Update configs. IGNORE BROKEN CHANGESETS CLOSED TREE NO BUG a=release ba=release
[gecko.git] / gfx / 2d / SwizzleSSE2.cpp
blobda0853f44006cba9c866fda79bcc31172a736da4
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 #include "Swizzle.h"
9 #include <emmintrin.h>
11 namespace mozilla::gfx {
13 // Load 1-3 pixels into a 4 pixel vector.
14 static MOZ_ALWAYS_INLINE __m128i LoadRemainder_SSE2(const uint8_t* aSrc,
15 size_t aLength) {
16 __m128i px;
17 if (aLength >= 2) {
18 // Load first 2 pixels
19 px = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(aSrc));
20 // Load third pixel
21 if (aLength >= 3) {
22 px = _mm_unpacklo_epi64(
23 px,
24 _mm_cvtsi32_si128(*reinterpret_cast<const uint32_t*>(aSrc + 2 * 4)));
26 } else {
27 // Load single pixel
28 px = _mm_cvtsi32_si128(*reinterpret_cast<const uint32_t*>(aSrc));
30 return px;
33 // Store 1-3 pixels from a vector into memory without overwriting.
34 static MOZ_ALWAYS_INLINE void StoreRemainder_SSE2(uint8_t* aDst, size_t aLength,
35 const __m128i& aSrc) {
36 if (aLength >= 2) {
37 // Store first 2 pixels
38 _mm_storel_epi64(reinterpret_cast<__m128i*>(aDst), aSrc);
39 // Store third pixel
40 if (aLength >= 3) {
41 *reinterpret_cast<uint32_t*>(aDst + 2 * 4) =
42 _mm_cvtsi128_si32(_mm_srli_si128(aSrc, 2 * 4));
44 } else {
45 // Store single pixel
46 *reinterpret_cast<uint32_t*>(aDst) = _mm_cvtsi128_si32(aSrc);
50 // Premultiply vector of 4 pixels using splayed math.
51 template <bool aSwapRB, bool aOpaqueAlpha>
52 static MOZ_ALWAYS_INLINE __m128i PremultiplyVector_SSE2(const __m128i& aSrc) {
53 // Isolate R and B with mask.
54 const __m128i mask = _mm_set1_epi32(0x00FF00FF);
55 __m128i rb = _mm_and_si128(mask, aSrc);
56 // Swap R and B if necessary.
57 if (aSwapRB) {
58 rb = _mm_shufflelo_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1));
59 rb = _mm_shufflehi_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1));
61 // Isolate G and A by shifting down to bottom of word.
62 __m128i ga = _mm_srli_epi16(aSrc, 8);
64 // Duplicate alphas to get vector of A1 A1 A2 A2 A3 A3 A4 A4
65 __m128i alphas = _mm_shufflelo_epi16(ga, _MM_SHUFFLE(3, 3, 1, 1));
66 alphas = _mm_shufflehi_epi16(alphas, _MM_SHUFFLE(3, 3, 1, 1));
68 // rb = rb*a + 255; rb += rb >> 8;
69 rb = _mm_add_epi16(_mm_mullo_epi16(rb, alphas), mask);
70 rb = _mm_add_epi16(rb, _mm_srli_epi16(rb, 8));
72 // If format is not opaque, force A to 255 so that A*alpha/255 = alpha
73 if (!aOpaqueAlpha) {
74 ga = _mm_or_si128(ga, _mm_set1_epi32(0x00FF0000));
76 // ga = ga*a + 255; ga += ga >> 8;
77 ga = _mm_add_epi16(_mm_mullo_epi16(ga, alphas), mask);
78 ga = _mm_add_epi16(ga, _mm_srli_epi16(ga, 8));
79 // If format is opaque, force output A to be 255.
80 if (aOpaqueAlpha) {
81 ga = _mm_or_si128(ga, _mm_set1_epi32(0xFF000000));
84 // Combine back to final pixel with (rb >> 8) | (ga & 0xFF00FF00)
85 rb = _mm_srli_epi16(rb, 8);
86 ga = _mm_andnot_si128(mask, ga);
87 return _mm_or_si128(rb, ga);
90 // Premultiply vector of aAlignedRow + aRemainder pixels.
91 template <bool aSwapRB, bool aOpaqueAlpha>
92 static MOZ_ALWAYS_INLINE void PremultiplyChunk_SSE2(const uint8_t*& aSrc,
93 uint8_t*& aDst,
94 int32_t aAlignedRow,
95 int32_t aRemainder) {
96 // Process all 4-pixel chunks as one vector.
97 for (const uint8_t* end = aSrc + aAlignedRow; aSrc < end;) {
98 __m128i px = _mm_loadu_si128(reinterpret_cast<const __m128i*>(aSrc));
99 px = PremultiplyVector_SSE2<aSwapRB, aOpaqueAlpha>(px);
100 _mm_storeu_si128(reinterpret_cast<__m128i*>(aDst), px);
101 aSrc += 4 * 4;
102 aDst += 4 * 4;
105 // Handle any 1-3 remaining pixels.
106 if (aRemainder) {
107 __m128i px = LoadRemainder_SSE2(aSrc, aRemainder);
108 px = PremultiplyVector_SSE2<aSwapRB, aOpaqueAlpha>(px);
109 StoreRemainder_SSE2(aDst, aRemainder, px);
113 // Premultiply vector of aLength pixels.
114 template <bool aSwapRB, bool aOpaqueAlpha>
115 void PremultiplyRow_SSE2(const uint8_t* aSrc, uint8_t* aDst, int32_t aLength) {
116 int32_t alignedRow = 4 * (aLength & ~3);
117 int32_t remainder = aLength & 3;
118 PremultiplyChunk_SSE2<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow,
119 remainder);
122 template <bool aSwapRB, bool aOpaqueAlpha>
123 void Premultiply_SSE2(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
124 int32_t aDstGap, IntSize aSize) {
125 int32_t alignedRow = 4 * (aSize.width & ~3);
126 int32_t remainder = aSize.width & 3;
127 // Fold remainder into stride gap.
128 aSrcGap += 4 * remainder;
129 aDstGap += 4 * remainder;
131 for (int32_t height = aSize.height; height > 0; height--) {
132 PremultiplyChunk_SSE2<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow,
133 remainder);
134 aSrc += aSrcGap;
135 aDst += aDstGap;
139 // Force instantiation of premultiply variants here.
140 template void PremultiplyRow_SSE2<false, false>(const uint8_t*, uint8_t*,
141 int32_t);
142 template void PremultiplyRow_SSE2<false, true>(const uint8_t*, uint8_t*,
143 int32_t);
144 template void PremultiplyRow_SSE2<true, false>(const uint8_t*, uint8_t*,
145 int32_t);
146 template void PremultiplyRow_SSE2<true, true>(const uint8_t*, uint8_t*,
147 int32_t);
148 template void Premultiply_SSE2<false, false>(const uint8_t*, int32_t, uint8_t*,
149 int32_t, IntSize);
150 template void Premultiply_SSE2<false, true>(const uint8_t*, int32_t, uint8_t*,
151 int32_t, IntSize);
152 template void Premultiply_SSE2<true, false>(const uint8_t*, int32_t, uint8_t*,
153 int32_t, IntSize);
154 template void Premultiply_SSE2<true, true>(const uint8_t*, int32_t, uint8_t*,
155 int32_t, IntSize);
157 // This generates a table of fixed-point reciprocals representing 1/alpha
158 // similar to the fallback implementation. However, the reciprocal must fit
159 // in 16 bits to multiply cheaply. Observe that reciprocals of smaller alphas
160 // require more bits than for larger alphas. We take advantage of this by
161 // shifting the reciprocal down by either 3 or 8 bits depending on whether
162 // the alpha value is less than 0x20. This is easy to then undo by multiplying
163 // the color component to be unpremultiplying by either 8 or 0x100,
164 // respectively. The 16 bit reciprocal is duplicated into both words of a
165 // uint32_t here to reduce unpacking overhead.
166 #define UNPREMULQ_SSE2(x) \
167 (0x10001U * (0xFF0220U / ((x) * ((x) < 0x20 ? 0x100 : 8))))
168 #define UNPREMULQ_SSE2_2(x) UNPREMULQ_SSE2(x), UNPREMULQ_SSE2((x) + 1)
169 #define UNPREMULQ_SSE2_4(x) UNPREMULQ_SSE2_2(x), UNPREMULQ_SSE2_2((x) + 2)
170 #define UNPREMULQ_SSE2_8(x) UNPREMULQ_SSE2_4(x), UNPREMULQ_SSE2_4((x) + 4)
171 #define UNPREMULQ_SSE2_16(x) UNPREMULQ_SSE2_8(x), UNPREMULQ_SSE2_8((x) + 8)
172 #define UNPREMULQ_SSE2_32(x) UNPREMULQ_SSE2_16(x), UNPREMULQ_SSE2_16((x) + 16)
173 static const uint32_t sUnpremultiplyTable_SSE2[256] = {0,
174 UNPREMULQ_SSE2(1),
175 UNPREMULQ_SSE2_2(2),
176 UNPREMULQ_SSE2_4(4),
177 UNPREMULQ_SSE2_8(8),
178 UNPREMULQ_SSE2_16(16),
179 UNPREMULQ_SSE2_32(32),
180 UNPREMULQ_SSE2_32(64),
181 UNPREMULQ_SSE2_32(96),
182 UNPREMULQ_SSE2_32(128),
183 UNPREMULQ_SSE2_32(160),
184 UNPREMULQ_SSE2_32(192),
185 UNPREMULQ_SSE2_32(224)};
187 // Unpremultiply a vector of 4 pixels using splayed math and a reciprocal table
188 // that avoids doing any actual division.
189 template <bool aSwapRB>
190 static MOZ_ALWAYS_INLINE __m128i UnpremultiplyVector_SSE2(const __m128i& aSrc) {
191 // Isolate R and B with mask.
192 __m128i rb = _mm_and_si128(aSrc, _mm_set1_epi32(0x00FF00FF));
193 // Swap R and B if necessary.
194 if (aSwapRB) {
195 rb = _mm_shufflelo_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1));
196 rb = _mm_shufflehi_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1));
199 // Isolate G and A by shifting down to bottom of word.
200 __m128i ga = _mm_srli_epi16(aSrc, 8);
201 // Extract the alphas for the 4 pixels from the now isolated words.
202 int a1 = _mm_extract_epi16(ga, 1);
203 int a2 = _mm_extract_epi16(ga, 3);
204 int a3 = _mm_extract_epi16(ga, 5);
205 int a4 = _mm_extract_epi16(ga, 7);
207 // Load the 16 bit reciprocals from the table for each alpha.
208 // The reciprocals are doubled in each uint32_t entry.
209 // Unpack them to a final vector of duplicated reciprocals of
210 // the form Q1 Q1 Q2 Q2 Q3 Q3 Q4 Q4.
211 __m128i q12 =
212 _mm_unpacklo_epi32(_mm_cvtsi32_si128(sUnpremultiplyTable_SSE2[a1]),
213 _mm_cvtsi32_si128(sUnpremultiplyTable_SSE2[a2]));
214 __m128i q34 =
215 _mm_unpacklo_epi32(_mm_cvtsi32_si128(sUnpremultiplyTable_SSE2[a3]),
216 _mm_cvtsi32_si128(sUnpremultiplyTable_SSE2[a4]));
217 __m128i q1234 = _mm_unpacklo_epi64(q12, q34);
219 // Check if the alphas are less than 0x20, so that we can undo
220 // scaling of the reciprocals as appropriate.
221 __m128i scale = _mm_cmplt_epi32(ga, _mm_set1_epi32(0x00200000));
222 // Produce scale factors by ((a < 0x20) ^ 8) & 0x108,
223 // such that scale is 0x100 if < 0x20, and 8 otherwise.
224 scale = _mm_xor_si128(scale, _mm_set1_epi16(8));
225 scale = _mm_and_si128(scale, _mm_set1_epi16(0x108));
226 // Isolate G now so that we don't accidentally unpremultiply A.
227 ga = _mm_and_si128(ga, _mm_set1_epi32(0x000000FF));
229 // Scale R, B, and G as required depending on reciprocal precision.
230 rb = _mm_mullo_epi16(rb, scale);
231 ga = _mm_mullo_epi16(ga, scale);
233 // Multiply R, B, and G by the reciprocal, only taking the high word
234 // too effectively shift right by 16.
235 rb = _mm_mulhi_epu16(rb, q1234);
236 ga = _mm_mulhi_epu16(ga, q1234);
238 // Combine back to final pixel with rb | (ga << 8) | (aSrc & 0xFF000000),
239 // which will add back on the original alpha value unchanged.
240 ga = _mm_slli_si128(ga, 1);
241 ga = _mm_or_si128(ga, _mm_and_si128(aSrc, _mm_set1_epi32(0xFF000000)));
242 return _mm_or_si128(rb, ga);
245 template <bool aSwapRB>
246 static MOZ_ALWAYS_INLINE void UnpremultiplyChunk_SSE2(const uint8_t*& aSrc,
247 uint8_t*& aDst,
248 int32_t aAlignedRow,
249 int32_t aRemainder) {
250 // Process all 4-pixel chunks as one vector.
251 for (const uint8_t* end = aSrc + aAlignedRow; aSrc < end;) {
252 __m128i px = _mm_loadu_si128(reinterpret_cast<const __m128i*>(aSrc));
253 px = UnpremultiplyVector_SSE2<aSwapRB>(px);
254 _mm_storeu_si128(reinterpret_cast<__m128i*>(aDst), px);
255 aSrc += 4 * 4;
256 aDst += 4 * 4;
259 // Handle any 1-3 remaining pixels.
260 if (aRemainder) {
261 __m128i px = LoadRemainder_SSE2(aSrc, aRemainder);
262 px = UnpremultiplyVector_SSE2<aSwapRB>(px);
263 StoreRemainder_SSE2(aDst, aRemainder, px);
267 template <bool aSwapRB>
268 void UnpremultiplyRow_SSE2(const uint8_t* aSrc, uint8_t* aDst,
269 int32_t aLength) {
270 int32_t alignedRow = 4 * (aLength & ~3);
271 int32_t remainder = aLength & 3;
272 UnpremultiplyChunk_SSE2<aSwapRB>(aSrc, aDst, alignedRow, remainder);
275 template <bool aSwapRB>
276 void Unpremultiply_SSE2(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
277 int32_t aDstGap, IntSize aSize) {
278 int32_t alignedRow = 4 * (aSize.width & ~3);
279 int32_t remainder = aSize.width & 3;
280 // Fold remainder into stride gap.
281 aSrcGap += 4 * remainder;
282 aDstGap += 4 * remainder;
284 for (int32_t height = aSize.height; height > 0; height--) {
285 UnpremultiplyChunk_SSE2<aSwapRB>(aSrc, aDst, alignedRow, remainder);
286 aSrc += aSrcGap;
287 aDst += aDstGap;
291 // Force instantiation of unpremultiply variants here.
292 template void UnpremultiplyRow_SSE2<false>(const uint8_t*, uint8_t*, int32_t);
293 template void UnpremultiplyRow_SSE2<true>(const uint8_t*, uint8_t*, int32_t);
294 template void Unpremultiply_SSE2<false>(const uint8_t*, int32_t, uint8_t*,
295 int32_t, IntSize);
296 template void Unpremultiply_SSE2<true>(const uint8_t*, int32_t, uint8_t*,
297 int32_t, IntSize);
299 // Swizzle a vector of 4 pixels providing swaps and opaquifying.
300 template <bool aSwapRB, bool aOpaqueAlpha>
301 static MOZ_ALWAYS_INLINE __m128i SwizzleVector_SSE2(const __m128i& aSrc) {
302 // Isolate R and B.
303 __m128i rb = _mm_and_si128(aSrc, _mm_set1_epi32(0x00FF00FF));
304 // Swap R and B.
305 rb = _mm_shufflelo_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1));
306 rb = _mm_shufflehi_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1));
307 // Isolate G and A.
308 __m128i ga = _mm_and_si128(aSrc, _mm_set1_epi32(0xFF00FF00));
309 // Force alpha to 255 if necessary.
310 if (aOpaqueAlpha) {
311 ga = _mm_or_si128(ga, _mm_set1_epi32(0xFF000000));
313 // Combine everything back together.
314 return _mm_or_si128(rb, ga);
317 #if 0
318 // These specializations currently do not profile faster than the generic versions,
319 // so disable them for now.
321 // Optimized implementations for when there is no R and B swap.
322 template<>
323 MOZ_ALWAYS_INLINE __m128i
324 SwizzleVector_SSE2<false, true>(const __m128i& aSrc)
326 // Force alpha to 255.
327 return _mm_or_si128(aSrc, _mm_set1_epi32(0xFF000000));
330 template<>
331 MOZ_ALWAYS_INLINE __m128i
332 SwizzleVector_SSE2<false, false>(const __m128i& aSrc)
334 return aSrc;
336 #endif
338 template <bool aSwapRB, bool aOpaqueAlpha>
339 static MOZ_ALWAYS_INLINE void SwizzleChunk_SSE2(const uint8_t*& aSrc,
340 uint8_t*& aDst,
341 int32_t aAlignedRow,
342 int32_t aRemainder) {
343 // Process all 4-pixel chunks as one vector.
344 for (const uint8_t* end = aSrc + aAlignedRow; aSrc < end;) {
345 __m128i px = _mm_loadu_si128(reinterpret_cast<const __m128i*>(aSrc));
346 px = SwizzleVector_SSE2<aSwapRB, aOpaqueAlpha>(px);
347 _mm_storeu_si128(reinterpret_cast<__m128i*>(aDst), px);
348 aSrc += 4 * 4;
349 aDst += 4 * 4;
352 // Handle any 1-3 remaining pixels.
353 if (aRemainder) {
354 __m128i px = LoadRemainder_SSE2(aSrc, aRemainder);
355 px = SwizzleVector_SSE2<aSwapRB, aOpaqueAlpha>(px);
356 StoreRemainder_SSE2(aDst, aRemainder, px);
360 template <bool aSwapRB, bool aOpaqueAlpha>
361 void SwizzleRow_SSE2(const uint8_t* aSrc, uint8_t* aDst, int32_t aLength) {
362 int32_t alignedRow = 4 * (aLength & ~3);
363 int32_t remainder = aLength & 3;
364 SwizzleChunk_SSE2<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow, remainder);
367 template <bool aSwapRB, bool aOpaqueAlpha>
368 void Swizzle_SSE2(const uint8_t* aSrc, int32_t aSrcGap, uint8_t* aDst,
369 int32_t aDstGap, IntSize aSize) {
370 int32_t alignedRow = 4 * (aSize.width & ~3);
371 int32_t remainder = aSize.width & 3;
372 // Fold remainder into stride gap.
373 aSrcGap += 4 * remainder;
374 aDstGap += 4 * remainder;
376 for (int32_t height = aSize.height; height > 0; height--) {
377 SwizzleChunk_SSE2<aSwapRB, aOpaqueAlpha>(aSrc, aDst, alignedRow, remainder);
378 aSrc += aSrcGap;
379 aDst += aDstGap;
383 // Force instantiation of swizzle variants here.
384 template void SwizzleRow_SSE2<true, false>(const uint8_t*, uint8_t*, int32_t);
385 template void SwizzleRow_SSE2<true, true>(const uint8_t*, uint8_t*, int32_t);
386 template void Swizzle_SSE2<true, false>(const uint8_t*, int32_t, uint8_t*,
387 int32_t, IntSize);
388 template void Swizzle_SSE2<true, true>(const uint8_t*, int32_t, uint8_t*,
389 int32_t, IntSize);
391 } // namespace mozilla::gfx