry
; }
1121 EntrySlot
& operator++() {
1127 void destroy() { mEntry
->destroy(); }
1129 void swap(EntrySlot
& aOther
) {
1130 mEntry
->swap(aOther
.mEntry
, aOther
.isLive());
1131 std::swap(*mKeyHash
, *aOther
.mKeyHash
);
1134 T
& get() const { return mEntry
->get(); }
1136 NonConstT
& getMutable() { return mEntry
->getMutable(); }
1138 bool isFree() const { return *mKeyHash
== Entry::sFreeKey
; }
1141 MOZ_ASSERT(isLive());
1142 *mKeyHash
= Entry::sFreeKey
;
1143 mEntry
->destroyStoredT();
1148 mEntry
->destroyStoredT();
1150 MOZ_MAKE_MEM_UNDEFINED(mEntry
, sizeof(*mEntry
));
1151 *mKeyHash
= Entry::sFreeKey
;
1154 bool isRemoved() const { return *mKeyHash
== Entry::sRemovedKey
; }
1157 MOZ_ASSERT(isLive());
1158 *mKeyHash
= Entry::sRemovedKey
;
1159 mEntry
->destroyStoredT();
1162 bool isLive() const { return isLiveHash(*mKeyHash
); }
1164 void setCollision() {
1165 MOZ_ASSERT(isLive());
1166 *mKeyHash
|= Entry::sCollisionBit
;
1168 void unsetCollision() { *mKeyHash
&= ~Entry::sCollisionBit
; }
1169 bool hasCollision() const { return *mKeyHash
& Entry::sCollisionBit
; }
1170 bool matchHash(HashNumber hn
) {
1171 return (*mKeyHash
& ~Entry::sCollisionBit
) == hn
;
1173 HashNumber
getKeyHash() const { return *mKeyHash
& ~Entry::sCollisionBit
; }
1175 template <typename
... Args
>
1176 void setLive(HashNumber aHashNumber
, Args
&&... aArgs
) {
1177 MOZ_ASSERT(!isLive());
1178 *mKeyHash
= aHashNumber
;
1179 new (KnownNotNull
, mEntry
->valuePtr()) T(std::forward
<Args
>(aArgs
)...);
1180 MOZ_ASSERT(isLive());
1183 Entry
* toEntry() const { return mEntry
; }
1186 template <class T
, class HashPolicy
, class AllocPolicy
>
1187 class HashTable
: private AllocPolicy
{
1188 friend class mozilla::ReentrancyGuard
;
1190 using NonConstT
= std::remove_const_t
<T
>;
1191 using Key
= typename
HashPolicy::KeyType
;
1192 using Lookup
= typename
HashPolicy::Lookup
;
1195 using Entry
= HashTableEntry
<T
>;
1196 using Slot
= EntrySlot
<T
>;
1198 template <typename F
>
1199 static void forEachSlot(char* aTable
, uint32_t aCapacity
, F
&& f
) {
1200 auto hashes
= reinterpret_cast<HashNumber
*>(aTable
);
1201 auto entries
= reinterpret_cast<Entry
*>(&hashes
[aCapacity
]);
1202 Slot
slot(entries
, hashes
);
1203 for (size_t i
= 0; i
< size_t(aCapacity
); ++i
) {
1209 // A nullable pointer to a hash table element. A Ptr |p| can be tested
1210 // either explicitly |if (p.found()) p->...| or using boolean conversion
1211 // |if (p) p->...|. Ptr objects must not be used after any mutating hash
1212 // table operations unless |generation()| is tested.
1214 friend class HashTable
;
1218 const HashTable
* mTable
;
1219 Generation mGeneration
;
1223 Ptr(Slot aSlot
, const HashTable
& aTable
)
1228 mGeneration(aTable
.generation())
1233 // This constructor is used only by AddPtr() within lookupForAdd().
1234 explicit Ptr(const HashTable
& aTable
)
1235 : mSlot(nullptr, nullptr)
1239 mGeneration(aTable
.generation())
1244 bool isValid() const { return !!mSlot
.toEntry(); }
1248 : mSlot(nullptr, nullptr)
1257 bool found() const {
1262 MOZ_ASSERT(mGeneration
== mTable
->generation());
1264 return mSlot
.isLive();
1267 explicit operator bool() const { return found(); }
1269 bool operator==(const Ptr
& aRhs
) const {
1270 MOZ_ASSERT(found() && aRhs
.found());
1271 return mSlot
== aRhs
.mSlot
;
1274 bool operator!=(const Ptr
& aRhs
) const {
1276 MOZ_ASSERT(mGeneration
== mTable
->generation());
1278 return !(*this == aRhs
);
1281 T
& operator*() const {
1283 MOZ_ASSERT(found());
1284 MOZ_ASSERT(mGeneration
== mTable
->generation());
1289 T
* operator->() const {
1291 MOZ_ASSERT(found());
1292 MOZ_ASSERT(mGeneration
== mTable
->generation());
1294 return &mSlot
.get();
1298 // A Ptr that can be used to add a key after a failed lookup.
1299 class AddPtr
: public Ptr
{
1300 friend class HashTable
;
1302 HashNumber mKeyHash
;
1304 uint64_t mMutationCount
;
1307 AddPtr(Slot aSlot
, const HashTable
& aTable
, HashNumber aHashNumber
)
1308 : Ptr(aSlot
, aTable
),
1309 mKeyHash(aHashNumber
)
1312 mMutationCount(aTable
.mMutationCount
)
1317 // This constructor is used when lookupForAdd() is performed on a table
1318 // lacking entry storage; it leaves mSlot null but initializes everything
1320 AddPtr(const HashTable
& aTable
, HashNumber aHashNumber
)
1322 mKeyHash(aHashNumber
)
1325 mMutationCount(aTable
.mMutationCount
)
1328 MOZ_ASSERT(isLive());
1331 bool isLive() const { return isLiveHash(mKeyHash
); }
1334 AddPtr() : mKeyHash(0) {}
1337 // A hash table iterator that (mostly) doesn't allow table modifications.
1338 // As with Ptr/AddPtr, Iterator objects must not be used after any mutating
1339 // hash table operation unless the |generation()| is tested.
1341 void moveToNextLiveEntry() {
1342 while (++mCur
< mEnd
&& !mCur
.isLive()) {
1348 friend class HashTable
;
1350 explicit Iterator(const HashTable
& aTable
)
1351 : mCur(aTable
.slotForIndex(0)),
1352 mEnd(aTable
.slotForIndex(aTable
.capacity()))
1356 mMutationCount(aTable
.mMutationCount
),
1357 mGeneration(aTable
.generation()),
1361 if (!done() && !mCur
.isLive()) {
1362 moveToNextLiveEntry();
1369 const HashTable
& mTable
;
1370 uint64_t mMutationCount
;
1371 Generation mGeneration
;
1377 MOZ_ASSERT(mGeneration
== mTable
.generation());
1378 MOZ_ASSERT(mMutationCount
== mTable
.mMutationCount
);
1379 return mCur
== mEnd
;
1383 MOZ_ASSERT(!done());
1384 MOZ_ASSERT(mValidEntry
);
1385 MOZ_ASSERT(mGeneration
== mTable
.generation());
1386 MOZ_ASSERT(mMutationCount
== mTable
.mMutationCount
);
1391 MOZ_ASSERT(!done());
1392 MOZ_ASSERT(mGeneration
== mTable
.generation());
1393 MOZ_ASSERT(mMutationCount
== mTable
.mMutationCount
);
1394 moveToNextLiveEntry();
1401 // A hash table iterator that permits modification, removal and rekeying.
1402 // Since rehashing when elements were removed during enumeration would be
1403 // bad, it is postponed until the ModIterator is destructed. Since the
1404 // ModIterator's destructor touches the hash table, the user must ensure
1405 // that the hash table is still alive when the destructor runs.
1406 class ModIterator
: public Iterator
{
1407 friend class HashTable
;
1413 // ModIterator is movable but not copyable.
1414 ModIterator(const ModIterator
&) = delete;
1415 void operator=(const ModIterator
&) = delete;
1418 explicit ModIterator(HashTable
& aTable
)
1419 : Iterator(aTable
), mTable(aTable
), mRekeyed(false), mRemoved(false) {}
1422 MOZ_IMPLICIT
ModIterator(ModIterator
&& aOther
)
1424 mTable(aOther
.mTable
),
1425 mRekeyed(aOther
.mRekeyed
),
1426 mRemoved(aOther
.mRemoved
) {
1427 aOther
.mRekeyed
= false;
1428 aOther
.mRemoved
= false;
1431 // Removes the current element from the table, leaving |get()|
1432 // invalid until the next call to |next()|.
1434 mTable
.remove(this->mCur
);
1437 this->mValidEntry
= false;
1438 this->mMutationCount
= mTable
.mMutationCount
;
1442 NonConstT
& getMutable() {
1443 MOZ_ASSERT(!this->done());
1444 MOZ_ASSERT(this->mValidEntry
);
1445 MOZ_ASSERT(this->mGeneration
== this->Iterator::mTable
.generation());
1446 MOZ_ASSERT(this->mMutationCount
== this->Iterator::mTable
.mMutationCount
);
1447 return this->mCur
.getMutable();
1450 // Removes the current element and re-inserts it into the table with
1451 // a new key at the new Lookup position. |get()| is invalid after
1452 // this operation until the next call to |next()|.
1453 void rekey(const Lookup
& l
, const Key
& k
) {
1454 MOZ_ASSERT(&k
!= &HashPolicy::getKey(this->mCur
.get()));
1455 Ptr
p(this->mCur
, mTable
);
1456 mTable
.rekeyWithoutRehash(p
, l
, k
);
1459 this->mValidEntry
= false;
1460 this->mMutationCount
= mTable
.mMutationCount
;
1464 void rekey(const Key
& k
) { rekey(k
, k
); }
1466 // Potentially rehashes the table.
1470 mTable
.infallibleRehashIfOverloaded();
1479 // Range is similar to Iterator, but uses different terminology.
1481 friend class HashTable
;
1486 explicit Range(const HashTable
& table
) : mIter(table
) {}
1489 bool empty() const { return mIter
.done(); }
1491 T
& front() const { return mIter
.get(); }
1493 void popFront() { return mIter
.next(); }
1496 // Enum is similar to ModIterator, but uses different terminology.
1500 // Enum is movable but not copyable.
1501 Enum(const Enum
&) = delete;
1502 void operator=(const Enum
&) = delete;
1505 template <class Map
>
1506 explicit Enum(Map
& map
) : mIter(map
.mImpl
) {}
1508 MOZ_IMPLICIT
Enum(Enum
&& other
) : mIter(std::move(other
.mIter
)) {}
1510 bool empty() const { return mIter
.done(); }
1512 T
& front() const { return mIter
.get(); }
1514 void popFront() { return mIter
.next(); }
1516 void removeFront() { mIter
.remove(); }
1518 NonConstT
& mutableFront() { return mIter
.getMutable(); }
1520 void rekeyFront(const Lookup
& aLookup
, const Key
& aKey
) {
1521 mIter
.rekey(aLookup
, aKey
);
1524 void rekeyFront(const Key
& aKey
) { mIter
.rekey(aKey
); }
1527 // HashTable is movable
1528 HashTable(HashTable
&& aRhs
) : AllocPolicy(std::move(aRhs
)) { moveFrom(aRhs
); }
1529 HashTable
& operator=(HashTable
&& aRhs
) {
1530 MOZ_ASSERT(this != &aRhs
, "self-move assignment is prohibited");
1532 destroyTable(*this, mTable
, capacity());
1534 AllocPolicy::operator=(std::move(aRhs
));
1540 void moveFrom(HashTable
& aRhs
) {
1542 mHashShift
= aRhs
.mHashShift
;
1543 mTable
= aRhs
.mTable
;
1544 mEntryCount
= aRhs
.mEntryCount
;
1545 mRemovedCount
= aRhs
.mRemovedCount
;
1547 mMutationCount
= aRhs
.mMutationCount
;
1548 mEntered
= aRhs
.mEntered
;
1550 aRhs
.mTable
= nullptr;
1551 aRhs
.clearAndCompact();
1554 // HashTable is not copyable or assignable
1555 HashTable(const HashTable
&) = delete;
1556 void operator=(const HashTable
&) = delete;
1558 static const uint32_t CAP_BITS
= 30;
1561 uint64_t mGen
: 56; // entry storage generation number
1562 uint64_t mHashShift
: 8; // multiplicative hash shift
1563 char* mTable
; // entry storage
1564 uint32_t mEntryCount
; // number of entries in mTable
1565 uint32_t mRemovedCount
; // removed entry sentinels in mTable
1568 uint64_t mMutationCount
;
1569 mutable bool mEntered
;
1572 // The default initial capacity is 32 (enough to hold 16 elements), but it
1573 // can be as low as 4.
1574 static const uint32_t sDefaultLen
= 16;
1575 static const uint32_t sMinCapacity
= 4;
1576 // See the comments in HashTableEntry about this value.
1577 static_assert(sMinCapacity
>= 4, "too-small sMinCapacity breaks assumptions");
1578 static const uint32_t sMaxInit
= 1u << (CAP_BITS
- 1);
1579 static const uint32_t sMaxCapacity
= 1u << CAP_BITS
;
1581 // Hash-table alpha is conceptually a fraction, but to avoid floating-point
1582 // math we implement it as a ratio of integers.
1583 static const uint8_t sAlphaDenominator
= 4;
1584 static const uint8_t sMinAlphaNumerator
= 1; // min alpha: 1/4
1585 static const uint8_t sMaxAlphaNumerator
= 3; // max alpha: 3/4
1587 static const HashNumber sFreeKey
= Entry::sFreeKey
;
1588 static const HashNumber sRemovedKey
= Entry::sRemovedKey
;
1589 static const HashNumber sCollisionBit
= Entry::sCollisionBit
;
1591 static uint32_t bestCapacity(uint32_t aLen
) {
1593 (sMaxInit
* sAlphaDenominator
) / sAlphaDenominator
== sMaxInit
,
1594 "multiplication in numerator below could overflow");
1596 sMaxInit
* sAlphaDenominator
<= UINT32_MAX
- sMaxAlphaNumerator
,
1597 "numerator calculation below could potentially overflow");
1599 // Callers should ensure this is true.
1600 MOZ_ASSERT(aLen
<= sMaxInit
);
1602 // Compute the smallest capacity allowing |aLen| elements to be
1603 // inserted without rehashing: ceil(aLen / max-alpha). (Ceiling
1604 // integral division: <http://stackoverflow.com/a/2745086>.)
1605 uint32_t capacity
= (aLen
* sAlphaDenominator
+ sMaxAlphaNumerator
- 1) /
1607 capacity
= (capacity
< sMinCapacity
) ? sMinCapacity
: RoundUpPow2(capacity
);
1609 MOZ_ASSERT(capacity
>= aLen
);
1610 MOZ_ASSERT(capacity
<= sMaxCapacity
);
1615 static uint32_t hashShift(uint32_t aLen
) {
1616 // Reject all lengths whose initial computed capacity would exceed
1617 // sMaxCapacity. Round that maximum aLen down to the nearest power of two
1618 // for speedier code.
1619 if (MOZ_UNLIKELY(aLen
> sMaxInit
)) {
1620 MOZ_CRASH("initial length is too large");
1623 return kHashNumberBits
- mozilla::CeilingLog2(bestCapacity(aLen
));
1626 static bool isLiveHash(HashNumber aHash
) { return Entry::isLiveHash(aHash
); }
1628 static HashNumber
prepareHash(const Lookup
& aLookup
) {
1629 HashNumber keyHash
= ScrambleHashCode(HashPolicy::hash(aLookup
));
1631 // Avoid reserved hash codes.
1632 if (!isLiveHash(keyHash
)) {
1633 keyHash
-= (sRemovedKey
+ 1);
1635 return keyHash
& ~sCollisionBit
;
1638 enum FailureBehavior
{ DontReportFailure
= false, ReportFailure
= true };
1640 // Fake a struct that we're going to alloc. See the comments in
1641 // HashTableEntry about how the table is laid out, and why it's safe.
1643 unsigned char c
[sizeof(HashNumber
) + sizeof(typename
Entry::NonConstT
)];
1646 static char* createTable(AllocPolicy
& aAllocPolicy
, uint32_t aCapacity
,
1647 FailureBehavior aReportFailure
= ReportFailure
) {
1650 ? aAllocPolicy
.template pod_malloc
<FakeSlot
>(aCapacity
)
1651 : aAllocPolicy
.template maybe_pod_malloc
<FakeSlot
>(aCapacity
);
1653 MOZ_ASSERT((reinterpret_cast<uintptr_t>(fake
) % Entry::kMinimumAlignment
) ==
1656 char* table
= reinterpret_cast<char*>(fake
);
1658 forEachSlot(table
, aCapacity
, [&](Slot
& slot
) {
1659 *slot
.mKeyHash
= sFreeKey
;
1660 new (KnownNotNull
, slot
.toEntry()) Entry();
1666 static void destroyTable(AllocPolicy
& aAllocPolicy
, char* aOldTable
,
1667 uint32_t aCapacity
) {
1668 forEachSlot(aOldTable
, aCapacity
, [&](const Slot
& slot
) {
1669 if (slot
.isLive()) {
1670 slot
.toEntry()->destroyStoredT();
1673 freeTable(aAllocPolicy
, aOldTable
, aCapacity
);
1676 static void freeTable(AllocPolicy
& aAllocPolicy
, char* aOldTable
,
1677 uint32_t aCapacity
) {
1678 FakeSlot
* fake
= reinterpret_cast<FakeSlot
*>(aOldTable
);
1679 aAllocPolicy
.free_(fake
, aCapacity
);
1683 HashTable(AllocPolicy aAllocPolicy
, uint32_t aLen
)
1684 : AllocPolicy(std::move(aAllocPolicy
)),
1686 mHashShift(hashShift(aLen
)),
1698 explicit HashTable(AllocPolicy aAllocPolicy
)
1699 : HashTable(aAllocPolicy
, sDefaultLen
) {}
1703 destroyTable(*this, mTable
, capacity());
1708 HashNumber
hash1(HashNumber aHash0
) const { return aHash0
>> mHashShift
; }
1712 HashNumber mSizeMask
;
1715 DoubleHash
hash2(HashNumber aCurKeyHash
) const {
1716 uint32_t sizeLog2
= kHashNumberBits
- mHashShift
;
1717 DoubleHash dh
= {((aCurKeyHash
<< sizeLog2
) >> mHashShift
) | 1,
1718 (HashNumber(1) << sizeLog2
) - 1};
1722 static HashNumber
applyDoubleHash(HashNumber aHash1
,
1723 const DoubleHash
& aDoubleHash
) {
1724 return WrappingSubtract(aHash1
, aDoubleHash
.mHash2
) & aDoubleHash
.mSizeMask
;
1727 static MOZ_ALWAYS_INLINE
bool match(T
& aEntry
, const Lookup
& aLookup
) {
1728 return HashPolicy::match(HashPolicy::getKey(aEntry
), aLookup
);
1731 enum LookupReason
{ ForNonAdd
, ForAdd
};
1733 Slot
slotForIndex(HashNumber aIndex
) const {
1734 auto hashes
= reinterpret_cast<HashNumber
*>(mTable
);
1735 auto entries
= reinterpret_cast<Entry
*>(&hashes
[capacity()]);
1736 return Slot(&entries
[aIndex
], &hashes
[aIndex
]);
1739 // Warning: in order for readonlyThreadsafeLookup() to be safe this
1740 // function must not modify the table in any way when Reason==ForNonAdd.
1741 template <LookupReason Reason
>
1742 MOZ_ALWAYS_INLINE Slot
lookup(const Lookup
& aLookup
,
1743 HashNumber aKeyHash
) const {
1744 MOZ_ASSERT(isLiveHash(aKeyHash
));
1745 MOZ_ASSERT(!(aKeyHash
& sCollisionBit
));
1748 // Compute the primary hash address.
1749 HashNumber h1
= hash1(aKeyHash
);
1750 Slot slot
= slotForIndex(h1
);
1752 // Miss: return space for a new entry.
1753 if (slot
.isFree()) {
1757 // Hit: return entry.
1758 if (slot
.matchHash(aKeyHash
) && match(slot
.get(), aLookup
)) {
1762 // Collision: double hash.
1763 DoubleHash dh
= hash2(aKeyHash
);
1765 // Save the first removed entry pointer so we can recycle later.
1766 Maybe
<Slot
> firstRemoved
;
1769 if (Reason
== ForAdd
&& !firstRemoved
) {
1770 if (MOZ_UNLIKELY(slot
.isRemoved())) {
1771 firstRemoved
.emplace(slot
);
1773 slot
.setCollision();
1777 h1
= applyDoubleHash(h1
, dh
);
1779 slot
= slotForIndex(h1
);
1780 if (slot
.isFree()) {
1781 return firstRemoved
.refOr(slot
);
1784 if (slot
.matchHash(aKeyHash
) && match(slot
.get(), aLookup
)) {
1790 // This is a copy of lookup() hardcoded to the assumptions:
1791 // 1. the lookup is for an add;
1792 // 2. the key, whose |keyHash| has been passed, is not in the table.
1793 Slot
findNonLiveSlot(HashNumber aKeyHash
) {
1794 MOZ_ASSERT(!(aKeyHash
& sCollisionBit
));
1797 // We assume 'aKeyHash' has already been distributed.
1799 // Compute the primary hash address.
1800 HashNumber h1
= hash1(aKeyHash
);
1801 Slot slot
= slotForIndex(h1
);
1803 // Miss: return space for a new entry.
1804 if (!slot
.isLive()) {
1808 // Collision: double hash.
1809 DoubleHash dh
= hash2(aKeyHash
);
1812 slot
.setCollision();
1814 h1
= applyDoubleHash(h1
, dh
);
1816 slot
= slotForIndex(h1
);
1817 if (!slot
.isLive()) {
1823 enum RebuildStatus
{ NotOverloaded
, Rehashed
, RehashFailed
};
1825 RebuildStatus
changeTableSize(
1826 uint32_t newCapacity
, FailureBehavior aReportFailure
= ReportFailure
) {
1827 MOZ_ASSERT(IsPowerOfTwo(newCapacity
));
1828 MOZ_ASSERT(!!mTable
== !!capacity());
1830 // Look, but don't touch, until we succeed in getting new entry store.
1831 char* oldTable
= mTable
;
1832 uint32_t oldCapacity
= capacity();
1833 uint32_t newLog2
= mozilla::CeilingLog2(newCapacity
);
1835 if (MOZ_UNLIKELY(newCapacity
> sMaxCapacity
)) {
1836 if (aReportFailure
) {
1837 this->reportAllocOverflow();
1839 return RehashFailed
;
1842 char* newTable
= createTable(*this, newCapacity
, aReportFailure
);
1844 return RehashFailed
;
1847 // We can't fail from here on, so update table parameters.
1848 mHashShift
= kHashNumberBits
- newLog2
;
1853 // Copy only live entries, leaving removed ones behind.
1854 forEachSlot(oldTable
, oldCapacity
, [&](Slot
& slot
) {
1855 if (slot
.isLive()) {
1856 HashNumber hn
= slot
.getKeyHash();
1857 findNonLiveSlot(hn
).setLive(
1858 hn
, std::move(const_cast<typename
Entry::NonConstT
&>(slot
.get())));
1864 // All entries have been destroyed, no need to destroyTable.
1865 freeTable(*this, oldTable
, oldCapacity
);
1869 RebuildStatus
rehashIfOverloaded(
1870 FailureBehavior aReportFailure
= ReportFailure
) {
1871 static_assert(sMaxCapacity
<= UINT32_MAX
/ sMaxAlphaNumerator
,
1872 "multiplication below could overflow");
1874 // Note: if capacity() is zero, this will always succeed, which is
1876 bool overloaded
= mEntryCount
+ mRemovedCount
>=
1877 capacity() * sMaxAlphaNumerator
/ sAlphaDenominator
;
1880 return NotOverloaded
;
1883 // Succeed if a quarter or more of all entries are removed. Note that this
1884 // always succeeds if capacity() == 0 (i.e. entry storage has not been
1885 // allocated), which is what we want, because it means changeTableSize()
1886 // will allocate the requested capacity rather than doubling it.
1887 bool manyRemoved
= mRemovedCount
>= (capacity() >> 2);
1888 uint32_t newCapacity
= manyRemoved
? rawCapacity() : rawCapacity() * 2;
1889 return changeTableSize(newCapacity
, aReportFailure
);
1892 void infallibleRehashIfOverloaded() {
1893 if (rehashIfOverloaded(DontReportFailure
) == RehashFailed
) {
1894 rehashTableInPlace();
1898 void remove(Slot
& aSlot
) {
1901 if (aSlot
.hasCollision()) {
1913 void shrinkIfUnderloaded() {
1914 static_assert(sMaxCapacity
<= UINT32_MAX
/ sMinAlphaNumerator
,
1915 "multiplication below could overflow");
1917 capacity() > sMinCapacity
&&
1918 mEntryCount
<= capacity() * sMinAlphaNumerator
/ sAlphaDenominator
;
1921 (void)changeTableSize(capacity() / 2, DontReportFailure
);
1925 // This is identical to changeTableSize(currentSize), but without requiring
1926 // a second table. We do this by recycling the collision bits to tell us if
1927 // the element is already inserted or still waiting to be inserted. Since
1928 // already-inserted elements win any conflicts, we get the same table as we
1929 // would have gotten through random insertion order.
1930 void rehashTableInPlace() {
1933 forEachSlot(mTable
, capacity(), [&](Slot
& slot
) { slot
.unsetCollision(); });
1934 for (uint32_t i
= 0; i
< capacity();) {
1935 Slot src
= slotForIndex(i
);
1937 if (!src
.isLive() || src
.hasCollision()) {
1942 HashNumber keyHash
= src
.getKeyHash();
1943 HashNumber h1
= hash1(keyHash
);
1944 DoubleHash dh
= hash2(keyHash
);
1945 Slot tgt
= slotForIndex(h1
);
1947 if (!tgt
.hasCollision()) {
1953 h1
= applyDoubleHash(h1
, dh
);
1954 tgt
= slotForIndex(h1
);
1958 // TODO: this algorithm leaves collision bits on *all* elements, even if
1959 // they are on no collision path. We have the option of setting the
1960 // collision bits correctly on a subsequent pass or skipping the rehash
1961 // unless we are totally filled with tombstones: benchmark to find out
1962 // which approach is best.
1965 // Note: |aLookup| may be a reference to a piece of |u|, so this function
1966 // must take care not to use |aLookup| after moving |u|.
1968 // Prefer to use putNewInfallible; this function does not check
1970 template <typename
... Args
>
1971 void putNewInfallibleInternal(const Lookup
& aLookup
, Args
&&... aArgs
) {
1974 HashNumber keyHash
= prepareHash(aLookup
);
1975 Slot slot
= findNonLiveSlot(keyHash
);
1977 if (slot
.isRemoved()) {
1979 keyHash
|= sCollisionBit
;
1982 slot
.setLive(keyHash
, std::forward
<Args
>(aArgs
)...);
1991 forEachSlot(mTable
, capacity(), [&](Slot
& slot
) { slot
.clear(); });
1999 // Resize the table down to the smallest capacity that doesn't overload the
2000 // table. Since we call shrinkIfUnderloaded() on every remove, you only need
2001 // to call this after a bulk removal of items done without calling remove().
2004 // Free the entry storage.
2005 freeTable(*this, mTable
, capacity());
2007 mHashShift
= hashShift(0); // gives minimum capacity on regrowth
2013 uint32_t bestCapacity
= this->bestCapacity(mEntryCount
);
2014 MOZ_ASSERT(bestCapacity
<= capacity());
2016 if (bestCapacity
< capacity()) {
2017 (void)changeTableSize(bestCapacity
, DontReportFailure
);
2021 void clearAndCompact() {
2026 [[nodiscard
]] bool reserve(uint32_t aLen
) {
2031 if (MOZ_UNLIKELY(aLen
> sMaxInit
)) {
2035 uint32_t bestCapacity
= this->bestCapacity(aLen
);
2036 if (bestCapacity
<= capacity()) {
2037 return true; // Capacity is already sufficient.
2040 RebuildStatus status
= changeTableSize(bestCapacity
, ReportFailure
);
2041 MOZ_ASSERT(status
!= NotOverloaded
);
2042 return status
!= RehashFailed
;
2045 Iterator
iter() const { return Iterator(*this); }
2047 ModIterator
modIter() { return ModIterator(*this); }
2049 Range
all() const { return Range(*this); }
2051 bool empty() const { return mEntryCount
== 0; }
2053 uint32_t count() const { return mEntryCount
; }
2055 uint32_t rawCapacity() const { return 1u << (kHashNumberBits
- mHashShift
); }
2057 uint32_t capacity() const { return mTable
? rawCapacity() : 0; }
2059 Generation
generation() const { return Generation(mGen
); }
2061 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf
) const {
2062 return aMallocSizeOf(mTable
);
2065 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
2066 return aMallocSizeOf(this) + shallowSizeOfExcludingThis(aMallocSizeOf
);
2069 MOZ_ALWAYS_INLINE Ptr
readonlyThreadsafeLookup(const Lookup
& aLookup
) const {
2070 if (empty() || !HasHash
<HashPolicy
>(aLookup
)) {
2073 HashNumber keyHash
= prepareHash(aLookup
);
2074 return Ptr(lookup
<ForNonAdd
>(aLookup
, keyHash
), *this);
2077 MOZ_ALWAYS_INLINE Ptr
lookup(const Lookup
& aLookup
) const {
2078 ReentrancyGuard
g(*this);
2079 return readonlyThreadsafeLookup(aLookup
);
2082 MOZ_ALWAYS_INLINE AddPtr
lookupForAdd(const Lookup
& aLookup
) {
2083 ReentrancyGuard
g(*this);
2084 if (!EnsureHash
<HashPolicy
>(aLookup
)) {
2088 HashNumber keyHash
= prepareHash(aLookup
);
2091 return AddPtr(*this, keyHash
);
2094 // Directly call the constructor in the return statement to avoid
2095 // excess copying when building with Visual Studio 2017.
2097 return AddPtr(lookup
<ForAdd
>(aLookup
, keyHash
), *this, keyHash
);
2100 template <typename
... Args
>
2101 [[nodiscard
]] bool add(AddPtr
& aPtr
, Args
&&... aArgs
) {
2102 ReentrancyGuard
g(*this);
2103 MOZ_ASSERT_IF(aPtr
.isValid(), mTable
);
2104 MOZ_ASSERT_IF(aPtr
.isValid(), aPtr
.mTable
== this);
2105 MOZ_ASSERT(!aPtr
.found());
2106 MOZ_ASSERT(!(aPtr
.mKeyHash
& sCollisionBit
));
2108 // Check for error from ensureHash() here.
2109 if (!aPtr
.isLive()) {
2113 MOZ_ASSERT(aPtr
.mGeneration
== generation());
2115 MOZ_ASSERT(aPtr
.mMutationCount
== mMutationCount
);
2118 if (!aPtr
.isValid()) {
2119 MOZ_ASSERT(!mTable
&& mEntryCount
== 0);
2120 uint32_t newCapacity
= rawCapacity();
2121 RebuildStatus status
= changeTableSize(newCapacity
, ReportFailure
);
2122 MOZ_ASSERT(status
!= NotOverloaded
);
2123 if (status
== RehashFailed
) {
2126 aPtr
.mSlot
= findNonLiveSlot(aPtr
.mKeyHash
);
2128 } else if (aPtr
.mSlot
.isRemoved()) {
2129 // Changing an entry from removed to live does not affect whether we are
2130 // overloaded and can be handled separately.
2131 if (!this->checkSimulatedOOM()) {
2135 aPtr
.mKeyHash
|= sCollisionBit
;
2138 // Preserve the validity of |aPtr.mSlot|.
2139 RebuildStatus status
= rehashIfOverloaded();
2140 if (status
== RehashFailed
) {
2143 if (status
== NotOverloaded
&& !this->checkSimulatedOOM()) {
2146 if (status
== Rehashed
) {
2147 aPtr
.mSlot
= findNonLiveSlot(aPtr
.mKeyHash
);
2151 aPtr
.mSlot
.setLive(aPtr
.mKeyHash
, std::forward
<Args
>(aArgs
)...);
2155 aPtr
.mGeneration
= generation();
2156 aPtr
.mMutationCount
= mMutationCount
;
2161 // Note: |aLookup| may be a reference to a piece of |u|, so this function
2162 // must take care not to use |aLookup| after moving |u|.
2163 template <typename
... Args
>
2164 void putNewInfallible(const Lookup
& aLookup
, Args
&&... aArgs
) {
2165 MOZ_ASSERT(!lookup(aLookup
).found());
2166 ReentrancyGuard
g(*this);
2167 putNewInfallibleInternal(aLookup
, std::forward
<Args
>(aArgs
)...);
2170 // Note: |aLookup| may be alias arguments in |aArgs|, so this function must
2171 // take care not to use |aLookup| after moving |aArgs|.
2172 template <typename
... Args
>
2173 [[nodiscard
]] bool putNew(const Lookup
& aLookup
, Args
&&... aArgs
) {
2174 if (!this->checkSimulatedOOM()) {
2177 if (!EnsureHash
<HashPolicy
>(aLookup
)) {
2180 if (rehashIfOverloaded() == RehashFailed
) {
2183 putNewInfallible(aLookup
, std::forward
<Args
>(aArgs
)...);
2187 // Note: |aLookup| may be a reference to a piece of |u|, so this function
2188 // must take care not to use |aLookup| after moving |u|.
2189 template <typename
... Args
>
2190 [[nodiscard
]] bool relookupOrAdd(AddPtr
& aPtr
, const Lookup
& aLookup
,
2192 // Check for error from ensureHash() here.
2193 if (!aPtr
.isLive()) {
2197 aPtr
.mGeneration
= generation();
2198 aPtr
.mMutationCount
= mMutationCount
;
2201 ReentrancyGuard
g(*this);
2202 // Check that aLookup has not been destroyed.
2203 MOZ_ASSERT(prepareHash(aLookup
) == aPtr
.mKeyHash
);
2204 aPtr
.mSlot
= lookup
<ForAdd
>(aLookup
, aPtr
.mKeyHash
);
2209 // Clear aPtr so it's invalid; add() will allocate storage and redo the
2211 aPtr
.mSlot
= Slot(nullptr, nullptr);
2213 return add(aPtr
, std::forward
<Args
>(aArgs
)...);
2216 void remove(Ptr aPtr
) {
2218 ReentrancyGuard
g(*this);
2219 MOZ_ASSERT(aPtr
.found());
2220 MOZ_ASSERT(aPtr
.mGeneration
== generation());
2222 shrinkIfUnderloaded();
2225 void rekeyWithoutRehash(Ptr aPtr
, const Lookup
& aLookup
, const Key
& aKey
) {
2227 ReentrancyGuard
g(*this);
2228 MOZ_ASSERT(aPtr
.found());
2229 MOZ_ASSERT(aPtr
.mGeneration
== generation());
2230 typename HashTableEntry
<T
>::NonConstT
t(std::move(*aPtr
));
2231 HashPolicy::setKey(t
, const_cast<Key
&>(aKey
));
2233 putNewInfallibleInternal(aLookup
, std::move(t
));
2236 void rekeyAndMaybeRehash(Ptr aPtr
, const Lookup
& aLookup
, const Key
& aKey
) {
2237 rekeyWithoutRehash(aPtr
, aLookup
, aKey
);
2238 infallibleRehashIfOverloaded();
2242 } // namespace detail
2243 } // namespace mozilla
2245 #endif /* mozilla_HashTable_h */