Bug 573948 - Part 1: Use libjpeg-turbo instead of libjpeg. r=jmuizelaar
[gecko.git] / jpeg / simd / jimmxfst.asm
blob3b055727d1f8a226ab913cb264d12269d3c15d00
2 ; jimmxfst.asm - fast integer IDCT (MMX)
4 ; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
6 ; Based on
7 ; x86 SIMD extension for IJG JPEG library
8 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
9 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
11 ; This file should be assembled with NASM (Netwide Assembler),
12 ; can *not* be assembled with Microsoft's MASM or any compatible
13 ; assembler (including Borland's Turbo Assembler).
14 ; NASM is available from http://nasm.sourceforge.net/ or
15 ; http://sourceforge.net/project/showfiles.php?group_id=6208
17 ; This file contains a fast, not so accurate integer implementation of
18 ; the inverse DCT (Discrete Cosine Transform). The following code is
19 ; based directly on the IJG's original jidctfst.c; see the jidctfst.c
20 ; for more details.
22 ; [TAB8]
24 %include "jsimdext.inc"
25 %include "jdct.inc"
27 ; --------------------------------------------------------------------------
29 %define CONST_BITS 8 ; 14 is also OK.
30 %define PASS1_BITS 2
32 %if IFAST_SCALE_BITS != PASS1_BITS
33 %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'."
34 %endif
36 %if CONST_BITS == 8
37 F_1_082 equ 277 ; FIX(1.082392200)
38 F_1_414 equ 362 ; FIX(1.414213562)
39 F_1_847 equ 473 ; FIX(1.847759065)
40 F_2_613 equ 669 ; FIX(2.613125930)
41 F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1)
42 %else
43 ; NASM cannot do compile-time arithmetic on floating-point constants.
44 %define DESCALE(x,n) (((x)+(1<<((n)-1)))>>(n))
45 F_1_082 equ DESCALE(1162209775,30-CONST_BITS) ; FIX(1.082392200)
46 F_1_414 equ DESCALE(1518500249,30-CONST_BITS) ; FIX(1.414213562)
47 F_1_847 equ DESCALE(1984016188,30-CONST_BITS) ; FIX(1.847759065)
48 F_2_613 equ DESCALE(2805822602,30-CONST_BITS) ; FIX(2.613125930)
49 F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1)
50 %endif
52 ; --------------------------------------------------------------------------
53 SECTION SEG_CONST
55 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
56 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
58 %define PRE_MULTIPLY_SCALE_BITS 2
59 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
61 alignz 16
62 global EXTN(jconst_idct_ifast_mmx)
64 EXTN(jconst_idct_ifast_mmx):
66 PW_F1414 times 4 dw F_1_414 << CONST_SHIFT
67 PW_F1847 times 4 dw F_1_847 << CONST_SHIFT
68 PW_MF1613 times 4 dw -F_1_613 << CONST_SHIFT
69 PW_F1082 times 4 dw F_1_082 << CONST_SHIFT
70 PB_CENTERJSAMP times 8 db CENTERJSAMPLE
72 alignz 16
74 ; --------------------------------------------------------------------------
75 SECTION SEG_TEXT
76 BITS 32
78 ; Perform dequantization and inverse DCT on one block of coefficients.
80 ; GLOBAL(void)
81 ; jsimd_idct_ifast_mmx (void * dct_table, JCOEFPTR coef_block,
82 ; JSAMPARRAY output_buf, JDIMENSION output_col)
85 %define dct_table(b) (b)+8 ; jpeg_component_info * compptr
86 %define coef_block(b) (b)+12 ; JCOEFPTR coef_block
87 %define output_buf(b) (b)+16 ; JSAMPARRAY output_buf
88 %define output_col(b) (b)+20 ; JDIMENSION output_col
90 %define original_ebp ebp+0
91 %define wk(i) ebp-(WK_NUM-(i))*SIZEOF_MMWORD ; mmword wk[WK_NUM]
92 %define WK_NUM 2
93 %define workspace wk(0)-DCTSIZE2*SIZEOF_JCOEF
94 ; JCOEF workspace[DCTSIZE2]
96 align 16
97 global EXTN(jsimd_idct_ifast_mmx)
99 EXTN(jsimd_idct_ifast_mmx):
100 push ebp
101 mov eax,esp ; eax = original ebp
102 sub esp, byte 4
103 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits
104 mov [esp],eax
105 mov ebp,esp ; ebp = aligned ebp
106 lea esp, [workspace]
107 push ebx
108 ; push ecx ; need not be preserved
109 ; push edx ; need not be preserved
110 push esi
111 push edi
113 get_GOT ebx ; get GOT address
115 ; ---- Pass 1: process columns from input, store into work array.
117 ; mov eax, [original_ebp]
118 mov edx, POINTER [dct_table(eax)] ; quantptr
119 mov esi, JCOEFPTR [coef_block(eax)] ; inptr
120 lea edi, [workspace] ; JCOEF * wsptr
121 mov ecx, DCTSIZE/4 ; ctr
122 alignx 16,7
123 .columnloop:
124 %ifndef NO_ZERO_COLUMN_TEST_IFAST_MMX
125 mov eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)]
126 or eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)]
127 jnz short .columnDCT
129 movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
130 movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
131 por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
132 por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
133 por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
134 por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
135 por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
136 por mm1,mm0
137 packsswb mm1,mm1
138 movd eax,mm1
139 test eax,eax
140 jnz short .columnDCT
142 ; -- AC terms all zero
144 movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
145 pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)]
147 movq mm2,mm0 ; mm0=in0=(00 01 02 03)
148 punpcklwd mm0,mm0 ; mm0=(00 00 01 01)
149 punpckhwd mm2,mm2 ; mm2=(02 02 03 03)
151 movq mm1,mm0
152 punpckldq mm0,mm0 ; mm0=(00 00 00 00)
153 punpckhdq mm1,mm1 ; mm1=(01 01 01 01)
154 movq mm3,mm2
155 punpckldq mm2,mm2 ; mm2=(02 02 02 02)
156 punpckhdq mm3,mm3 ; mm3=(03 03 03 03)
158 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0
159 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0
160 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1
161 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm1
162 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2
163 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2
164 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3
165 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm3
166 jmp near .nextcolumn
167 alignx 16,7
168 %endif
169 .columnDCT:
171 ; -- Even part
173 movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
174 movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
175 pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)]
176 pmullw mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)]
177 movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
178 movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
179 pmullw mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)]
180 pmullw mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)]
182 movq mm4,mm0
183 movq mm5,mm1
184 psubw mm0,mm2 ; mm0=tmp11
185 psubw mm1,mm3
186 paddw mm4,mm2 ; mm4=tmp10
187 paddw mm5,mm3 ; mm5=tmp13
189 psllw mm1,PRE_MULTIPLY_SCALE_BITS
190 pmulhw mm1,[GOTOFF(ebx,PW_F1414)]
191 psubw mm1,mm5 ; mm1=tmp12
193 movq mm6,mm4
194 movq mm7,mm0
195 psubw mm4,mm5 ; mm4=tmp3
196 psubw mm0,mm1 ; mm0=tmp2
197 paddw mm6,mm5 ; mm6=tmp0
198 paddw mm7,mm1 ; mm7=tmp1
200 movq MMWORD [wk(1)], mm4 ; wk(1)=tmp3
201 movq MMWORD [wk(0)], mm0 ; wk(0)=tmp2
203 ; -- Odd part
205 movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
206 movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
207 pmullw mm2, MMWORD [MMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)]
208 pmullw mm3, MMWORD [MMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)]
209 movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
210 movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
211 pmullw mm5, MMWORD [MMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)]
212 pmullw mm1, MMWORD [MMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)]
214 movq mm4,mm2
215 movq mm0,mm5
216 psubw mm2,mm1 ; mm2=z12
217 psubw mm5,mm3 ; mm5=z10
218 paddw mm4,mm1 ; mm4=z11
219 paddw mm0,mm3 ; mm0=z13
221 movq mm1,mm5 ; mm1=z10(unscaled)
222 psllw mm2,PRE_MULTIPLY_SCALE_BITS
223 psllw mm5,PRE_MULTIPLY_SCALE_BITS
225 movq mm3,mm4
226 psubw mm4,mm0
227 paddw mm3,mm0 ; mm3=tmp7
229 psllw mm4,PRE_MULTIPLY_SCALE_BITS
230 pmulhw mm4,[GOTOFF(ebx,PW_F1414)] ; mm4=tmp11
232 ; To avoid overflow...
234 ; (Original)
235 ; tmp12 = -2.613125930 * z10 + z5;
237 ; (This implementation)
238 ; tmp12 = (-1.613125930 - 1) * z10 + z5;
239 ; = -1.613125930 * z10 - z10 + z5;
241 movq mm0,mm5
242 paddw mm5,mm2
243 pmulhw mm5,[GOTOFF(ebx,PW_F1847)] ; mm5=z5
244 pmulhw mm0,[GOTOFF(ebx,PW_MF1613)]
245 pmulhw mm2,[GOTOFF(ebx,PW_F1082)]
246 psubw mm0,mm1
247 psubw mm2,mm5 ; mm2=tmp10
248 paddw mm0,mm5 ; mm0=tmp12
250 ; -- Final output stage
252 psubw mm0,mm3 ; mm0=tmp6
253 movq mm1,mm6
254 movq mm5,mm7
255 paddw mm6,mm3 ; mm6=data0=(00 01 02 03)
256 paddw mm7,mm0 ; mm7=data1=(10 11 12 13)
257 psubw mm1,mm3 ; mm1=data7=(70 71 72 73)
258 psubw mm5,mm0 ; mm5=data6=(60 61 62 63)
259 psubw mm4,mm0 ; mm4=tmp5
261 movq mm3,mm6 ; transpose coefficients(phase 1)
262 punpcklwd mm6,mm7 ; mm6=(00 10 01 11)
263 punpckhwd mm3,mm7 ; mm3=(02 12 03 13)
264 movq mm0,mm5 ; transpose coefficients(phase 1)
265 punpcklwd mm5,mm1 ; mm5=(60 70 61 71)
266 punpckhwd mm0,mm1 ; mm0=(62 72 63 73)
268 movq mm7, MMWORD [wk(0)] ; mm7=tmp2
269 movq mm1, MMWORD [wk(1)] ; mm1=tmp3
271 movq MMWORD [wk(0)], mm5 ; wk(0)=(60 70 61 71)
272 movq MMWORD [wk(1)], mm0 ; wk(1)=(62 72 63 73)
274 paddw mm2,mm4 ; mm2=tmp4
275 movq mm5,mm7
276 movq mm0,mm1
277 paddw mm7,mm4 ; mm7=data2=(20 21 22 23)
278 paddw mm1,mm2 ; mm1=data4=(40 41 42 43)
279 psubw mm5,mm4 ; mm5=data5=(50 51 52 53)
280 psubw mm0,mm2 ; mm0=data3=(30 31 32 33)
282 movq mm4,mm7 ; transpose coefficients(phase 1)
283 punpcklwd mm7,mm0 ; mm7=(20 30 21 31)
284 punpckhwd mm4,mm0 ; mm4=(22 32 23 33)
285 movq mm2,mm1 ; transpose coefficients(phase 1)
286 punpcklwd mm1,mm5 ; mm1=(40 50 41 51)
287 punpckhwd mm2,mm5 ; mm2=(42 52 43 53)
289 movq mm0,mm6 ; transpose coefficients(phase 2)
290 punpckldq mm6,mm7 ; mm6=(00 10 20 30)
291 punpckhdq mm0,mm7 ; mm0=(01 11 21 31)
292 movq mm5,mm3 ; transpose coefficients(phase 2)
293 punpckldq mm3,mm4 ; mm3=(02 12 22 32)
294 punpckhdq mm5,mm4 ; mm5=(03 13 23 33)
296 movq mm7, MMWORD [wk(0)] ; mm7=(60 70 61 71)
297 movq mm4, MMWORD [wk(1)] ; mm4=(62 72 63 73)
299 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm6
300 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm0
301 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm3
302 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm5
304 movq mm6,mm1 ; transpose coefficients(phase 2)
305 punpckldq mm1,mm7 ; mm1=(40 50 60 70)
306 punpckhdq mm6,mm7 ; mm6=(41 51 61 71)
307 movq mm0,mm2 ; transpose coefficients(phase 2)
308 punpckldq mm2,mm4 ; mm2=(42 52 62 72)
309 punpckhdq mm0,mm4 ; mm0=(43 53 63 73)
311 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm1
312 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm6
313 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2
314 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm0
316 .nextcolumn:
317 add esi, byte 4*SIZEOF_JCOEF ; coef_block
318 add edx, byte 4*SIZEOF_IFAST_MULT_TYPE ; quantptr
319 add edi, byte 4*DCTSIZE*SIZEOF_JCOEF ; wsptr
320 dec ecx ; ctr
321 jnz near .columnloop
323 ; ---- Pass 2: process rows from work array, store into output array.
325 mov eax, [original_ebp]
326 lea esi, [workspace] ; JCOEF * wsptr
327 mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *)
328 mov eax, JDIMENSION [output_col(eax)]
329 mov ecx, DCTSIZE/4 ; ctr
330 alignx 16,7
331 .rowloop:
333 ; -- Even part
335 movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)]
336 movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)]
337 movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)]
338 movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)]
340 movq mm4,mm0
341 movq mm5,mm1
342 psubw mm0,mm2 ; mm0=tmp11
343 psubw mm1,mm3
344 paddw mm4,mm2 ; mm4=tmp10
345 paddw mm5,mm3 ; mm5=tmp13
347 psllw mm1,PRE_MULTIPLY_SCALE_BITS
348 pmulhw mm1,[GOTOFF(ebx,PW_F1414)]
349 psubw mm1,mm5 ; mm1=tmp12
351 movq mm6,mm4
352 movq mm7,mm0
353 psubw mm4,mm5 ; mm4=tmp3
354 psubw mm0,mm1 ; mm0=tmp2
355 paddw mm6,mm5 ; mm6=tmp0
356 paddw mm7,mm1 ; mm7=tmp1
358 movq MMWORD [wk(1)], mm4 ; wk(1)=tmp3
359 movq MMWORD [wk(0)], mm0 ; wk(0)=tmp2
361 ; -- Odd part
363 movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)]
364 movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)]
365 movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)]
366 movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)]
368 movq mm4,mm2
369 movq mm0,mm5
370 psubw mm2,mm1 ; mm2=z12
371 psubw mm5,mm3 ; mm5=z10
372 paddw mm4,mm1 ; mm4=z11
373 paddw mm0,mm3 ; mm0=z13
375 movq mm1,mm5 ; mm1=z10(unscaled)
376 psllw mm2,PRE_MULTIPLY_SCALE_BITS
377 psllw mm5,PRE_MULTIPLY_SCALE_BITS
379 movq mm3,mm4
380 psubw mm4,mm0
381 paddw mm3,mm0 ; mm3=tmp7
383 psllw mm4,PRE_MULTIPLY_SCALE_BITS
384 pmulhw mm4,[GOTOFF(ebx,PW_F1414)] ; mm4=tmp11
386 ; To avoid overflow...
388 ; (Original)
389 ; tmp12 = -2.613125930 * z10 + z5;
391 ; (This implementation)
392 ; tmp12 = (-1.613125930 - 1) * z10 + z5;
393 ; = -1.613125930 * z10 - z10 + z5;
395 movq mm0,mm5
396 paddw mm5,mm2
397 pmulhw mm5,[GOTOFF(ebx,PW_F1847)] ; mm5=z5
398 pmulhw mm0,[GOTOFF(ebx,PW_MF1613)]
399 pmulhw mm2,[GOTOFF(ebx,PW_F1082)]
400 psubw mm0,mm1
401 psubw mm2,mm5 ; mm2=tmp10
402 paddw mm0,mm5 ; mm0=tmp12
404 ; -- Final output stage
406 psubw mm0,mm3 ; mm0=tmp6
407 movq mm1,mm6
408 movq mm5,mm7
409 paddw mm6,mm3 ; mm6=data0=(00 10 20 30)
410 paddw mm7,mm0 ; mm7=data1=(01 11 21 31)
411 psraw mm6,(PASS1_BITS+3) ; descale
412 psraw mm7,(PASS1_BITS+3) ; descale
413 psubw mm1,mm3 ; mm1=data7=(07 17 27 37)
414 psubw mm5,mm0 ; mm5=data6=(06 16 26 36)
415 psraw mm1,(PASS1_BITS+3) ; descale
416 psraw mm5,(PASS1_BITS+3) ; descale
417 psubw mm4,mm0 ; mm4=tmp5
419 packsswb mm6,mm5 ; mm6=(00 10 20 30 06 16 26 36)
420 packsswb mm7,mm1 ; mm7=(01 11 21 31 07 17 27 37)
422 movq mm3, MMWORD [wk(0)] ; mm3=tmp2
423 movq mm0, MMWORD [wk(1)] ; mm0=tmp3
425 paddw mm2,mm4 ; mm2=tmp4
426 movq mm5,mm3
427 movq mm1,mm0
428 paddw mm3,mm4 ; mm3=data2=(02 12 22 32)
429 paddw mm0,mm2 ; mm0=data4=(04 14 24 34)
430 psraw mm3,(PASS1_BITS+3) ; descale
431 psraw mm0,(PASS1_BITS+3) ; descale
432 psubw mm5,mm4 ; mm5=data5=(05 15 25 35)
433 psubw mm1,mm2 ; mm1=data3=(03 13 23 33)
434 psraw mm5,(PASS1_BITS+3) ; descale
435 psraw mm1,(PASS1_BITS+3) ; descale
437 movq mm4,[GOTOFF(ebx,PB_CENTERJSAMP)] ; mm4=[PB_CENTERJSAMP]
439 packsswb mm3,mm0 ; mm3=(02 12 22 32 04 14 24 34)
440 packsswb mm1,mm5 ; mm1=(03 13 23 33 05 15 25 35)
442 paddb mm6,mm4
443 paddb mm7,mm4
444 paddb mm3,mm4
445 paddb mm1,mm4
447 movq mm2,mm6 ; transpose coefficients(phase 1)
448 punpcklbw mm6,mm7 ; mm6=(00 01 10 11 20 21 30 31)
449 punpckhbw mm2,mm7 ; mm2=(06 07 16 17 26 27 36 37)
450 movq mm0,mm3 ; transpose coefficients(phase 1)
451 punpcklbw mm3,mm1 ; mm3=(02 03 12 13 22 23 32 33)
452 punpckhbw mm0,mm1 ; mm0=(04 05 14 15 24 25 34 35)
454 movq mm5,mm6 ; transpose coefficients(phase 2)
455 punpcklwd mm6,mm3 ; mm6=(00 01 02 03 10 11 12 13)
456 punpckhwd mm5,mm3 ; mm5=(20 21 22 23 30 31 32 33)
457 movq mm4,mm0 ; transpose coefficients(phase 2)
458 punpcklwd mm0,mm2 ; mm0=(04 05 06 07 14 15 16 17)
459 punpckhwd mm4,mm2 ; mm4=(24 25 26 27 34 35 36 37)
461 movq mm7,mm6 ; transpose coefficients(phase 3)
462 punpckldq mm6,mm0 ; mm6=(00 01 02 03 04 05 06 07)
463 punpckhdq mm7,mm0 ; mm7=(10 11 12 13 14 15 16 17)
464 movq mm1,mm5 ; transpose coefficients(phase 3)
465 punpckldq mm5,mm4 ; mm5=(20 21 22 23 24 25 26 27)
466 punpckhdq mm1,mm4 ; mm1=(30 31 32 33 34 35 36 37)
468 pushpic ebx ; save GOT address
470 mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW]
471 mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW]
472 movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm6
473 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm7
474 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW]
475 mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW]
476 movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm5
477 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm1
479 poppic ebx ; restore GOT address
481 add esi, byte 4*SIZEOF_JCOEF ; wsptr
482 add edi, byte 4*SIZEOF_JSAMPROW
483 dec ecx ; ctr
484 jnz near .rowloop
486 emms ; empty MMX state
488 pop edi
489 pop esi
490 ; pop edx ; need not be preserved
491 ; pop ecx ; need not be preserved
492 pop ebx
493 mov esp,ebp ; esp <- aligned ebp
494 pop esp ; esp <- original ebp
495 pop ebp
498 ; For some reason, the OS X linker does not honor the request to align the
499 ; segment unless we do this.
500 align 16