Update configs. IGNORE BROKEN CHANGESETS CLOSED TREE NO BUG a=release ba=release
[gecko.git] / mfbt / UniquePtr.h
blob9b51e58db318cdbe2e07a2f0fb293e20e59e2b0e
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* Smart pointer managing sole ownership of a resource. */
9 #ifndef mozilla_UniquePtr_h
10 #define mozilla_UniquePtr_h
12 #include <memory>
13 #include <type_traits>
14 #include <utility>
16 #include "mozilla/Assertions.h"
17 #include "mozilla/Attributes.h"
18 #include "mozilla/CompactPair.h"
19 #include "mozilla/Compiler.h"
21 namespace mozilla {
23 template <typename T>
24 class DefaultDelete;
25 template <typename T, class D = DefaultDelete<T>>
26 class UniquePtr;
28 } // namespace mozilla
30 namespace mozilla {
32 namespace detail {
34 struct HasPointerTypeHelper {
35 template <class U>
36 static double Test(...);
37 template <class U>
38 static char Test(typename U::pointer* = 0);
41 template <class T>
42 class HasPointerType
43 : public std::integral_constant<bool, sizeof(HasPointerTypeHelper::Test<T>(
44 0)) == 1> {};
46 template <class T, class D, bool = HasPointerType<D>::value>
47 struct PointerTypeImpl {
48 typedef typename D::pointer Type;
51 template <class T, class D>
52 struct PointerTypeImpl<T, D, false> {
53 typedef T* Type;
56 template <class T, class D>
57 struct PointerType {
58 typedef typename PointerTypeImpl<T, std::remove_reference_t<D>>::Type Type;
61 } // namespace detail
63 /**
64 * UniquePtr is a smart pointer that wholly owns a resource. Ownership may be
65 * transferred out of a UniquePtr through explicit action, but otherwise the
66 * resource is destroyed when the UniquePtr is destroyed.
68 * UniquePtr is similar to C++98's std::auto_ptr, but it improves upon auto_ptr
69 * in one crucial way: it's impossible to copy a UniquePtr. Copying an auto_ptr
70 * obviously *can't* copy ownership of its singly-owned resource. So what
71 * happens if you try to copy one? Bizarrely, ownership is implicitly
72 * *transferred*, preserving single ownership but breaking code that assumes a
73 * copy of an object is identical to the original. (This is why auto_ptr is
74 * prohibited in STL containers.)
76 * UniquePtr solves this problem by being *movable* rather than copyable.
77 * Instead of passing a |UniquePtr u| directly to the constructor or assignment
78 * operator, you pass |Move(u)|. In doing so you indicate that you're *moving*
79 * ownership out of |u|, into the target of the construction/assignment. After
80 * the transfer completes, |u| contains |nullptr| and may be safely destroyed.
81 * This preserves single ownership but also allows UniquePtr to be moved by
82 * algorithms that have been made move-safe. (Note: if |u| is instead a
83 * temporary expression, don't use |Move()|: just pass the expression, because
84 * it's already move-ready. For more information see Move.h.)
86 * UniquePtr is also better than std::auto_ptr in that the deletion operation is
87 * customizable. An optional second template parameter specifies a class that
88 * (through its operator()(T*)) implements the desired deletion policy. If no
89 * policy is specified, mozilla::DefaultDelete<T> is used -- which will either
90 * |delete| or |delete[]| the resource, depending whether the resource is an
91 * array. Custom deletion policies ideally should be empty classes (no member
92 * fields, no member fields in base classes, no virtual methods/inheritance),
93 * because then UniquePtr can be just as efficient as a raw pointer.
95 * Use of UniquePtr proceeds like so:
97 * UniquePtr<int> g1; // initializes to nullptr
98 * g1.reset(new int); // switch resources using reset()
99 * g1 = nullptr; // clears g1, deletes the int
101 * UniquePtr<int> g2(new int); // owns that int
102 * int* p = g2.release(); // g2 leaks its int -- still requires deletion
103 * delete p; // now freed
105 * struct S { int x; S(int x) : x(x) {} };
106 * UniquePtr<S> g3, g4(new S(5));
107 * g3 = std::move(g4); // g3 owns the S, g4 cleared
108 * S* p = g3.get(); // g3 still owns |p|
109 * assert(g3->x == 5); // operator-> works (if .get() != nullptr)
110 * assert((*g3).x == 5); // also operator* (again, if not cleared)
111 * std::swap(g3, g4); // g4 now owns the S, g3 cleared
112 * g3.swap(g4); // g3 now owns the S, g4 cleared
113 * UniquePtr<S> g5(std::move(g3)); // g5 owns the S, g3 cleared
114 * g5.reset(); // deletes the S, g5 cleared
116 * struct FreePolicy { void operator()(void* p) { free(p); } };
117 * UniquePtr<int, FreePolicy> g6(static_cast<int*>(malloc(sizeof(int))));
118 * int* ptr = g6.get();
119 * g6 = nullptr; // calls free(ptr)
121 * Now, carefully note a few things you *can't* do:
123 * UniquePtr<int> b1;
124 * b1 = new int; // BAD: can only assign another UniquePtr
125 * int* ptr = b1; // BAD: no auto-conversion to pointer, use get()
127 * UniquePtr<int> b2(b1); // BAD: can't copy a UniquePtr
128 * UniquePtr<int> b3 = b1; // BAD: can't copy-assign a UniquePtr
130 * (Note that changing a UniquePtr to store a direct |new| expression is
131 * permitted, but usually you should use MakeUnique, defined at the end of this
132 * header.)
134 * A few miscellaneous notes:
136 * UniquePtr, when not instantiated for an array type, can be move-constructed
137 * and move-assigned, not only from itself but from "derived" UniquePtr<U, E>
138 * instantiations where U converts to T and E converts to D. If you want to use
139 * this, you're going to have to specify a deletion policy for both UniquePtr
140 * instantations, and T pretty much has to have a virtual destructor. In other
141 * words, this doesn't work:
143 * struct Base { virtual ~Base() {} };
144 * struct Derived : Base {};
146 * UniquePtr<Base> b1;
147 * // BAD: DefaultDelete<Base> and DefaultDelete<Derived> don't interconvert
148 * UniquePtr<Derived> d1(std::move(b));
150 * UniquePtr<Base> b2;
151 * UniquePtr<Derived, DefaultDelete<Base>> d2(std::move(b2)); // okay
153 * UniquePtr is specialized for array types. Specializing with an array type
154 * creates a smart-pointer version of that array -- not a pointer to such an
155 * array.
157 * UniquePtr<int[]> arr(new int[5]);
158 * arr[0] = 4;
160 * What else is different? Deletion of course uses |delete[]|. An operator[]
161 * is provided. Functionality that doesn't make sense for arrays is removed.
162 * The constructors and mutating methods only accept array pointers (not T*, U*
163 * that converts to T*, or UniquePtr<U[]> or UniquePtr<U>) or |nullptr|.
165 * It's perfectly okay for a function to return a UniquePtr. This transfers
166 * the UniquePtr's sole ownership of the data, to the fresh UniquePtr created
167 * in the calling function, that will then solely own that data. Such functions
168 * can return a local variable UniquePtr, |nullptr|, |UniquePtr(ptr)| where
169 * |ptr| is a |T*|, or a UniquePtr |Move()|'d from elsewhere.
171 * UniquePtr will commonly be a member of a class, with lifetime equivalent to
172 * that of that class. If you want to expose the related resource, you could
173 * expose a raw pointer via |get()|, but ownership of a raw pointer is
174 * inherently unclear. So it's better to expose a |const UniquePtr&| instead.
175 * This prohibits mutation but still allows use of |get()| when needed (but
176 * operator-> is preferred). Of course, you can only use this smart pointer as
177 * long as the enclosing class instance remains live -- no different than if you
178 * exposed the |get()| raw pointer.
180 * To pass a UniquePtr-managed resource as a pointer, use a |const UniquePtr&|
181 * argument. To specify an inout parameter (where the method may or may not
182 * take ownership of the resource, or reset it), or to specify an out parameter
183 * (where simply returning a |UniquePtr| isn't possible), use a |UniquePtr&|
184 * argument. To unconditionally transfer ownership of a UniquePtr
185 * into a method, use a |UniquePtr| argument. To conditionally transfer
186 * ownership of a resource into a method, should the method want it, use a
187 * |UniquePtr&&| argument.
189 template <typename T, class D>
190 class UniquePtr {
191 public:
192 typedef T ElementType;
193 typedef D DeleterType;
194 typedef typename detail::PointerType<T, DeleterType>::Type Pointer;
196 private:
197 mozilla::CompactPair<Pointer, DeleterType> mTuple;
199 Pointer& ptr() { return mTuple.first(); }
200 const Pointer& ptr() const { return mTuple.first(); }
202 DeleterType& del() { return mTuple.second(); }
203 const DeleterType& del() const { return mTuple.second(); }
205 public:
207 * Construct a UniquePtr containing |nullptr|.
209 constexpr UniquePtr() : mTuple(static_cast<Pointer>(nullptr), DeleterType()) {
210 static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
211 static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
215 * Construct a UniquePtr containing |aPtr|.
217 explicit UniquePtr(Pointer aPtr) : mTuple(aPtr, DeleterType()) {
218 static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
219 static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
222 UniquePtr(Pointer aPtr,
223 std::conditional_t<std::is_reference_v<D>, D, const D&> aD1)
224 : mTuple(aPtr, aD1) {}
226 UniquePtr(Pointer aPtr, std::remove_reference_t<D>&& aD2)
227 : mTuple(aPtr, std::move(aD2)) {
228 static_assert(!std::is_reference_v<D>,
229 "rvalue deleter can't be stored by reference");
232 UniquePtr(UniquePtr&& aOther)
233 : mTuple(aOther.release(),
234 std::forward<DeleterType>(aOther.get_deleter())) {}
236 MOZ_IMPLICIT constexpr UniquePtr(decltype(nullptr)) : UniquePtr() {}
238 template <typename U, class E>
239 MOZ_IMPLICIT UniquePtr(
240 UniquePtr<U, E>&& aOther,
241 std::enable_if_t<
242 std::is_convertible_v<typename UniquePtr<U, E>::Pointer, Pointer> &&
243 !std::is_array_v<U> &&
244 (std::is_reference_v<D> ? std::is_same_v<D, E>
245 : std::is_convertible_v<E, D>),
246 int>
247 aDummy = 0)
248 : mTuple(aOther.release(), std::forward<E>(aOther.get_deleter())) {}
250 ~UniquePtr() { reset(nullptr); }
252 UniquePtr& operator=(UniquePtr&& aOther) {
253 reset(aOther.release());
254 get_deleter() = std::forward<DeleterType>(aOther.get_deleter());
255 return *this;
258 template <typename U, typename E>
259 UniquePtr& operator=(UniquePtr<U, E>&& aOther) {
260 static_assert(
261 std::is_convertible_v<typename UniquePtr<U, E>::Pointer, Pointer>,
262 "incompatible UniquePtr pointees");
263 static_assert(!std::is_array_v<U>,
264 "can't assign from UniquePtr holding an array");
266 reset(aOther.release());
267 get_deleter() = std::forward<E>(aOther.get_deleter());
268 return *this;
271 UniquePtr& operator=(decltype(nullptr)) {
272 reset(nullptr);
273 return *this;
276 std::add_lvalue_reference_t<T> operator*() const {
277 MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr with *");
278 return *get();
280 Pointer operator->() const {
281 MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr with ->");
282 return get();
285 explicit operator bool() const { return get() != nullptr; }
287 Pointer get() const { return ptr(); }
289 DeleterType& get_deleter() { return del(); }
290 const DeleterType& get_deleter() const { return del(); }
292 [[nodiscard]] Pointer release() {
293 Pointer p = ptr();
294 ptr() = nullptr;
295 return p;
298 void reset(Pointer aPtr = Pointer()) {
299 Pointer old = ptr();
300 ptr() = aPtr;
301 if (old != nullptr) {
302 get_deleter()(old);
306 void swap(UniquePtr& aOther) { mTuple.swap(aOther.mTuple); }
308 UniquePtr(const UniquePtr& aOther) = delete; // construct using std::move()!
309 void operator=(const UniquePtr& aOther) =
310 delete; // assign using std::move()!
313 // In case you didn't read the comment by the main definition (you should!): the
314 // UniquePtr<T[]> specialization exists to manage array pointers. It deletes
315 // such pointers using delete[], it will reject construction and modification
316 // attempts using U* or U[]. Otherwise it works like the normal UniquePtr.
317 template <typename T, class D>
318 class UniquePtr<T[], D> {
319 public:
320 typedef T* Pointer;
321 typedef T ElementType;
322 typedef D DeleterType;
324 private:
325 mozilla::CompactPair<Pointer, DeleterType> mTuple;
327 public:
329 * Construct a UniquePtr containing nullptr.
331 constexpr UniquePtr() : mTuple(static_cast<Pointer>(nullptr), DeleterType()) {
332 static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
333 static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
337 * Construct a UniquePtr containing |aPtr|.
339 explicit UniquePtr(Pointer aPtr) : mTuple(aPtr, DeleterType()) {
340 static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
341 static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
344 // delete[] knows how to handle *only* an array of a single class type. For
345 // delete[] to work correctly, it must know the size of each element, the
346 // fields and base classes of each element requiring destruction, and so on.
347 // So forbid all overloads which would end up invoking delete[] on a pointer
348 // of the wrong type.
349 template <typename U>
350 UniquePtr(U&& aU,
351 std::enable_if_t<
352 std::is_pointer_v<U> && std::is_convertible_v<U, Pointer>, int>
353 aDummy = 0) = delete;
355 UniquePtr(Pointer aPtr,
356 std::conditional_t<std::is_reference_v<D>, D, const D&> aD1)
357 : mTuple(aPtr, aD1) {}
359 UniquePtr(Pointer aPtr, std::remove_reference_t<D>&& aD2)
360 : mTuple(aPtr, std::move(aD2)) {
361 static_assert(!std::is_reference_v<D>,
362 "rvalue deleter can't be stored by reference");
365 // Forbidden for the same reasons as stated above.
366 template <typename U, typename V>
367 UniquePtr(U&& aU, V&& aV,
368 std::enable_if_t<
369 std::is_pointer_v<U> && std::is_convertible_v<U, Pointer>, int>
370 aDummy = 0) = delete;
372 UniquePtr(UniquePtr&& aOther)
373 : mTuple(aOther.release(),
374 std::forward<DeleterType>(aOther.get_deleter())) {}
376 MOZ_IMPLICIT
377 UniquePtr(decltype(nullptr)) : mTuple(nullptr, DeleterType()) {
378 static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
379 static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
382 ~UniquePtr() { reset(nullptr); }
384 UniquePtr& operator=(UniquePtr&& aOther) {
385 reset(aOther.release());
386 get_deleter() = std::forward<DeleterType>(aOther.get_deleter());
387 return *this;
390 UniquePtr& operator=(decltype(nullptr)) {
391 reset();
392 return *this;
395 explicit operator bool() const { return get() != nullptr; }
397 T& operator[](decltype(sizeof(int)) aIndex) const { return get()[aIndex]; }
398 Pointer get() const { return mTuple.first(); }
400 DeleterType& get_deleter() { return mTuple.second(); }
401 const DeleterType& get_deleter() const { return mTuple.second(); }
403 [[nodiscard]] Pointer release() {
404 Pointer p = mTuple.first();
405 mTuple.first() = nullptr;
406 return p;
409 void reset(Pointer aPtr = Pointer()) {
410 Pointer old = mTuple.first();
411 mTuple.first() = aPtr;
412 if (old != nullptr) {
413 mTuple.second()(old);
417 void reset(decltype(nullptr)) {
418 Pointer old = mTuple.first();
419 mTuple.first() = nullptr;
420 if (old != nullptr) {
421 mTuple.second()(old);
425 template <typename U>
426 void reset(U) = delete;
428 void swap(UniquePtr& aOther) { mTuple.swap(aOther.mTuple); }
430 UniquePtr(const UniquePtr& aOther) = delete; // construct using std::move()!
431 void operator=(const UniquePtr& aOther) =
432 delete; // assign using std::move()!
436 * A default deletion policy using plain old operator delete.
438 * Note that this type can be specialized, but authors should beware of the risk
439 * that the specialization may at some point cease to match (either because it
440 * gets moved to a different compilation unit or the signature changes). If the
441 * non-specialized (|delete|-based) version compiles for that type but does the
442 * wrong thing, bad things could happen.
444 * This is a non-issue for types which are always incomplete (i.e. opaque handle
445 * types), since |delete|-ing such a type will always trigger a compilation
446 * error.
448 template <typename T>
449 class DefaultDelete {
450 public:
451 constexpr DefaultDelete() = default;
453 template <typename U>
454 MOZ_IMPLICIT DefaultDelete(
455 const DefaultDelete<U>& aOther,
456 std::enable_if_t<std::is_convertible_v<U*, T*>, int> aDummy = 0) {}
458 void operator()(T* aPtr) const {
459 static_assert(sizeof(T) > 0, "T must be complete");
460 delete aPtr;
464 /** A default deletion policy using operator delete[]. */
465 template <typename T>
466 class DefaultDelete<T[]> {
467 public:
468 constexpr DefaultDelete() = default;
470 void operator()(T* aPtr) const {
471 static_assert(sizeof(T) > 0, "T must be complete");
472 delete[] aPtr;
475 template <typename U>
476 void operator()(U* aPtr) const = delete;
479 template <typename T, class D, typename U, class E>
480 bool operator==(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY) {
481 return aX.get() == aY.get();
484 template <typename T, class D, typename U, class E>
485 bool operator!=(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY) {
486 return aX.get() != aY.get();
489 template <typename T, class D>
490 bool operator==(const UniquePtr<T, D>& aX, const T* aY) {
491 return aX.get() == aY;
494 template <typename T, class D>
495 bool operator==(const T* aY, const UniquePtr<T, D>& aX) {
496 return aY == aX.get();
499 template <typename T, class D>
500 bool operator!=(const UniquePtr<T, D>& aX, const T* aY) {
501 return aX.get() != aY;
504 template <typename T, class D>
505 bool operator!=(const T* aY, const UniquePtr<T, D>& aX) {
506 return aY != aX.get();
509 template <typename T, class D>
510 bool operator==(const UniquePtr<T, D>& aX, decltype(nullptr)) {
511 return !aX;
514 template <typename T, class D>
515 bool operator==(decltype(nullptr), const UniquePtr<T, D>& aX) {
516 return !aX;
519 template <typename T, class D>
520 bool operator!=(const UniquePtr<T, D>& aX, decltype(nullptr)) {
521 return bool(aX);
524 template <typename T, class D>
525 bool operator!=(decltype(nullptr), const UniquePtr<T, D>& aX) {
526 return bool(aX);
529 // No operator<, operator>, operator<=, operator>= for now because simplicity.
531 namespace detail {
533 template <typename T>
534 struct UniqueSelector {
535 typedef UniquePtr<T> SingleObject;
538 template <typename T>
539 struct UniqueSelector<T[]> {
540 typedef UniquePtr<T[]> UnknownBound;
543 template <typename T, decltype(sizeof(int)) N>
544 struct UniqueSelector<T[N]> {
545 typedef UniquePtr<T[N]> KnownBound;
548 } // namespace detail
551 * MakeUnique is a helper function for allocating new'd objects and arrays,
552 * returning a UniquePtr containing the resulting pointer. The semantics of
553 * MakeUnique<Type>(...) are as follows.
555 * If Type is an array T[n]:
556 * Disallowed, deleted, no overload for you!
557 * If Type is an array T[]:
558 * MakeUnique<T[]>(size_t) is the only valid overload. The pointer returned
559 * is as if by |new T[n]()|, which value-initializes each element. (If T
560 * isn't a class type, this will zero each element. If T is a class type,
561 * then roughly speaking, each element will be constructed using its default
562 * constructor. See C++11 [dcl.init]p7 for the full gory details.)
563 * If Type is non-array T:
564 * The arguments passed to MakeUnique<T>(...) are forwarded into a
565 * |new T(...)| call, initializing the T as would happen if executing
566 * |T(...)|.
568 * There are various benefits to using MakeUnique instead of |new| expressions.
570 * First, MakeUnique eliminates use of |new| from code entirely. If objects are
571 * only created through UniquePtr, then (assuming all explicit release() calls
572 * are safe, including transitively, and no type-safety casting funniness)
573 * correctly maintained ownership of the UniquePtr guarantees no leaks are
574 * possible. (This pays off best if a class is only ever created through a
575 * factory method on the class, using a private constructor.)
577 * Second, initializing a UniquePtr using a |new| expression requires repeating
578 * the name of the new'd type, whereas MakeUnique in concert with the |auto|
579 * keyword names it only once:
581 * UniquePtr<char> ptr1(new char()); // repetitive
582 * auto ptr2 = MakeUnique<char>(); // shorter
584 * Of course this assumes the reader understands the operation MakeUnique
585 * performs. In the long run this is probably a reasonable assumption. In the
586 * short run you'll have to use your judgment about what readers can be expected
587 * to know, or to quickly look up.
589 * Third, a call to MakeUnique can be assigned directly to a UniquePtr. In
590 * contrast you can't assign a pointer into a UniquePtr without using the
591 * cumbersome reset().
593 * UniquePtr<char> p;
594 * p = new char; // ERROR
595 * p.reset(new char); // works, but fugly
596 * p = MakeUnique<char>(); // preferred
598 * (And third, although not relevant to Mozilla: MakeUnique is exception-safe.
599 * An exception thrown after |new T| succeeds will leak that memory, unless the
600 * pointer is assigned to an object that will manage its ownership. UniquePtr
601 * ably serves this function.)
604 template <typename T, typename... Args>
605 typename detail::UniqueSelector<T>::SingleObject MakeUnique(Args&&... aArgs) {
606 return UniquePtr<T>(new T(std::forward<Args>(aArgs)...));
609 template <typename T>
610 typename detail::UniqueSelector<T>::UnknownBound MakeUnique(
611 decltype(sizeof(int)) aN) {
612 using ArrayType = std::remove_extent_t<T>;
613 return UniquePtr<T>(new ArrayType[aN]());
616 template <typename T, typename... Args>
617 typename detail::UniqueSelector<T>::KnownBound MakeUnique(Args&&... aArgs) =
618 delete;
621 * WrapUnique is a helper function to transfer ownership from a raw pointer
622 * into a UniquePtr<T>. It can only be used with a single non-array type.
624 * It is generally used this way:
626 * auto p = WrapUnique(new char);
628 * It can be used when MakeUnique is not usable, for example, when the
629 * constructor you are using is private, or you want to use aggregate
630 * initialization.
633 template <typename T>
634 typename detail::UniqueSelector<T>::SingleObject WrapUnique(T* aPtr) {
635 return UniquePtr<T>(aPtr);
638 } // namespace mozilla
640 namespace std {
642 template <typename T, class D>
643 void swap(mozilla::UniquePtr<T, D>& aX, mozilla::UniquePtr<T, D>& aY) {
644 aX.swap(aY);
647 } // namespace std
650 TempPtrToSetter(UniquePtr<T>*) -> T**-ish
651 TempPtrToSetter(std::unique_ptr<T>*) -> T**-ish
653 Make a temporary class to support assigning to UniquePtr/unique_ptr via passing
654 a pointer to the callee.
656 Often, APIs will be shaped like this trivial example:
658 nsresult Foo::NewChildBar(Bar** out) {
659 if (!IsOk()) return NS_ERROR_FAILURE;
660 *out = new Bar(this);
661 return NS_OK;
665 In order to make this work with unique ptrs, it's often either risky or
666 overwrought:
668 Bar* bar = nullptr;
669 const auto cleanup = MakeScopeExit([&]() {
670 if (bar) {
671 delete bar;
674 if (FAILED(foo->NewChildBar(&bar)) {
675 // handle it
680 UniquePtr<Bar> bar;
682 Bar* raw = nullptr;
683 const auto res = foo->NewChildBar(&bar);
684 bar.reset(raw);
685 if (FAILED(res) {
686 // handle it
690 TempPtrToSettable is a shorthand for the latter approach, allowing something
691 cleaner but also safe:
694 UniquePtr<Bar> bar;
695 if (FAILED(foo->NewChildBar(TempPtrToSetter(&bar))) {
696 // handle it
701 namespace mozilla {
702 namespace detail {
704 template <class T, class UniquePtrT>
705 class MOZ_TEMPORARY_CLASS TempPtrToSetterT final {
706 private:
707 UniquePtrT* const mDest;
708 T* mNewVal;
710 public:
711 explicit TempPtrToSetterT(UniquePtrT* dest)
712 : mDest(dest), mNewVal(mDest->get()) {}
714 operator T**() { return &mNewVal; }
716 ~TempPtrToSetterT() {
717 if (mDest->get() != mNewVal) {
718 mDest->reset(mNewVal);
723 } // namespace detail
725 template <class T, class Deleter>
726 auto TempPtrToSetter(UniquePtr<T, Deleter>* const p) {
727 return detail::TempPtrToSetterT<T, UniquePtr<T, Deleter>>{p};
730 template <class T, class Deleter>
731 auto TempPtrToSetter(std::unique_ptr<T, Deleter>* const p) {
732 return detail::TempPtrToSetterT<T, std::unique_ptr<T, Deleter>>{p};
735 } // namespace mozilla
737 #endif /* mozilla_UniquePtr_h */