Bug 573948 - Part 1: Use libjpeg-turbo instead of libjpeg. r=jmuizelaar
[gecko.git] / jpeg / jcdctmgr.c
blob711f9dab62906a520f8eb3ce1334f0264baa7901
1 /*
2 * jcdctmgr.c
4 * Copyright (C) 1994-1996, Thomas G. Lane.
5 * Copyright (C) 1999-2006, MIYASAKA Masaru.
6 * Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
7 * Copyright (C) 2011 D. R. Commander
8 * This file is part of the Independent JPEG Group's software.
9 * For conditions of distribution and use, see the accompanying README file.
11 * This file contains the forward-DCT management logic.
12 * This code selects a particular DCT implementation to be used,
13 * and it performs related housekeeping chores including coefficient
14 * quantization.
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jdct.h" /* Private declarations for DCT subsystem */
21 #include "jsimddct.h"
24 /* Private subobject for this module */
26 typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
27 typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
29 typedef JMETHOD(void, convsamp_method_ptr,
30 (JSAMPARRAY sample_data, JDIMENSION start_col,
31 DCTELEM * workspace));
32 typedef JMETHOD(void, float_convsamp_method_ptr,
33 (JSAMPARRAY sample_data, JDIMENSION start_col,
34 FAST_FLOAT *workspace));
36 typedef JMETHOD(void, quantize_method_ptr,
37 (JCOEFPTR coef_block, DCTELEM * divisors,
38 DCTELEM * workspace));
39 typedef JMETHOD(void, float_quantize_method_ptr,
40 (JCOEFPTR coef_block, FAST_FLOAT * divisors,
41 FAST_FLOAT * workspace));
43 METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *);
45 typedef struct {
46 struct jpeg_forward_dct pub; /* public fields */
48 /* Pointer to the DCT routine actually in use */
49 forward_DCT_method_ptr dct;
50 convsamp_method_ptr convsamp;
51 quantize_method_ptr quantize;
53 /* The actual post-DCT divisors --- not identical to the quant table
54 * entries, because of scaling (especially for an unnormalized DCT).
55 * Each table is given in normal array order.
57 DCTELEM * divisors[NUM_QUANT_TBLS];
59 /* work area for FDCT subroutine */
60 DCTELEM * workspace;
62 #ifdef DCT_FLOAT_SUPPORTED
63 /* Same as above for the floating-point case. */
64 float_DCT_method_ptr float_dct;
65 float_convsamp_method_ptr float_convsamp;
66 float_quantize_method_ptr float_quantize;
67 FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
68 FAST_FLOAT * float_workspace;
69 #endif
70 } my_fdct_controller;
72 typedef my_fdct_controller * my_fdct_ptr;
76 * Find the highest bit in an integer through binary search.
78 LOCAL(int)
79 flss (UINT16 val)
81 int bit;
83 bit = 16;
85 if (!val)
86 return 0;
88 if (!(val & 0xff00)) {
89 bit -= 8;
90 val <<= 8;
92 if (!(val & 0xf000)) {
93 bit -= 4;
94 val <<= 4;
96 if (!(val & 0xc000)) {
97 bit -= 2;
98 val <<= 2;
100 if (!(val & 0x8000)) {
101 bit -= 1;
102 val <<= 1;
105 return bit;
109 * Compute values to do a division using reciprocal.
111 * This implementation is based on an algorithm described in
112 * "How to optimize for the Pentium family of microprocessors"
113 * (http://www.agner.org/assem/).
114 * More information about the basic algorithm can be found in
115 * the paper "Integer Division Using Reciprocals" by Robert Alverson.
117 * The basic idea is to replace x/d by x * d^-1. In order to store
118 * d^-1 with enough precision we shift it left a few places. It turns
119 * out that this algoright gives just enough precision, and also fits
120 * into DCTELEM:
122 * b = (the number of significant bits in divisor) - 1
123 * r = (word size) + b
124 * f = 2^r / divisor
126 * f will not be an integer for most cases, so we need to compensate
127 * for the rounding error introduced:
129 * no fractional part:
131 * result = input >> r
133 * fractional part of f < 0.5:
135 * round f down to nearest integer
136 * result = ((input + 1) * f) >> r
138 * fractional part of f > 0.5:
140 * round f up to nearest integer
141 * result = (input * f) >> r
143 * This is the original algorithm that gives truncated results. But we
144 * want properly rounded results, so we replace "input" with
145 * "input + divisor/2".
147 * In order to allow SIMD implementations we also tweak the values to
148 * allow the same calculation to be made at all times:
150 * dctbl[0] = f rounded to nearest integer
151 * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
152 * dctbl[2] = 1 << ((word size) * 2 - r)
153 * dctbl[3] = r - (word size)
155 * dctbl[2] is for stupid instruction sets where the shift operation
156 * isn't member wise (e.g. MMX).
158 * The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
159 * is that most SIMD implementations have a "multiply and store top
160 * half" operation.
162 * Lastly, we store each of the values in their own table instead
163 * of in a consecutive manner, yet again in order to allow SIMD
164 * routines.
166 LOCAL(int)
167 compute_reciprocal (UINT16 divisor, DCTELEM * dtbl)
169 UDCTELEM2 fq, fr;
170 UDCTELEM c;
171 int b, r;
173 b = flss(divisor) - 1;
174 r = sizeof(DCTELEM) * 8 + b;
176 fq = ((UDCTELEM2)1 << r) / divisor;
177 fr = ((UDCTELEM2)1 << r) % divisor;
179 c = divisor / 2; /* for rounding */
181 if (fr == 0) { /* divisor is power of two */
182 /* fq will be one bit too large to fit in DCTELEM, so adjust */
183 fq >>= 1;
184 r--;
185 } else if (fr <= (divisor / 2)) { /* fractional part is < 0.5 */
186 c++;
187 } else { /* fractional part is > 0.5 */
188 fq++;
191 dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */
192 dtbl[DCTSIZE2 * 1] = (DCTELEM) c; /* correction + roundfactor */
193 dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r)); /* scale */
194 dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */
196 if(r <= 16) return 0;
197 else return 1;
201 * Initialize for a processing pass.
202 * Verify that all referenced Q-tables are present, and set up
203 * the divisor table for each one.
204 * In the current implementation, DCT of all components is done during
205 * the first pass, even if only some components will be output in the
206 * first scan. Hence all components should be examined here.
209 METHODDEF(void)
210 start_pass_fdctmgr (j_compress_ptr cinfo)
212 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
213 int ci, qtblno, i;
214 jpeg_component_info *compptr;
215 JQUANT_TBL * qtbl;
216 DCTELEM * dtbl;
218 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
219 ci++, compptr++) {
220 qtblno = compptr->quant_tbl_no;
221 /* Make sure specified quantization table is present */
222 if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
223 cinfo->quant_tbl_ptrs[qtblno] == NULL)
224 ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
225 qtbl = cinfo->quant_tbl_ptrs[qtblno];
226 /* Compute divisors for this quant table */
227 /* We may do this more than once for same table, but it's not a big deal */
228 switch (cinfo->dct_method) {
229 #ifdef DCT_ISLOW_SUPPORTED
230 case JDCT_ISLOW:
231 /* For LL&M IDCT method, divisors are equal to raw quantization
232 * coefficients multiplied by 8 (to counteract scaling).
234 if (fdct->divisors[qtblno] == NULL) {
235 fdct->divisors[qtblno] = (DCTELEM *)
236 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
237 (DCTSIZE2 * 4) * SIZEOF(DCTELEM));
239 dtbl = fdct->divisors[qtblno];
240 for (i = 0; i < DCTSIZE2; i++) {
241 if(!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i])
242 && fdct->quantize == jsimd_quantize)
243 fdct->quantize = quantize;
245 break;
246 #endif
247 #ifdef DCT_IFAST_SUPPORTED
248 case JDCT_IFAST:
250 /* For AA&N IDCT method, divisors are equal to quantization
251 * coefficients scaled by scalefactor[row]*scalefactor[col], where
252 * scalefactor[0] = 1
253 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
254 * We apply a further scale factor of 8.
256 #define CONST_BITS 14
257 static const INT16 aanscales[DCTSIZE2] = {
258 /* precomputed values scaled up by 14 bits */
259 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
260 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
261 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
262 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
263 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
264 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
265 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
266 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
268 SHIFT_TEMPS
270 if (fdct->divisors[qtblno] == NULL) {
271 fdct->divisors[qtblno] = (DCTELEM *)
272 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
273 (DCTSIZE2 * 4) * SIZEOF(DCTELEM));
275 dtbl = fdct->divisors[qtblno];
276 for (i = 0; i < DCTSIZE2; i++) {
277 if(!compute_reciprocal(
278 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
279 (INT32) aanscales[i]),
280 CONST_BITS-3), &dtbl[i])
281 && fdct->quantize == jsimd_quantize)
282 fdct->quantize = quantize;
285 break;
286 #endif
287 #ifdef DCT_FLOAT_SUPPORTED
288 case JDCT_FLOAT:
290 /* For float AA&N IDCT method, divisors are equal to quantization
291 * coefficients scaled by scalefactor[row]*scalefactor[col], where
292 * scalefactor[0] = 1
293 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
294 * We apply a further scale factor of 8.
295 * What's actually stored is 1/divisor so that the inner loop can
296 * use a multiplication rather than a division.
298 FAST_FLOAT * fdtbl;
299 int row, col;
300 static const double aanscalefactor[DCTSIZE] = {
301 1.0, 1.387039845, 1.306562965, 1.175875602,
302 1.0, 0.785694958, 0.541196100, 0.275899379
305 if (fdct->float_divisors[qtblno] == NULL) {
306 fdct->float_divisors[qtblno] = (FAST_FLOAT *)
307 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
308 DCTSIZE2 * SIZEOF(FAST_FLOAT));
310 fdtbl = fdct->float_divisors[qtblno];
311 i = 0;
312 for (row = 0; row < DCTSIZE; row++) {
313 for (col = 0; col < DCTSIZE; col++) {
314 fdtbl[i] = (FAST_FLOAT)
315 (1.0 / (((double) qtbl->quantval[i] *
316 aanscalefactor[row] * aanscalefactor[col] * 8.0)));
317 i++;
321 break;
322 #endif
323 default:
324 ERREXIT(cinfo, JERR_NOT_COMPILED);
325 break;
332 * Load data into workspace, applying unsigned->signed conversion.
335 METHODDEF(void)
336 convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM * workspace)
338 register DCTELEM *workspaceptr;
339 register JSAMPROW elemptr;
340 register int elemr;
342 workspaceptr = workspace;
343 for (elemr = 0; elemr < DCTSIZE; elemr++) {
344 elemptr = sample_data[elemr] + start_col;
346 #if DCTSIZE == 8 /* unroll the inner loop */
347 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
348 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
349 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
350 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
351 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
352 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
353 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
354 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
355 #else
357 register int elemc;
358 for (elemc = DCTSIZE; elemc > 0; elemc--)
359 *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
361 #endif
367 * Quantize/descale the coefficients, and store into coef_blocks[].
370 METHODDEF(void)
371 quantize (JCOEFPTR coef_block, DCTELEM * divisors, DCTELEM * workspace)
373 int i;
374 DCTELEM temp;
375 UDCTELEM recip, corr, shift;
376 UDCTELEM2 product;
377 JCOEFPTR output_ptr = coef_block;
379 for (i = 0; i < DCTSIZE2; i++) {
380 temp = workspace[i];
381 recip = divisors[i + DCTSIZE2 * 0];
382 corr = divisors[i + DCTSIZE2 * 1];
383 shift = divisors[i + DCTSIZE2 * 3];
385 if (temp < 0) {
386 temp = -temp;
387 product = (UDCTELEM2)(temp + corr) * recip;
388 product >>= shift + sizeof(DCTELEM)*8;
389 temp = product;
390 temp = -temp;
391 } else {
392 product = (UDCTELEM2)(temp + corr) * recip;
393 product >>= shift + sizeof(DCTELEM)*8;
394 temp = product;
397 output_ptr[i] = (JCOEF) temp;
403 * Perform forward DCT on one or more blocks of a component.
405 * The input samples are taken from the sample_data[] array starting at
406 * position start_row/start_col, and moving to the right for any additional
407 * blocks. The quantized coefficients are returned in coef_blocks[].
410 METHODDEF(void)
411 forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
412 JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
413 JDIMENSION start_row, JDIMENSION start_col,
414 JDIMENSION num_blocks)
415 /* This version is used for integer DCT implementations. */
417 /* This routine is heavily used, so it's worth coding it tightly. */
418 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
419 DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
420 DCTELEM * workspace;
421 JDIMENSION bi;
423 /* Make sure the compiler doesn't look up these every pass */
424 forward_DCT_method_ptr do_dct = fdct->dct;
425 convsamp_method_ptr do_convsamp = fdct->convsamp;
426 quantize_method_ptr do_quantize = fdct->quantize;
427 workspace = fdct->workspace;
429 sample_data += start_row; /* fold in the vertical offset once */
431 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
432 /* Load data into workspace, applying unsigned->signed conversion */
433 (*do_convsamp) (sample_data, start_col, workspace);
435 /* Perform the DCT */
436 (*do_dct) (workspace);
438 /* Quantize/descale the coefficients, and store into coef_blocks[] */
439 (*do_quantize) (coef_blocks[bi], divisors, workspace);
444 #ifdef DCT_FLOAT_SUPPORTED
447 METHODDEF(void)
448 convsamp_float (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT * workspace)
450 register FAST_FLOAT *workspaceptr;
451 register JSAMPROW elemptr;
452 register int elemr;
454 workspaceptr = workspace;
455 for (elemr = 0; elemr < DCTSIZE; elemr++) {
456 elemptr = sample_data[elemr] + start_col;
457 #if DCTSIZE == 8 /* unroll the inner loop */
458 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
459 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
460 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
461 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
462 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
463 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
464 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
465 *workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
466 #else
468 register int elemc;
469 for (elemc = DCTSIZE; elemc > 0; elemc--)
470 *workspaceptr++ = (FAST_FLOAT)
471 (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
473 #endif
478 METHODDEF(void)
479 quantize_float (JCOEFPTR coef_block, FAST_FLOAT * divisors, FAST_FLOAT * workspace)
481 register FAST_FLOAT temp;
482 register int i;
483 register JCOEFPTR output_ptr = coef_block;
485 for (i = 0; i < DCTSIZE2; i++) {
486 /* Apply the quantization and scaling factor */
487 temp = workspace[i] * divisors[i];
489 /* Round to nearest integer.
490 * Since C does not specify the direction of rounding for negative
491 * quotients, we have to force the dividend positive for portability.
492 * The maximum coefficient size is +-16K (for 12-bit data), so this
493 * code should work for either 16-bit or 32-bit ints.
495 output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
500 METHODDEF(void)
501 forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
502 JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
503 JDIMENSION start_row, JDIMENSION start_col,
504 JDIMENSION num_blocks)
505 /* This version is used for floating-point DCT implementations. */
507 /* This routine is heavily used, so it's worth coding it tightly. */
508 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
509 FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
510 FAST_FLOAT * workspace;
511 JDIMENSION bi;
514 /* Make sure the compiler doesn't look up these every pass */
515 float_DCT_method_ptr do_dct = fdct->float_dct;
516 float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
517 float_quantize_method_ptr do_quantize = fdct->float_quantize;
518 workspace = fdct->float_workspace;
520 sample_data += start_row; /* fold in the vertical offset once */
522 for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
523 /* Load data into workspace, applying unsigned->signed conversion */
524 (*do_convsamp) (sample_data, start_col, workspace);
526 /* Perform the DCT */
527 (*do_dct) (workspace);
529 /* Quantize/descale the coefficients, and store into coef_blocks[] */
530 (*do_quantize) (coef_blocks[bi], divisors, workspace);
534 #endif /* DCT_FLOAT_SUPPORTED */
538 * Initialize FDCT manager.
541 GLOBAL(void)
542 jinit_forward_dct (j_compress_ptr cinfo)
544 my_fdct_ptr fdct;
545 int i;
547 fdct = (my_fdct_ptr)
548 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
549 SIZEOF(my_fdct_controller));
550 cinfo->fdct = (struct jpeg_forward_dct *) fdct;
551 fdct->pub.start_pass = start_pass_fdctmgr;
553 /* First determine the DCT... */
554 switch (cinfo->dct_method) {
555 #ifdef DCT_ISLOW_SUPPORTED
556 case JDCT_ISLOW:
557 fdct->pub.forward_DCT = forward_DCT;
558 if (jsimd_can_fdct_islow())
559 fdct->dct = jsimd_fdct_islow;
560 else
561 fdct->dct = jpeg_fdct_islow;
562 break;
563 #endif
564 #ifdef DCT_IFAST_SUPPORTED
565 case JDCT_IFAST:
566 fdct->pub.forward_DCT = forward_DCT;
567 if (jsimd_can_fdct_ifast())
568 fdct->dct = jsimd_fdct_ifast;
569 else
570 fdct->dct = jpeg_fdct_ifast;
571 break;
572 #endif
573 #ifdef DCT_FLOAT_SUPPORTED
574 case JDCT_FLOAT:
575 fdct->pub.forward_DCT = forward_DCT_float;
576 if (jsimd_can_fdct_float())
577 fdct->float_dct = jsimd_fdct_float;
578 else
579 fdct->float_dct = jpeg_fdct_float;
580 break;
581 #endif
582 default:
583 ERREXIT(cinfo, JERR_NOT_COMPILED);
584 break;
587 /* ...then the supporting stages. */
588 switch (cinfo->dct_method) {
589 #ifdef DCT_ISLOW_SUPPORTED
590 case JDCT_ISLOW:
591 #endif
592 #ifdef DCT_IFAST_SUPPORTED
593 case JDCT_IFAST:
594 #endif
595 #if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
596 if (jsimd_can_convsamp())
597 fdct->convsamp = jsimd_convsamp;
598 else
599 fdct->convsamp = convsamp;
600 if (jsimd_can_quantize())
601 fdct->quantize = jsimd_quantize;
602 else
603 fdct->quantize = quantize;
604 break;
605 #endif
606 #ifdef DCT_FLOAT_SUPPORTED
607 case JDCT_FLOAT:
608 if (jsimd_can_convsamp_float())
609 fdct->float_convsamp = jsimd_convsamp_float;
610 else
611 fdct->float_convsamp = convsamp_float;
612 if (jsimd_can_quantize_float())
613 fdct->float_quantize = jsimd_quantize_float;
614 else
615 fdct->float_quantize = quantize_float;
616 break;
617 #endif
618 default:
619 ERREXIT(cinfo, JERR_NOT_COMPILED);
620 break;
623 /* Allocate workspace memory */
624 #ifdef DCT_FLOAT_SUPPORTED
625 if (cinfo->dct_method == JDCT_FLOAT)
626 fdct->float_workspace = (FAST_FLOAT *)
627 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
628 SIZEOF(FAST_FLOAT) * DCTSIZE2);
629 else
630 #endif
631 fdct->workspace = (DCTELEM *)
632 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
633 SIZEOF(DCTELEM) * DCTSIZE2);
635 /* Mark divisor tables unallocated */
636 for (i = 0; i < NUM_QUANT_TBLS; i++) {
637 fdct->divisors[i] = NULL;
638 #ifdef DCT_FLOAT_SUPPORTED
639 fdct->float_divisors[i] = NULL;
640 #endif