1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* This Source Code Form is subject to the terms of the Mozilla Public
3 * License, v. 2.0. If a copy of the MPL was not distributed with this
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 * SurfaceCache is a service for caching temporary surfaces in imagelib.
10 #include "SurfaceCache.h"
15 #include "ISurfaceProvider.h"
17 #include "LookupResult.h"
18 #include "ShutdownTracker.h"
19 #include "gfx2DGlue.h"
20 #include "gfxPlatform.h"
22 #include "mozilla/Assertions.h"
23 #include "mozilla/Attributes.h"
24 #include "mozilla/CheckedInt.h"
25 #include "mozilla/DebugOnly.h"
26 #include "mozilla/Likely.h"
27 #include "mozilla/RefPtr.h"
28 #include "mozilla/StaticMutex.h"
29 #include "mozilla/StaticPrefs_image.h"
30 #include "mozilla/StaticPtr.h"
31 #include "mozilla/Tuple.h"
32 #include "nsExpirationTracker.h"
33 #include "nsHashKeys.h"
34 #include "nsIMemoryReporter.h"
35 #include "nsRefPtrHashtable.h"
38 #include "Orientation.h"
50 MOZ_DEFINE_MALLOC_SIZE_OF(SurfaceCacheMallocSizeOf
)
53 class SurfaceCacheImpl
;
55 ///////////////////////////////////////////////////////////////////////////////
57 ///////////////////////////////////////////////////////////////////////////////
59 // The single surface cache instance.
60 static StaticRefPtr
<SurfaceCacheImpl
> sInstance
;
62 // The mutex protecting the surface cache.
63 static StaticMutex sInstanceMutex
;
65 ///////////////////////////////////////////////////////////////////////////////
66 // SurfaceCache Implementation
67 ///////////////////////////////////////////////////////////////////////////////
70 * Cost models the cost of storing a surface in the cache. Right now, this is
71 * simply an estimate of the size of the surface in bytes, but in the future it
72 * may be worth taking into account the cost of rematerializing the surface as
77 static Cost
ComputeCost(const IntSize
& aSize
, uint32_t aBytesPerPixel
) {
78 MOZ_ASSERT(aBytesPerPixel
== 1 || aBytesPerPixel
== 4);
79 return aSize
.width
* aSize
.height
* aBytesPerPixel
;
83 * Since we want to be able to make eviction decisions based on cost, we need to
84 * be able to look up the CachedSurface which has a certain cost as well as the
85 * cost associated with a certain CachedSurface. To make this possible, in data
86 * structures we actually store a CostEntry, which contains a weak pointer to
87 * its associated surface.
89 * To make usage of the weak pointer safe, SurfaceCacheImpl always calls
90 * StartTracking after a surface is stored in the cache and StopTracking before
95 CostEntry(NotNull
<CachedSurface
*> aSurface
, Cost aCost
)
96 : mSurface(aSurface
), mCost(aCost
) {}
98 NotNull
<CachedSurface
*> Surface() const { return mSurface
; }
99 Cost
GetCost() const { return mCost
; }
101 bool operator==(const CostEntry
& aOther
) const {
102 return mSurface
== aOther
.mSurface
&& mCost
== aOther
.mCost
;
105 bool operator<(const CostEntry
& aOther
) const {
106 return mCost
< aOther
.mCost
||
107 (mCost
== aOther
.mCost
&& mSurface
< aOther
.mSurface
);
111 NotNull
<CachedSurface
*> mSurface
;
116 * A CachedSurface associates a surface with a key that uniquely identifies that
119 class CachedSurface
{
123 MOZ_DECLARE_REFCOUNTED_TYPENAME(CachedSurface
)
124 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(CachedSurface
)
126 explicit CachedSurface(NotNull
<ISurfaceProvider
*> aProvider
)
127 : mProvider(aProvider
), mIsLocked(false) {}
129 DrawableSurface
GetDrawableSurface() const {
130 if (MOZ_UNLIKELY(IsPlaceholder())) {
131 MOZ_ASSERT_UNREACHABLE("Called GetDrawableSurface() on a placeholder");
132 return DrawableSurface();
135 return mProvider
->Surface();
138 void SetLocked(bool aLocked
) {
139 if (IsPlaceholder()) {
140 return; // Can't lock a placeholder.
143 // Update both our state and our provider's state. Some surface providers
144 // are permanently locked; maintaining our own locking state enables us to
145 // respect SetLocked() even when it's meaningless from the provider's
148 mProvider
->SetLocked(aLocked
);
151 bool IsLocked() const {
152 return !IsPlaceholder() && mIsLocked
&& mProvider
->IsLocked();
155 void SetCannotSubstitute() {
156 mProvider
->Availability().SetCannotSubstitute();
158 bool CannotSubstitute() const {
159 return mProvider
->Availability().CannotSubstitute();
162 bool IsPlaceholder() const {
163 return mProvider
->Availability().IsPlaceholder();
165 bool IsDecoded() const { return !IsPlaceholder() && mProvider
->IsFinished(); }
167 ImageKey
GetImageKey() const { return mProvider
->GetImageKey(); }
168 const SurfaceKey
& GetSurfaceKey() const { return mProvider
->GetSurfaceKey(); }
169 nsExpirationState
* GetExpirationState() { return &mExpirationState
; }
171 CostEntry
GetCostEntry() {
172 return image::CostEntry(WrapNotNull(this), mProvider
->LogicalSizeInBytes());
175 size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
176 return aMallocSizeOf(this) + aMallocSizeOf(mProvider
.get());
179 void InvalidateRecording() { mProvider
->InvalidateRecording(); }
181 // A helper type used by SurfaceCacheImpl::CollectSizeOfSurfaces.
182 struct MOZ_STACK_CLASS SurfaceMemoryReport
{
183 SurfaceMemoryReport(nsTArray
<SurfaceMemoryCounter
>& aCounters
,
184 MallocSizeOf aMallocSizeOf
)
185 : mCounters(aCounters
), mMallocSizeOf(aMallocSizeOf
) {}
187 void Add(NotNull
<CachedSurface
*> aCachedSurface
, bool aIsFactor2
) {
188 if (aCachedSurface
->IsPlaceholder()) {
192 // Record the memory used by the ISurfaceProvider. This may not have a
193 // straightforward relationship to the size of the surface that
194 // DrawableRef() returns if the surface is generated dynamically. (i.e.,
195 // for surfaces with PlaybackType::eAnimated.)
196 aCachedSurface
->mProvider
->AddSizeOfExcludingThis(
197 mMallocSizeOf
, [&](ISurfaceProvider::AddSizeOfCbData
& aMetadata
) {
198 SurfaceMemoryCounter
counter(aCachedSurface
->GetSurfaceKey(),
199 aCachedSurface
->IsLocked(),
200 aCachedSurface
->CannotSubstitute(),
201 aIsFactor2
, aMetadata
.mFinished
);
203 counter
.Values().SetDecodedHeap(aMetadata
.mHeapBytes
);
204 counter
.Values().SetDecodedNonHeap(aMetadata
.mNonHeapBytes
);
205 counter
.Values().SetDecodedUnknown(aMetadata
.mUnknownBytes
);
206 counter
.Values().SetExternalHandles(aMetadata
.mExternalHandles
);
207 counter
.Values().SetFrameIndex(aMetadata
.mIndex
);
208 counter
.Values().SetExternalId(aMetadata
.mExternalId
);
209 counter
.Values().SetSurfaceTypes(aMetadata
.mTypes
);
211 mCounters
.AppendElement(counter
);
216 nsTArray
<SurfaceMemoryCounter
>& mCounters
;
217 MallocSizeOf mMallocSizeOf
;
221 nsExpirationState mExpirationState
;
222 NotNull
<RefPtr
<ISurfaceProvider
>> mProvider
;
226 static int64_t AreaOfIntSize(const IntSize
& aSize
) {
227 return static_cast<int64_t>(aSize
.width
) * static_cast<int64_t>(aSize
.height
);
231 * An ImageSurfaceCache is a per-image surface cache. For correctness we must be
232 * able to remove all surfaces associated with an image when the image is
233 * destroyed or invalidated. Since this will happen frequently, it makes sense
234 * to make it cheap by storing the surfaces for each image separately.
236 * ImageSurfaceCache also keeps track of whether its associated image is locked
239 * The cache may also enter "factor of 2" mode which occurs when the number of
240 * surfaces in the cache exceeds the "image.cache.factor2.threshold-surfaces"
241 * pref plus the number of native sizes of the image. When in "factor of 2"
242 * mode, the cache will strongly favour sizes which are a factor of 2 of the
243 * largest native size. It accomplishes this by suggesting a factor of 2 size
244 * when lookups fail and substituting the nearest factor of 2 surface to the
245 * ideal size as the "best" available (as opposed to substitution but not
246 * found). This allows us to minimize memory consumption and CPU time spent
247 * decoding when a website requires many variants of the same surface.
249 class ImageSurfaceCache
{
250 ~ImageSurfaceCache() {}
253 explicit ImageSurfaceCache(const ImageKey aImageKey
)
256 mFactor2Pruned(false),
257 mIsVectorImage(aImageKey
->GetType() == imgIContainer::TYPE_VECTOR
) {}
259 MOZ_DECLARE_REFCOUNTED_TYPENAME(ImageSurfaceCache
)
260 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageSurfaceCache
)
262 typedef nsRefPtrHashtable
<nsGenericHashKey
<SurfaceKey
>, CachedSurface
>
265 auto Values() const { return mSurfaces
.Values(); }
266 uint32_t Count() const { return mSurfaces
.Count(); }
267 bool IsEmpty() const { return mSurfaces
.Count() == 0; }
269 size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
270 size_t bytes
= aMallocSizeOf(this) +
271 mSurfaces
.ShallowSizeOfExcludingThis(aMallocSizeOf
);
272 for (const auto& value
: Values()) {
273 bytes
+= value
->ShallowSizeOfIncludingThis(aMallocSizeOf
);
278 [[nodiscard
]] bool Insert(NotNull
<CachedSurface
*> aSurface
) {
279 MOZ_ASSERT(!mLocked
|| aSurface
->IsPlaceholder() || aSurface
->IsLocked(),
280 "Inserting an unlocked surface for a locked image");
281 const auto& surfaceKey
= aSurface
->GetSurfaceKey();
282 if (surfaceKey
.Region()) {
283 // We don't allow substitutes for surfaces with regions, so we don't want
284 // to allow factor of 2 mode pruning to release these surfaces.
285 aSurface
->SetCannotSubstitute();
287 return mSurfaces
.InsertOrUpdate(surfaceKey
, RefPtr
<CachedSurface
>{aSurface
},
291 already_AddRefed
<CachedSurface
> Remove(NotNull
<CachedSurface
*> aSurface
) {
292 MOZ_ASSERT(mSurfaces
.GetWeak(aSurface
->GetSurfaceKey()),
293 "Should not be removing a surface we don't have");
295 RefPtr
<CachedSurface
> surface
;
296 mSurfaces
.Remove(aSurface
->GetSurfaceKey(), getter_AddRefs(surface
));
298 return surface
.forget();
301 already_AddRefed
<CachedSurface
> Lookup(const SurfaceKey
& aSurfaceKey
,
303 RefPtr
<CachedSurface
> surface
;
304 mSurfaces
.Get(aSurfaceKey
, getter_AddRefs(surface
));
308 // We don't want to allow factor of 2 mode pruning to release surfaces
309 // for which the callers will accept no substitute.
310 surface
->SetCannotSubstitute();
311 } else if (!mFactor2Mode
) {
312 // If no exact match is found, and this is for use rather than internal
313 // accounting (i.e. insert and removal), we know this will trigger a
314 // decode. Make sure we switch now to factor of 2 mode if necessary.
315 MaybeSetFactor2Mode();
319 return surface
.forget();
323 * @returns A tuple containing the best matching CachedSurface if available,
324 * a MatchType describing how the CachedSurface was selected, and
325 * an IntSize which is the size the caller should choose to decode
326 * at should it attempt to do so.
328 Tuple
<already_AddRefed
<CachedSurface
>, MatchType
, IntSize
> LookupBestMatch(
329 const SurfaceKey
& aIdealKey
) {
330 // Try for an exact match first.
331 RefPtr
<CachedSurface
> exactMatch
;
332 mSurfaces
.Get(aIdealKey
, getter_AddRefs(exactMatch
));
334 if (exactMatch
->IsDecoded()) {
335 return MakeTuple(exactMatch
.forget(), MatchType::EXACT
, IntSize());
337 } else if (aIdealKey
.Region()) {
338 // We cannot substitute if we have a region. Allow it to create an exact
340 return MakeTuple(exactMatch
.forget(), MatchType::NOT_FOUND
, IntSize());
341 } else if (!mFactor2Mode
) {
342 // If no exact match is found, and we are not in factor of 2 mode, then
343 // we know that we will trigger a decode because at best we will provide
344 // a substitute. Make sure we switch now to factor of 2 mode if necessary.
345 MaybeSetFactor2Mode();
348 // Try for a best match second, if using compact.
349 IntSize suggestedSize
= SuggestedSize(aIdealKey
.Size());
350 if (suggestedSize
!= aIdealKey
.Size()) {
352 SurfaceKey compactKey
= aIdealKey
.CloneWithSize(suggestedSize
);
353 mSurfaces
.Get(compactKey
, getter_AddRefs(exactMatch
));
354 if (exactMatch
&& exactMatch
->IsDecoded()) {
355 MOZ_ASSERT(suggestedSize
!= aIdealKey
.Size());
356 return MakeTuple(exactMatch
.forget(),
357 MatchType::SUBSTITUTE_BECAUSE_BEST
, suggestedSize
);
362 // There's no perfect match, so find the best match we can.
363 RefPtr
<CachedSurface
> bestMatch
;
364 for (const auto& value
: Values()) {
365 NotNull
<CachedSurface
*> current
= WrapNotNull(value
);
366 const SurfaceKey
& currentKey
= current
->GetSurfaceKey();
368 // We never match a placeholder or a surface with a region.
369 if (current
->IsPlaceholder() || currentKey
.Region()) {
372 // Matching the playback type and SVG context is required.
373 if (currentKey
.Playback() != aIdealKey
.Playback() ||
374 currentKey
.SVGContext() != aIdealKey
.SVGContext()) {
377 // Matching the flags is required.
378 if (currentKey
.Flags() != aIdealKey
.Flags()) {
381 // Anything is better than nothing! (Within the constraints we just
382 // checked, of course.)
388 MOZ_ASSERT(bestMatch
, "Should have a current best match");
390 // Always prefer completely decoded surfaces.
391 bool bestMatchIsDecoded
= bestMatch
->IsDecoded();
392 if (bestMatchIsDecoded
&& !current
->IsDecoded()) {
395 if (!bestMatchIsDecoded
&& current
->IsDecoded()) {
400 SurfaceKey bestMatchKey
= bestMatch
->GetSurfaceKey();
401 if (CompareArea(aIdealKey
.Size(), bestMatchKey
.Size(),
402 currentKey
.Size())) {
410 // No exact match, neither ideal nor factor of 2.
411 MOZ_ASSERT(suggestedSize
!= bestMatch
->GetSurfaceKey().Size(),
412 "No exact match despite the fact the sizes match!");
413 matchType
= MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND
;
414 } else if (exactMatch
!= bestMatch
) {
415 // The exact match is still decoding, but we found a substitute.
416 matchType
= MatchType::SUBSTITUTE_BECAUSE_PENDING
;
417 } else if (aIdealKey
.Size() != bestMatch
->GetSurfaceKey().Size()) {
418 // The best factor of 2 match is still decoding, but the best we've got.
419 MOZ_ASSERT(suggestedSize
!= aIdealKey
.Size());
420 MOZ_ASSERT(mFactor2Mode
|| mIsVectorImage
);
421 matchType
= MatchType::SUBSTITUTE_BECAUSE_BEST
;
423 // The exact match is still decoding, but it's the best we've got.
424 matchType
= MatchType::EXACT
;
428 // We found an "exact match"; it must have been a placeholder.
429 MOZ_ASSERT(exactMatch
->IsPlaceholder());
430 matchType
= MatchType::PENDING
;
432 // We couldn't find an exact match *or* a substitute.
433 matchType
= MatchType::NOT_FOUND
;
437 return MakeTuple(bestMatch
.forget(), matchType
, suggestedSize
);
440 void MaybeSetFactor2Mode() {
441 MOZ_ASSERT(!mFactor2Mode
);
443 // Typically an image cache will not have too many size-varying surfaces, so
444 // if we exceed the given threshold, we should consider using a subset.
445 int32_t thresholdSurfaces
=
446 StaticPrefs::image_cache_factor2_threshold_surfaces();
447 if (thresholdSurfaces
< 0 ||
448 mSurfaces
.Count() <= static_cast<uint32_t>(thresholdSurfaces
)) {
452 // Determine how many native surfaces this image has. If it is zero, and it
453 // is a vector image, then we should impute a single native size. Otherwise,
454 // it may be zero because we don't know yet, or the image has an error, or
455 // it isn't supported.
456 NotNull
<CachedSurface
*> current
=
457 WrapNotNull(mSurfaces
.ConstIter().UserData());
458 Image
* image
= static_cast<Image
*>(current
->GetImageKey());
459 size_t nativeSizes
= image
->GetNativeSizesLength();
460 if (mIsVectorImage
) {
461 MOZ_ASSERT(nativeSizes
== 0);
463 } else if (nativeSizes
== 0) {
467 // Increase the threshold by the number of native sizes. This ensures that
468 // we do not prevent decoding of the image at all its native sizes. It does
469 // not guarantee we will provide a surface at that size however (i.e. many
470 // other sized surfaces are requested, in addition to the native sizes).
471 thresholdSurfaces
+= nativeSizes
;
472 if (mSurfaces
.Count() <= static_cast<uint32_t>(thresholdSurfaces
)) {
476 // We have a valid size, we can change modes.
480 template <typename Function
>
481 void Prune(Function
&& aRemoveCallback
) {
482 if (!mFactor2Mode
|| mFactor2Pruned
) {
486 // Attempt to discard any surfaces which are not factor of 2 and the best
487 // factor of 2 match exists.
488 bool hasNotFactorSize
= false;
489 for (auto iter
= mSurfaces
.Iter(); !iter
.Done(); iter
.Next()) {
490 NotNull
<CachedSurface
*> current
= WrapNotNull(iter
.UserData());
491 const SurfaceKey
& currentKey
= current
->GetSurfaceKey();
492 const IntSize
& currentSize
= currentKey
.Size();
494 // First we check if someone requested this size and would not accept
495 // an alternatively sized surface.
496 if (current
->CannotSubstitute()) {
500 // Next we find the best factor of 2 size for this surface. If this
501 // surface is a factor of 2 size, then we want to keep it.
502 IntSize bestSize
= SuggestedSize(currentSize
);
503 if (bestSize
== currentSize
) {
507 // Check the cache for a surface with the same parameters except for the
508 // size which uses the closest factor of 2 size.
509 SurfaceKey compactKey
= currentKey
.CloneWithSize(bestSize
);
510 RefPtr
<CachedSurface
> compactMatch
;
511 mSurfaces
.Get(compactKey
, getter_AddRefs(compactMatch
));
512 if (compactMatch
&& compactMatch
->IsDecoded()) {
513 aRemoveCallback(current
);
516 hasNotFactorSize
= true;
520 // We have no surfaces that are not factor of 2 sized, so we can stop
521 // pruning henceforth, because we avoid the insertion of new surfaces that
522 // don't match our sizing set (unless the caller won't accept a
524 if (!hasNotFactorSize
) {
525 mFactor2Pruned
= true;
528 // We should never leave factor of 2 mode due to pruning in of itself, but
529 // if we discarded surfaces due to the volatile buffers getting released,
534 template <typename Function
>
535 bool Invalidate(Function
&& aRemoveCallback
) {
536 // Remove all non-blob recordings from the cache. Invalidate any blob
538 bool foundRecording
= false;
539 for (auto iter
= mSurfaces
.Iter(); !iter
.Done(); iter
.Next()) {
540 NotNull
<CachedSurface
*> current
= WrapNotNull(iter
.UserData());
542 if (current
->GetSurfaceKey().Flags() & SurfaceFlags::RECORD_BLOB
) {
543 foundRecording
= true;
544 current
->InvalidateRecording();
548 aRemoveCallback(current
);
553 return foundRecording
;
556 IntSize
SuggestedSize(const IntSize
& aSize
) const {
557 IntSize suggestedSize
= SuggestedSizeInternal(aSize
);
558 if (mIsVectorImage
) {
559 suggestedSize
= SurfaceCache::ClampVectorSize(suggestedSize
);
561 return suggestedSize
;
564 IntSize
SuggestedSizeInternal(const IntSize
& aSize
) const {
565 // When not in factor of 2 mode, we can always decode at the given size.
570 // We cannot enter factor of 2 mode unless we have a minimum number of
571 // surfaces, and we should have left it if the cache was emptied.
572 if (MOZ_UNLIKELY(IsEmpty())) {
573 MOZ_ASSERT_UNREACHABLE("Should not be empty and in factor of 2 mode!");
577 // This bit of awkwardness gets the largest native size of the image.
578 NotNull
<CachedSurface
*> firstSurface
=
579 WrapNotNull(mSurfaces
.ConstIter().UserData());
580 Image
* image
= static_cast<Image
*>(firstSurface
->GetImageKey());
582 if (NS_FAILED(image
->GetWidth(&factorSize
.width
)) ||
583 NS_FAILED(image
->GetHeight(&factorSize
.height
)) ||
584 factorSize
.IsEmpty()) {
585 // Valid vector images may have a default size of 0x0. In that case, just
586 // assume a default size of 100x100 and apply the intrinsic ratio if
587 // available. If our guess was too small, don't use factor-of-scaling.
588 MOZ_ASSERT(mIsVectorImage
);
589 factorSize
= IntSize(100, 100);
590 Maybe
<AspectRatio
> aspectRatio
= image
->GetIntrinsicRatio();
591 if (aspectRatio
&& *aspectRatio
) {
593 NSToIntRound(aspectRatio
->ApplyToFloat(float(factorSize
.height
)));
594 if (factorSize
.IsEmpty()) {
600 if (mIsVectorImage
) {
601 // Ensure the aspect ratio matches the native size before forcing the
602 // caller to accept a factor of 2 size. The difference between the aspect
605 // delta = nativeWidth/nativeHeight - desiredWidth/desiredHeight
607 // delta*nativeHeight*desiredHeight = nativeWidth*desiredHeight
608 // - desiredWidth*nativeHeight
610 // Using the maximum accepted delta as a constant, we can avoid the
611 // floating point division and just compare after some integer ops.
613 factorSize
.width
* aSize
.height
- aSize
.width
* factorSize
.height
;
614 int32_t maxDelta
= (factorSize
.height
* aSize
.height
) >> 4;
615 if (delta
> maxDelta
|| delta
< -maxDelta
) {
619 // If the requested size is bigger than the native size, we actually need
620 // to grow the native size instead of shrinking it.
621 if (factorSize
.width
< aSize
.width
) {
623 IntSize
candidate(factorSize
.width
* 2, factorSize
.height
* 2);
624 if (!SurfaceCache::IsLegalSize(candidate
)) {
628 factorSize
= candidate
;
629 } while (factorSize
.width
< aSize
.width
);
634 // Otherwise we can find the best fit as normal.
637 // Start with the native size as the best first guess.
638 IntSize bestSize
= factorSize
;
639 factorSize
.width
/= 2;
640 factorSize
.height
/= 2;
642 while (!factorSize
.IsEmpty()) {
643 if (!CompareArea(aSize
, bestSize
, factorSize
)) {
644 // This size is not better than the last. Since we proceed from largest
645 // to smallest, we know that the next size will not be better if the
646 // previous size was rejected. Break early.
650 // The current factor of 2 size is better than the last selected size.
651 bestSize
= factorSize
;
652 factorSize
.width
/= 2;
653 factorSize
.height
/= 2;
659 bool CompareArea(const IntSize
& aIdealSize
, const IntSize
& aBestSize
,
660 const IntSize
& aSize
) const {
661 // Compare sizes. We use an area-based heuristic here instead of computing a
662 // truly optimal answer, since it seems very unlikely to make a difference
663 // for realistic sizes.
664 int64_t idealArea
= AreaOfIntSize(aIdealSize
);
665 int64_t currentArea
= AreaOfIntSize(aSize
);
666 int64_t bestMatchArea
= AreaOfIntSize(aBestSize
);
668 // If the best match is smaller than the ideal size, prefer bigger sizes.
669 if (bestMatchArea
< idealArea
) {
670 if (currentArea
> bestMatchArea
) {
676 // Other, prefer sizes closer to the ideal size, but still not smaller.
677 if (idealArea
<= currentArea
&& currentArea
< bestMatchArea
) {
681 // This surface isn't an improvement over the current best match.
685 template <typename Function
>
686 void CollectSizeOfSurfaces(nsTArray
<SurfaceMemoryCounter
>& aCounters
,
687 MallocSizeOf aMallocSizeOf
,
688 Function
&& aRemoveCallback
) {
689 CachedSurface::SurfaceMemoryReport
report(aCounters
, aMallocSizeOf
);
690 for (auto iter
= mSurfaces
.Iter(); !iter
.Done(); iter
.Next()) {
691 NotNull
<CachedSurface
*> surface
= WrapNotNull(iter
.UserData());
693 // We don't need the drawable surface for ourselves, but adding a surface
694 // to the report will trigger this indirectly. If the surface was
695 // discarded by the OS because it was in volatile memory, we should remove
696 // it from the cache immediately rather than include it in the report.
697 DrawableSurface drawableSurface
;
698 if (!surface
->IsPlaceholder()) {
699 drawableSurface
= surface
->GetDrawableSurface();
700 if (!drawableSurface
) {
701 aRemoveCallback(surface
);
707 const IntSize
& size
= surface
->GetSurfaceKey().Size();
708 bool factor2Size
= false;
710 factor2Size
= (size
== SuggestedSize(size
));
712 report
.Add(surface
, factor2Size
);
718 void SetLocked(bool aLocked
) { mLocked
= aLocked
; }
719 bool IsLocked() const { return mLocked
; }
722 void AfterMaybeRemove() {
723 if (IsEmpty() && mFactor2Mode
) {
724 // The last surface for this cache was removed. This can happen if the
725 // surface was stored in a volatile buffer and got purged, or the surface
726 // expired from the cache. If the cache itself lingers for some reason
727 // (e.g. in the process of performing a lookup, the cache itself is
728 // locked), then we need to reset the factor of 2 state because it
729 // requires at least one surface present to get the native size
730 // information from the image.
731 mFactor2Mode
= mFactor2Pruned
= false;
735 SurfaceTable mSurfaces
;
739 // True in "factor of 2" mode.
742 // True if all non-factor of 2 surfaces have been removed from the cache. Note
743 // that this excludes unsubstitutable sizes.
746 // True if the surfaces are produced from a vector image. If so, it must match
747 // the aspect ratio when using factor of 2 mode.
752 * SurfaceCacheImpl is responsible for determining which surfaces will be cached
753 * and managing the surface cache data structures. Rather than interact with
754 * SurfaceCacheImpl directly, client code interacts with SurfaceCache, which
755 * maintains high-level invariants and encapsulates the details of the surface
756 * cache's implementation.
758 class SurfaceCacheImpl final
: public nsIMemoryReporter
{
762 SurfaceCacheImpl(uint32_t aSurfaceCacheExpirationTimeMS
,
763 uint32_t aSurfaceCacheDiscardFactor
,
764 uint32_t aSurfaceCacheSize
)
765 : mExpirationTracker(aSurfaceCacheExpirationTimeMS
),
766 mMemoryPressureObserver(new MemoryPressureObserver
),
767 mDiscardFactor(aSurfaceCacheDiscardFactor
),
768 mMaxCost(aSurfaceCacheSize
),
769 mAvailableCost(aSurfaceCacheSize
),
772 mAlreadyPresentCount(0),
773 mTableFailureCount(0),
774 mTrackingFailureCount(0) {
775 nsCOMPtr
<nsIObserverService
> os
= services::GetObserverService();
777 os
->AddObserver(mMemoryPressureObserver
, "memory-pressure", false);
782 virtual ~SurfaceCacheImpl() {
783 nsCOMPtr
<nsIObserverService
> os
= services::GetObserverService();
785 os
->RemoveObserver(mMemoryPressureObserver
, "memory-pressure");
788 UnregisterWeakMemoryReporter(this);
792 void InitMemoryReporter() { RegisterWeakMemoryReporter(this); }
794 InsertOutcome
Insert(NotNull
<ISurfaceProvider
*> aProvider
, bool aSetAvailable
,
795 const StaticMutexAutoLock
& aAutoLock
) {
796 // If this is a duplicate surface, refuse to replace the original.
797 // XXX(seth): Calling Lookup() and then RemoveEntry() does the lookup
798 // twice. We'll make this more efficient in bug 1185137.
799 LookupResult result
=
800 Lookup(aProvider
->GetImageKey(), aProvider
->GetSurfaceKey(), aAutoLock
,
801 /* aMarkUsed = */ false);
802 if (MOZ_UNLIKELY(result
)) {
803 mAlreadyPresentCount
++;
804 return InsertOutcome::FAILURE_ALREADY_PRESENT
;
807 if (result
.Type() == MatchType::PENDING
) {
808 RemoveEntry(aProvider
->GetImageKey(), aProvider
->GetSurfaceKey(),
812 MOZ_ASSERT(result
.Type() == MatchType::NOT_FOUND
||
813 result
.Type() == MatchType::PENDING
,
814 "A LookupResult with no surface should be NOT_FOUND or PENDING");
816 // If this is bigger than we can hold after discarding everything we can,
817 // refuse to cache it.
818 Cost cost
= aProvider
->LogicalSizeInBytes();
819 if (MOZ_UNLIKELY(!CanHoldAfterDiscarding(cost
))) {
821 return InsertOutcome::FAILURE
;
824 // Remove elements in order of cost until we can fit this in the cache. Note
825 // that locked surfaces aren't in mCosts, so we never remove them here.
826 while (cost
> mAvailableCost
) {
827 MOZ_ASSERT(!mCosts
.IsEmpty(),
828 "Removed everything and it still won't fit");
829 Remove(mCosts
.LastElement().Surface(), /* aStopTracking */ true,
833 // Locate the appropriate per-image cache. If there's not an existing cache
834 // for this image, create it.
835 const ImageKey imageKey
= aProvider
->GetImageKey();
836 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(imageKey
);
838 cache
= new ImageSurfaceCache(imageKey
);
839 if (!mImageCaches
.InsertOrUpdate(aProvider
->GetImageKey(), RefPtr
{cache
},
841 mTableFailureCount
++;
842 return InsertOutcome::FAILURE
;
846 // If we were asked to mark the cache entry available, do so.
848 aProvider
->Availability().SetAvailable();
851 auto surface
= MakeNotNull
<RefPtr
<CachedSurface
>>(aProvider
);
853 // We require that locking succeed if the image is locked and we're not
854 // inserting a placeholder; the caller may need to know this to handle
856 bool mustLock
= cache
->IsLocked() && !surface
->IsPlaceholder();
858 surface
->SetLocked(true);
859 if (!surface
->IsLocked()) {
860 return InsertOutcome::FAILURE
;
865 MOZ_ASSERT(cost
<= mAvailableCost
, "Inserting despite too large a cost");
866 if (!cache
->Insert(surface
)) {
867 mTableFailureCount
++;
869 surface
->SetLocked(false);
871 return InsertOutcome::FAILURE
;
874 if (MOZ_UNLIKELY(!StartTracking(surface
, aAutoLock
))) {
875 MOZ_ASSERT(!mustLock
);
876 Remove(surface
, /* aStopTracking */ false, aAutoLock
);
877 return InsertOutcome::FAILURE
;
880 return InsertOutcome::SUCCESS
;
883 void Remove(NotNull
<CachedSurface
*> aSurface
, bool aStopTracking
,
884 const StaticMutexAutoLock
& aAutoLock
) {
885 ImageKey imageKey
= aSurface
->GetImageKey();
887 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(imageKey
);
888 MOZ_ASSERT(cache
, "Shouldn't try to remove a surface with no image cache");
890 // If the surface was not a placeholder, tell its image that we discarded
892 if (!aSurface
->IsPlaceholder()) {
893 static_cast<Image
*>(imageKey
)->OnSurfaceDiscarded(
894 aSurface
->GetSurfaceKey());
897 // If we failed during StartTracking, we can skip this step.
899 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
902 // Individual surfaces must be freed outside the lock.
903 mCachedSurfacesDiscard
.AppendElement(cache
->Remove(aSurface
));
905 MaybeRemoveEmptyCache(imageKey
, cache
);
908 bool StartTracking(NotNull
<CachedSurface
*> aSurface
,
909 const StaticMutexAutoLock
& aAutoLock
) {
910 CostEntry costEntry
= aSurface
->GetCostEntry();
911 MOZ_ASSERT(costEntry
.GetCost() <= mAvailableCost
,
912 "Cost too large and the caller didn't catch it");
914 if (aSurface
->IsLocked()) {
915 mLockedCost
+= costEntry
.GetCost();
916 MOZ_ASSERT(mLockedCost
<= mMaxCost
, "Locked more than we can hold?");
918 if (NS_WARN_IF(!mCosts
.InsertElementSorted(costEntry
, fallible
))) {
919 mTrackingFailureCount
++;
923 // This may fail during XPCOM shutdown, so we need to ensure the object is
924 // tracked before calling RemoveObject in StopTracking.
925 nsresult rv
= mExpirationTracker
.AddObjectLocked(aSurface
, aAutoLock
);
926 if (NS_WARN_IF(NS_FAILED(rv
))) {
927 DebugOnly
<bool> foundInCosts
= mCosts
.RemoveElementSorted(costEntry
);
928 MOZ_ASSERT(foundInCosts
, "Lost track of costs for this surface");
929 mTrackingFailureCount
++;
934 mAvailableCost
-= costEntry
.GetCost();
938 void StopTracking(NotNull
<CachedSurface
*> aSurface
, bool aIsTracked
,
939 const StaticMutexAutoLock
& aAutoLock
) {
940 CostEntry costEntry
= aSurface
->GetCostEntry();
942 if (aSurface
->IsLocked()) {
943 MOZ_ASSERT(mLockedCost
>= costEntry
.GetCost(), "Costs don't balance");
944 mLockedCost
-= costEntry
.GetCost();
945 // XXX(seth): It'd be nice to use an O(log n) lookup here. This is O(n).
946 MOZ_ASSERT(!mCosts
.Contains(costEntry
),
947 "Shouldn't have a cost entry for a locked surface");
949 if (MOZ_LIKELY(aSurface
->GetExpirationState()->IsTracked())) {
950 MOZ_ASSERT(aIsTracked
, "Expiration-tracking a surface unexpectedly!");
951 mExpirationTracker
.RemoveObjectLocked(aSurface
, aAutoLock
);
953 // Our call to AddObject must have failed in StartTracking; most likely
954 // we're in XPCOM shutdown right now.
955 MOZ_ASSERT(!aIsTracked
, "Not expiration-tracking an unlocked surface!");
958 DebugOnly
<bool> foundInCosts
= mCosts
.RemoveElementSorted(costEntry
);
959 MOZ_ASSERT(foundInCosts
, "Lost track of costs for this surface");
962 mAvailableCost
+= costEntry
.GetCost();
963 MOZ_ASSERT(mAvailableCost
<= mMaxCost
,
964 "More available cost than we started with");
967 LookupResult
Lookup(const ImageKey aImageKey
, const SurfaceKey
& aSurfaceKey
,
968 const StaticMutexAutoLock
& aAutoLock
, bool aMarkUsed
) {
969 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
971 // No cached surfaces for this image.
972 return LookupResult(MatchType::NOT_FOUND
);
975 RefPtr
<CachedSurface
> surface
= cache
->Lookup(aSurfaceKey
, aMarkUsed
);
977 // Lookup in the per-image cache missed.
978 return LookupResult(MatchType::NOT_FOUND
);
981 if (surface
->IsPlaceholder()) {
982 return LookupResult(MatchType::PENDING
);
985 DrawableSurface drawableSurface
= surface
->GetDrawableSurface();
986 if (!drawableSurface
) {
987 // The surface was released by the operating system. Remove the cache
989 Remove(WrapNotNull(surface
), /* aStopTracking */ true, aAutoLock
);
990 return LookupResult(MatchType::NOT_FOUND
);
994 !MarkUsed(WrapNotNull(surface
), WrapNotNull(cache
), aAutoLock
)) {
995 Remove(WrapNotNull(surface
), /* aStopTracking */ false, aAutoLock
);
996 return LookupResult(MatchType::NOT_FOUND
);
999 MOZ_ASSERT(surface
->GetSurfaceKey() == aSurfaceKey
,
1000 "Lookup() not returning an exact match?");
1001 return LookupResult(std::move(drawableSurface
), MatchType::EXACT
);
1004 LookupResult
LookupBestMatch(const ImageKey aImageKey
,
1005 const SurfaceKey
& aSurfaceKey
,
1006 const StaticMutexAutoLock
& aAutoLock
,
1008 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1010 // No cached surfaces for this image.
1011 return LookupResult(
1012 MatchType::NOT_FOUND
,
1013 SurfaceCache::ClampSize(aImageKey
, aSurfaceKey
.Size()));
1016 // Repeatedly look up the best match, trying again if the resulting surface
1017 // has been freed by the operating system, until we can either lock a
1018 // surface for drawing or there are no matching surfaces left.
1019 // XXX(seth): This is O(N^2), but N is expected to be very small. If we
1020 // encounter a performance problem here we can revisit this.
1022 RefPtr
<CachedSurface
> surface
;
1023 DrawableSurface drawableSurface
;
1024 MatchType matchType
= MatchType::NOT_FOUND
;
1025 IntSize suggestedSize
;
1027 Tie(surface
, matchType
, suggestedSize
) =
1028 cache
->LookupBestMatch(aSurfaceKey
);
1031 return LookupResult(
1032 matchType
, suggestedSize
); // Lookup in the per-image cache missed.
1035 drawableSurface
= surface
->GetDrawableSurface();
1036 if (drawableSurface
) {
1040 // The surface was released by the operating system. Remove the cache
1042 Remove(WrapNotNull(surface
), /* aStopTracking */ true, aAutoLock
);
1045 MOZ_ASSERT_IF(matchType
== MatchType::EXACT
,
1046 surface
->GetSurfaceKey() == aSurfaceKey
);
1048 matchType
== MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND
||
1049 matchType
== MatchType::SUBSTITUTE_BECAUSE_PENDING
,
1050 surface
->GetSurfaceKey().Region() == aSurfaceKey
.Region() &&
1051 surface
->GetSurfaceKey().SVGContext() == aSurfaceKey
.SVGContext() &&
1052 surface
->GetSurfaceKey().Playback() == aSurfaceKey
.Playback() &&
1053 surface
->GetSurfaceKey().Flags() == aSurfaceKey
.Flags());
1055 if (matchType
== MatchType::EXACT
||
1056 matchType
== MatchType::SUBSTITUTE_BECAUSE_BEST
) {
1058 !MarkUsed(WrapNotNull(surface
), WrapNotNull(cache
), aAutoLock
)) {
1059 Remove(WrapNotNull(surface
), /* aStopTracking */ false, aAutoLock
);
1063 return LookupResult(std::move(drawableSurface
), matchType
, suggestedSize
);
1066 bool CanHold(const Cost aCost
) const { return aCost
<= mMaxCost
; }
1068 size_t MaximumCapacity() const { return size_t(mMaxCost
); }
1070 void SurfaceAvailable(NotNull
<ISurfaceProvider
*> aProvider
,
1071 const StaticMutexAutoLock
& aAutoLock
) {
1072 if (!aProvider
->Availability().IsPlaceholder()) {
1073 MOZ_ASSERT_UNREACHABLE("Calling SurfaceAvailable on non-placeholder");
1077 // Reinsert the provider, requesting that Insert() mark it available. This
1078 // may or may not succeed, depending on whether some other decoder has
1079 // beaten us to the punch and inserted a non-placeholder version of this
1080 // surface first, but it's fine either way.
1081 // XXX(seth): This could be implemented more efficiently; we should be able
1082 // to just update our data structures without reinserting.
1083 Insert(aProvider
, /* aSetAvailable = */ true, aAutoLock
);
1086 void LockImage(const ImageKey aImageKey
) {
1087 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1089 cache
= new ImageSurfaceCache(aImageKey
);
1090 mImageCaches
.InsertOrUpdate(aImageKey
, RefPtr
{cache
});
1093 cache
->SetLocked(true);
1095 // We don't relock this image's existing surfaces right away; instead, the
1096 // image should arrange for Lookup() to touch them if they are still useful.
1099 void UnlockImage(const ImageKey aImageKey
,
1100 const StaticMutexAutoLock
& aAutoLock
) {
1101 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1102 if (!cache
|| !cache
->IsLocked()) {
1103 return; // Already unlocked.
1106 cache
->SetLocked(false);
1107 DoUnlockSurfaces(WrapNotNull(cache
), /* aStaticOnly = */ false, aAutoLock
);
1110 void UnlockEntries(const ImageKey aImageKey
,
1111 const StaticMutexAutoLock
& aAutoLock
) {
1112 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1113 if (!cache
|| !cache
->IsLocked()) {
1114 return; // Already unlocked.
1117 // (Note that we *don't* unlock the per-image cache here; that's the
1118 // difference between this and UnlockImage.)
1119 DoUnlockSurfaces(WrapNotNull(cache
),
1121 !StaticPrefs::image_mem_animated_discardable_AtStartup(),
1125 already_AddRefed
<ImageSurfaceCache
> RemoveImage(
1126 const ImageKey aImageKey
, const StaticMutexAutoLock
& aAutoLock
) {
1127 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1129 return nullptr; // No cached surfaces for this image, so nothing to do.
1132 // Discard all of the cached surfaces for this image.
1133 // XXX(seth): This is O(n^2) since for each item in the cache we are
1134 // removing an element from the costs array. Since n is expected to be
1135 // small, performance should be good, but if usage patterns change we should
1136 // change the data structure used for mCosts.
1137 for (const auto& value
: cache
->Values()) {
1138 StopTracking(WrapNotNull(value
),
1139 /* aIsTracked */ true, aAutoLock
);
1142 // The per-image cache isn't needed anymore, so remove it as well.
1143 // This implicitly unlocks the image if it was locked.
1144 mImageCaches
.Remove(aImageKey
);
1146 // Since we did not actually remove any of the surfaces from the cache
1147 // itself, only stopped tracking them, we should free it outside the lock.
1148 return cache
.forget();
1151 void PruneImage(const ImageKey aImageKey
,
1152 const StaticMutexAutoLock
& aAutoLock
) {
1153 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1155 return; // No cached surfaces for this image, so nothing to do.
1158 cache
->Prune([this, &aAutoLock
](NotNull
<CachedSurface
*> aSurface
) -> void {
1159 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1160 // Individual surfaces must be freed outside the lock.
1161 mCachedSurfacesDiscard
.AppendElement(aSurface
);
1164 MaybeRemoveEmptyCache(aImageKey
, cache
);
1167 bool InvalidateImage(const ImageKey aImageKey
,
1168 const StaticMutexAutoLock
& aAutoLock
) {
1169 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1171 return false; // No cached surfaces for this image, so nothing to do.
1174 bool rv
= cache
->Invalidate(
1175 [this, &aAutoLock
](NotNull
<CachedSurface
*> aSurface
) -> void {
1176 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1177 // Individual surfaces must be freed outside the lock.
1178 mCachedSurfacesDiscard
.AppendElement(aSurface
);
1181 MaybeRemoveEmptyCache(aImageKey
, cache
);
1185 void DiscardAll(const StaticMutexAutoLock
& aAutoLock
) {
1186 // Remove in order of cost because mCosts is an array and the other data
1187 // structures are all hash tables. Note that locked surfaces are not
1188 // removed, since they aren't present in mCosts.
1189 while (!mCosts
.IsEmpty()) {
1190 Remove(mCosts
.LastElement().Surface(), /* aStopTracking */ true,
1195 void DiscardForMemoryPressure(const StaticMutexAutoLock
& aAutoLock
) {
1196 // Compute our discardable cost. Since locked surfaces aren't discardable,
1198 const Cost discardableCost
= (mMaxCost
- mAvailableCost
) - mLockedCost
;
1199 MOZ_ASSERT(discardableCost
<= mMaxCost
, "Discardable cost doesn't add up");
1201 // Our target is to raise our available cost by (1 / mDiscardFactor) of our
1202 // discardable cost - in other words, we want to end up with about
1203 // (discardableCost / mDiscardFactor) fewer bytes stored in the surface
1204 // cache after we're done.
1205 const Cost targetCost
= mAvailableCost
+ (discardableCost
/ mDiscardFactor
);
1207 if (targetCost
> mMaxCost
- mLockedCost
) {
1208 MOZ_ASSERT_UNREACHABLE("Target cost is more than we can discard");
1209 DiscardAll(aAutoLock
);
1213 // Discard surfaces until we've reduced our cost to our target cost.
1214 while (mAvailableCost
< targetCost
) {
1215 MOZ_ASSERT(!mCosts
.IsEmpty(), "Removed everything and still not done");
1216 Remove(mCosts
.LastElement().Surface(), /* aStopTracking */ true,
1221 void TakeDiscard(nsTArray
<RefPtr
<CachedSurface
>>& aDiscard
,
1222 const StaticMutexAutoLock
& aAutoLock
) {
1223 MOZ_ASSERT(aDiscard
.IsEmpty());
1224 aDiscard
= std::move(mCachedSurfacesDiscard
);
1227 void LockSurface(NotNull
<CachedSurface
*> aSurface
,
1228 const StaticMutexAutoLock
& aAutoLock
) {
1229 if (aSurface
->IsPlaceholder() || aSurface
->IsLocked()) {
1233 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1235 // Lock the surface. This can fail.
1236 aSurface
->SetLocked(true);
1237 DebugOnly
<bool> tracked
= StartTracking(aSurface
, aAutoLock
);
1238 MOZ_ASSERT(tracked
);
1241 size_t ShallowSizeOfIncludingThis(
1242 MallocSizeOf aMallocSizeOf
, const StaticMutexAutoLock
& aAutoLock
) const {
1244 aMallocSizeOf(this) + mCosts
.ShallowSizeOfExcludingThis(aMallocSizeOf
) +
1245 mImageCaches
.ShallowSizeOfExcludingThis(aMallocSizeOf
) +
1246 mCachedSurfacesDiscard
.ShallowSizeOfExcludingThis(aMallocSizeOf
) +
1247 mExpirationTracker
.ShallowSizeOfExcludingThis(aMallocSizeOf
);
1248 for (const auto& data
: mImageCaches
.Values()) {
1249 bytes
+= data
->ShallowSizeOfIncludingThis(aMallocSizeOf
);
1255 CollectReports(nsIHandleReportCallback
* aHandleReport
, nsISupports
* aData
,
1256 bool aAnonymize
) override
{
1257 StaticMutexAutoLock
lock(sInstanceMutex
);
1259 uint32_t lockedImageCount
= 0;
1260 uint32_t totalSurfaceCount
= 0;
1261 uint32_t lockedSurfaceCount
= 0;
1262 for (const auto& cache
: mImageCaches
.Values()) {
1263 totalSurfaceCount
+= cache
->Count();
1264 if (cache
->IsLocked()) {
1267 for (const auto& value
: cache
->Values()) {
1268 if (value
->IsLocked()) {
1269 ++lockedSurfaceCount
;
1275 // We have explicit memory reporting for the surface cache which is more
1276 // accurate than the cost metrics we report here, but these metrics are
1277 // still useful to report, since they control the cache's behavior.
1279 "explicit/images/cache/overhead", KIND_HEAP
, UNITS_BYTES
,
1280 ShallowSizeOfIncludingThis(SurfaceCacheMallocSizeOf
, lock
),
1281 "Memory used by the surface cache data structures, excluding surface data.");
1284 "imagelib-surface-cache-estimated-total",
1285 KIND_OTHER
, UNITS_BYTES
, (mMaxCost
- mAvailableCost
),
1286 "Estimated total memory used by the imagelib surface cache.");
1289 "imagelib-surface-cache-estimated-locked",
1290 KIND_OTHER
, UNITS_BYTES
, mLockedCost
,
1291 "Estimated memory used by locked surfaces in the imagelib surface cache.");
1294 "imagelib-surface-cache-tracked-cost-count",
1295 KIND_OTHER
, UNITS_COUNT
, mCosts
.Length(),
1296 "Total number of surfaces tracked for cost (and expiry) in the imagelib surface cache.");
1299 "imagelib-surface-cache-tracked-expiry-count",
1300 KIND_OTHER
, UNITS_COUNT
, mExpirationTracker
.Length(lock
),
1301 "Total number of surfaces tracked for expiry (and cost) in the imagelib surface cache.");
1304 "imagelib-surface-cache-image-count",
1305 KIND_OTHER
, UNITS_COUNT
, mImageCaches
.Count(),
1306 "Total number of images in the imagelib surface cache.");
1309 "imagelib-surface-cache-locked-image-count",
1310 KIND_OTHER
, UNITS_COUNT
, lockedImageCount
,
1311 "Total number of locked images in the imagelib surface cache.");
1314 "imagelib-surface-cache-image-surface-count",
1315 KIND_OTHER
, UNITS_COUNT
, totalSurfaceCount
,
1316 "Total number of surfaces in the imagelib surface cache.");
1319 "imagelib-surface-cache-locked-surfaces-count",
1320 KIND_OTHER
, UNITS_COUNT
, lockedSurfaceCount
,
1321 "Total number of locked surfaces in the imagelib surface cache.");
1324 "imagelib-surface-cache-overflow-count",
1325 KIND_OTHER
, UNITS_COUNT
, mOverflowCount
,
1326 "Count of how many times the surface cache has hit its capacity and been "
1327 "unable to insert a new surface.");
1330 "imagelib-surface-cache-tracking-failure-count",
1331 KIND_OTHER
, UNITS_COUNT
, mTrackingFailureCount
,
1332 "Count of how many times the surface cache has failed to begin tracking a "
1336 "imagelib-surface-cache-already-present-count",
1337 KIND_OTHER
, UNITS_COUNT
, mAlreadyPresentCount
,
1338 "Count of how many times the surface cache has failed to insert a surface "
1339 "because it is already present.");
1342 "imagelib-surface-cache-table-failure-count",
1343 KIND_OTHER
, UNITS_COUNT
, mTableFailureCount
,
1344 "Count of how many times the surface cache has failed to insert a surface "
1345 "because a hash table could not accept an entry.");
1351 void CollectSizeOfSurfaces(const ImageKey aImageKey
,
1352 nsTArray
<SurfaceMemoryCounter
>& aCounters
,
1353 MallocSizeOf aMallocSizeOf
,
1354 const StaticMutexAutoLock
& aAutoLock
) {
1355 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1357 return; // No surfaces for this image.
1360 // Report all surfaces in the per-image cache.
1361 cache
->CollectSizeOfSurfaces(
1362 aCounters
, aMallocSizeOf
,
1363 [this, &aAutoLock
](NotNull
<CachedSurface
*> aSurface
) -> void {
1364 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1365 // Individual surfaces must be freed outside the lock.
1366 mCachedSurfacesDiscard
.AppendElement(aSurface
);
1369 MaybeRemoveEmptyCache(aImageKey
, cache
);
1372 void ReleaseImageOnMainThread(already_AddRefed
<image::Image
>&& aImage
,
1373 const StaticMutexAutoLock
& aAutoLock
) {
1374 RefPtr
<image::Image
> image
= aImage
;
1379 bool needsDispatch
= mReleasingImagesOnMainThread
.IsEmpty();
1380 mReleasingImagesOnMainThread
.AppendElement(image
);
1382 if (!needsDispatch
|| gXPCOMThreadsShutDown
) {
1383 // Either there is already a ongoing task for ClearReleasingImages() or
1384 // it's too late in shutdown to dispatch.
1388 NS_DispatchToMainThread(NS_NewRunnableFunction(
1389 "SurfaceCacheImpl::ReleaseImageOnMainThread",
1390 []() -> void { SurfaceCache::ClearReleasingImages(); }));
1393 void TakeReleasingImages(nsTArray
<RefPtr
<image::Image
>>& aImage
,
1394 const StaticMutexAutoLock
& aAutoLock
) {
1395 MOZ_ASSERT(NS_IsMainThread());
1396 aImage
.SwapElements(mReleasingImagesOnMainThread
);
1400 already_AddRefed
<ImageSurfaceCache
> GetImageCache(const ImageKey aImageKey
) {
1401 RefPtr
<ImageSurfaceCache
> imageCache
;
1402 mImageCaches
.Get(aImageKey
, getter_AddRefs(imageCache
));
1403 return imageCache
.forget();
1406 void MaybeRemoveEmptyCache(const ImageKey aImageKey
,
1407 ImageSurfaceCache
* aCache
) {
1408 // Remove the per-image cache if it's unneeded now. Keep it if the image is
1409 // locked, since the per-image cache is where we store that state. Note that
1410 // we don't push it into mImageCachesDiscard because all of its surfaces
1411 // have been removed, so it is safe to free while holding the lock.
1412 if (aCache
->IsEmpty() && !aCache
->IsLocked()) {
1413 mImageCaches
.Remove(aImageKey
);
1417 // This is similar to CanHold() except that it takes into account the costs of
1418 // locked surfaces. It's used internally in Insert(), but it's not exposed
1419 // publicly because we permit multithreaded access to the surface cache, which
1420 // means that the result would be meaningless: another thread could insert a
1421 // surface or lock an image at any time.
1422 bool CanHoldAfterDiscarding(const Cost aCost
) const {
1423 return aCost
<= mMaxCost
- mLockedCost
;
1426 bool MarkUsed(NotNull
<CachedSurface
*> aSurface
,
1427 NotNull
<ImageSurfaceCache
*> aCache
,
1428 const StaticMutexAutoLock
& aAutoLock
) {
1429 if (aCache
->IsLocked()) {
1430 LockSurface(aSurface
, aAutoLock
);
1434 nsresult rv
= mExpirationTracker
.MarkUsedLocked(aSurface
, aAutoLock
);
1435 if (NS_WARN_IF(NS_FAILED(rv
))) {
1436 // If mark used fails, it is because it failed to reinsert the surface
1437 // after removing it from the tracker. Thus we need to update our
1438 // own accounting but otherwise expect it to be untracked.
1439 StopTracking(aSurface
, /* aIsTracked */ false, aAutoLock
);
1445 void DoUnlockSurfaces(NotNull
<ImageSurfaceCache
*> aCache
, bool aStaticOnly
,
1446 const StaticMutexAutoLock
& aAutoLock
) {
1447 AutoTArray
<NotNull
<CachedSurface
*>, 8> discard
;
1449 // Unlock all the surfaces the per-image cache is holding.
1450 for (const auto& value
: aCache
->Values()) {
1451 NotNull
<CachedSurface
*> surface
= WrapNotNull(value
);
1452 if (surface
->IsPlaceholder() || !surface
->IsLocked()) {
1456 surface
->GetSurfaceKey().Playback() != PlaybackType::eStatic
) {
1459 StopTracking(surface
, /* aIsTracked */ true, aAutoLock
);
1460 surface
->SetLocked(false);
1461 if (MOZ_UNLIKELY(!StartTracking(surface
, aAutoLock
))) {
1462 discard
.AppendElement(surface
);
1466 // Discard any that we failed to track.
1467 for (auto iter
= discard
.begin(); iter
!= discard
.end(); ++iter
) {
1468 Remove(*iter
, /* aStopTracking */ false, aAutoLock
);
1472 void RemoveEntry(const ImageKey aImageKey
, const SurfaceKey
& aSurfaceKey
,
1473 const StaticMutexAutoLock
& aAutoLock
) {
1474 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1476 return; // No cached surfaces for this image.
1479 RefPtr
<CachedSurface
> surface
=
1480 cache
->Lookup(aSurfaceKey
, /* aForAccess = */ false);
1482 return; // Lookup in the per-image cache missed.
1485 Remove(WrapNotNull(surface
), /* aStopTracking */ true, aAutoLock
);
1488 class SurfaceTracker final
1489 : public ExpirationTrackerImpl
<CachedSurface
, 2, StaticMutex
,
1490 StaticMutexAutoLock
> {
1492 explicit SurfaceTracker(uint32_t aSurfaceCacheExpirationTimeMS
)
1493 : ExpirationTrackerImpl
<CachedSurface
, 2, StaticMutex
,
1494 StaticMutexAutoLock
>(
1495 aSurfaceCacheExpirationTimeMS
, "SurfaceTracker") {}
1498 void NotifyExpiredLocked(CachedSurface
* aSurface
,
1499 const StaticMutexAutoLock
& aAutoLock
) override
{
1500 sInstance
->Remove(WrapNotNull(aSurface
), /* aStopTracking */ true,
1504 void NotifyHandlerEndLocked(const StaticMutexAutoLock
& aAutoLock
) override
{
1505 sInstance
->TakeDiscard(mDiscard
, aAutoLock
);
1508 void NotifyHandlerEnd() override
{
1509 nsTArray
<RefPtr
<CachedSurface
>> discard(std::move(mDiscard
));
1512 StaticMutex
& GetMutex() override
{ return sInstanceMutex
; }
1514 nsTArray
<RefPtr
<CachedSurface
>> mDiscard
;
1517 class MemoryPressureObserver final
: public nsIObserver
{
1521 NS_IMETHOD
Observe(nsISupports
*, const char* aTopic
,
1522 const char16_t
*) override
{
1523 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1525 StaticMutexAutoLock
lock(sInstanceMutex
);
1526 if (sInstance
&& strcmp(aTopic
, "memory-pressure") == 0) {
1527 sInstance
->DiscardForMemoryPressure(lock
);
1528 sInstance
->TakeDiscard(discard
, lock
);
1535 virtual ~MemoryPressureObserver() {}
1538 nsTArray
<CostEntry
> mCosts
;
1539 nsRefPtrHashtable
<nsPtrHashKey
<Image
>, ImageSurfaceCache
> mImageCaches
;
1540 nsTArray
<RefPtr
<CachedSurface
>> mCachedSurfacesDiscard
;
1541 SurfaceTracker mExpirationTracker
;
1542 RefPtr
<MemoryPressureObserver
> mMemoryPressureObserver
;
1543 nsTArray
<RefPtr
<image::Image
>> mReleasingImagesOnMainThread
;
1544 const uint32_t mDiscardFactor
;
1545 const Cost mMaxCost
;
1546 Cost mAvailableCost
;
1548 size_t mOverflowCount
;
1549 size_t mAlreadyPresentCount
;
1550 size_t mTableFailureCount
;
1551 size_t mTrackingFailureCount
;
1554 NS_IMPL_ISUPPORTS(SurfaceCacheImpl
, nsIMemoryReporter
)
1555 NS_IMPL_ISUPPORTS(SurfaceCacheImpl::MemoryPressureObserver
, nsIObserver
)
1557 ///////////////////////////////////////////////////////////////////////////////
1559 ///////////////////////////////////////////////////////////////////////////////
1562 void SurfaceCache::Initialize() {
1563 // Initialize preferences.
1564 MOZ_ASSERT(NS_IsMainThread());
1565 MOZ_ASSERT(!sInstance
, "Shouldn't initialize more than once");
1567 // See StaticPrefs for the default values of these preferences.
1569 // Length of time before an unused surface is removed from the cache, in
1571 uint32_t surfaceCacheExpirationTimeMS
=
1572 StaticPrefs::image_mem_surfacecache_min_expiration_ms_AtStartup();
1574 // What fraction of the memory used by the surface cache we should discard
1575 // when we get a memory pressure notification. This value is interpreted as
1576 // 1/N, so 1 means to discard everything, 2 means to discard about half of the
1577 // memory we're using, and so forth. We clamp it to avoid division by zero.
1578 uint32_t surfaceCacheDiscardFactor
=
1579 max(StaticPrefs::image_mem_surfacecache_discard_factor_AtStartup(), 1u);
1581 // Maximum size of the surface cache, in kilobytes.
1582 uint64_t surfaceCacheMaxSizeKB
=
1583 StaticPrefs::image_mem_surfacecache_max_size_kb_AtStartup();
1585 if (sizeof(uintptr_t) <= 4) {
1586 // Limit surface cache to 1 GB if our address space is 32 bit.
1587 surfaceCacheMaxSizeKB
= 1024 * 1024;
1590 // A knob determining the actual size of the surface cache. Currently the
1591 // cache is (size of main memory) / (surface cache size factor) KB
1592 // or (surface cache max size) KB, whichever is smaller. The formula
1593 // may change in the future, though.
1594 // For example, a value of 4 would yield a 256MB cache on a 1GB machine.
1595 // The smallest machines we are likely to run this code on have 256MB
1596 // of memory, which would yield a 64MB cache on this setting.
1597 // We clamp this value to avoid division by zero.
1598 uint32_t surfaceCacheSizeFactor
=
1599 max(StaticPrefs::image_mem_surfacecache_size_factor_AtStartup(), 1u);
1601 // Compute the size of the surface cache.
1602 uint64_t memorySize
= PR_GetPhysicalMemorySize();
1603 if (memorySize
== 0) {
1604 MOZ_ASSERT_UNREACHABLE("PR_GetPhysicalMemorySize not implemented here");
1605 memorySize
= 256 * 1024 * 1024; // Fall back to 256MB.
1607 uint64_t proposedSize
= memorySize
/ surfaceCacheSizeFactor
;
1608 uint64_t surfaceCacheSizeBytes
=
1609 min(proposedSize
, surfaceCacheMaxSizeKB
* 1024);
1610 uint32_t finalSurfaceCacheSizeBytes
=
1611 min(surfaceCacheSizeBytes
, uint64_t(UINT32_MAX
));
1613 // Create the surface cache singleton with the requested settings. Note that
1614 // the size is a limit that the cache may not grow beyond, but we do not
1615 // actually allocate any storage for surfaces at this time.
1616 sInstance
= new SurfaceCacheImpl(surfaceCacheExpirationTimeMS
,
1617 surfaceCacheDiscardFactor
,
1618 finalSurfaceCacheSizeBytes
);
1619 sInstance
->InitMemoryReporter();
1623 void SurfaceCache::Shutdown() {
1624 RefPtr
<SurfaceCacheImpl
> cache
;
1626 StaticMutexAutoLock
lock(sInstanceMutex
);
1627 MOZ_ASSERT(NS_IsMainThread());
1628 MOZ_ASSERT(sInstance
, "No singleton - was Shutdown() called twice?");
1629 cache
= sInstance
.forget();
1634 LookupResult
SurfaceCache::Lookup(const ImageKey aImageKey
,
1635 const SurfaceKey
& aSurfaceKey
,
1637 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1638 LookupResult
rv(MatchType::NOT_FOUND
);
1641 StaticMutexAutoLock
lock(sInstanceMutex
);
1646 rv
= sInstance
->Lookup(aImageKey
, aSurfaceKey
, lock
, aMarkUsed
);
1647 sInstance
->TakeDiscard(discard
, lock
);
1654 LookupResult
SurfaceCache::LookupBestMatch(const ImageKey aImageKey
,
1655 const SurfaceKey
& aSurfaceKey
,
1657 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1658 LookupResult
rv(MatchType::NOT_FOUND
);
1661 StaticMutexAutoLock
lock(sInstanceMutex
);
1666 rv
= sInstance
->LookupBestMatch(aImageKey
, aSurfaceKey
, lock
, aMarkUsed
);
1667 sInstance
->TakeDiscard(discard
, lock
);
1674 InsertOutcome
SurfaceCache::Insert(NotNull
<ISurfaceProvider
*> aProvider
) {
1675 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1676 InsertOutcome
rv(InsertOutcome::FAILURE
);
1679 StaticMutexAutoLock
lock(sInstanceMutex
);
1684 rv
= sInstance
->Insert(aProvider
, /* aSetAvailable = */ false, lock
);
1685 sInstance
->TakeDiscard(discard
, lock
);
1692 bool SurfaceCache::CanHold(const IntSize
& aSize
,
1693 uint32_t aBytesPerPixel
/* = 4 */) {
1694 StaticMutexAutoLock
lock(sInstanceMutex
);
1699 Cost cost
= ComputeCost(aSize
, aBytesPerPixel
);
1700 return sInstance
->CanHold(cost
);
1704 bool SurfaceCache::CanHold(size_t aSize
) {
1705 StaticMutexAutoLock
lock(sInstanceMutex
);
1710 return sInstance
->CanHold(aSize
);
1714 void SurfaceCache::SurfaceAvailable(NotNull
<ISurfaceProvider
*> aProvider
) {
1715 StaticMutexAutoLock
lock(sInstanceMutex
);
1720 sInstance
->SurfaceAvailable(aProvider
, lock
);
1724 void SurfaceCache::LockImage(const ImageKey aImageKey
) {
1725 StaticMutexAutoLock
lock(sInstanceMutex
);
1727 return sInstance
->LockImage(aImageKey
);
1732 void SurfaceCache::UnlockImage(const ImageKey aImageKey
) {
1733 StaticMutexAutoLock
lock(sInstanceMutex
);
1735 return sInstance
->UnlockImage(aImageKey
, lock
);
1740 void SurfaceCache::UnlockEntries(const ImageKey aImageKey
) {
1741 StaticMutexAutoLock
lock(sInstanceMutex
);
1743 return sInstance
->UnlockEntries(aImageKey
, lock
);
1748 void SurfaceCache::RemoveImage(const ImageKey aImageKey
) {
1749 RefPtr
<ImageSurfaceCache
> discard
;
1751 StaticMutexAutoLock
lock(sInstanceMutex
);
1753 discard
= sInstance
->RemoveImage(aImageKey
, lock
);
1759 void SurfaceCache::PruneImage(const ImageKey aImageKey
) {
1760 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1762 StaticMutexAutoLock
lock(sInstanceMutex
);
1764 sInstance
->PruneImage(aImageKey
, lock
);
1765 sInstance
->TakeDiscard(discard
, lock
);
1771 bool SurfaceCache::InvalidateImage(const ImageKey aImageKey
) {
1772 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1775 StaticMutexAutoLock
lock(sInstanceMutex
);
1777 rv
= sInstance
->InvalidateImage(aImageKey
, lock
);
1778 sInstance
->TakeDiscard(discard
, lock
);
1785 void SurfaceCache::DiscardAll() {
1786 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1788 StaticMutexAutoLock
lock(sInstanceMutex
);
1790 sInstance
->DiscardAll(lock
);
1791 sInstance
->TakeDiscard(discard
, lock
);
1797 void SurfaceCache::CollectSizeOfSurfaces(
1798 const ImageKey aImageKey
, nsTArray
<SurfaceMemoryCounter
>& aCounters
,
1799 MallocSizeOf aMallocSizeOf
) {
1800 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1802 StaticMutexAutoLock
lock(sInstanceMutex
);
1807 sInstance
->CollectSizeOfSurfaces(aImageKey
, aCounters
, aMallocSizeOf
, lock
);
1808 sInstance
->TakeDiscard(discard
, lock
);
1813 size_t SurfaceCache::MaximumCapacity() {
1814 StaticMutexAutoLock
lock(sInstanceMutex
);
1819 return sInstance
->MaximumCapacity();
1823 bool SurfaceCache::IsLegalSize(const IntSize
& aSize
) {
1824 // reject over-wide or over-tall images
1825 const int32_t k64KLimit
= 0x0000FFFF;
1826 if (MOZ_UNLIKELY(aSize
.width
> k64KLimit
|| aSize
.height
> k64KLimit
)) {
1827 NS_WARNING("image too big");
1831 // protect against invalid sizes
1832 if (MOZ_UNLIKELY(aSize
.height
<= 0 || aSize
.width
<= 0)) {
1836 // check to make sure we don't overflow a 32-bit
1837 CheckedInt32 requiredBytes
=
1838 CheckedInt32(aSize
.width
) * CheckedInt32(aSize
.height
) * 4;
1839 if (MOZ_UNLIKELY(!requiredBytes
.isValid())) {
1840 NS_WARNING("width or height too large");
1846 IntSize
SurfaceCache::ClampVectorSize(const IntSize
& aSize
) {
1847 // If we exceed the maximum, we need to scale the size downwards to fit.
1848 // It shouldn't get here if it is significantly larger because
1849 // VectorImage::UseSurfaceCacheForSize should prevent us from requesting
1850 // a rasterized version of a surface greater than 4x the maximum.
1852 StaticPrefs::image_cache_max_rasterized_svg_threshold_kb();
1853 if (maxSizeKB
<= 0) {
1857 int64_t proposedKB
= int64_t(aSize
.width
) * aSize
.height
/ 256;
1858 if (maxSizeKB
>= proposedKB
) {
1862 double scale
= sqrt(double(maxSizeKB
) / proposedKB
);
1863 return IntSize(int32_t(scale
* aSize
.width
), int32_t(scale
* aSize
.height
));
1866 IntSize
SurfaceCache::ClampSize(ImageKey aImageKey
, const IntSize
& aSize
) {
1867 if (aImageKey
->GetType() != imgIContainer::TYPE_VECTOR
) {
1871 return ClampVectorSize(aSize
);
1875 void SurfaceCache::ReleaseImageOnMainThread(
1876 already_AddRefed
<image::Image
> aImage
, bool aAlwaysProxy
) {
1877 if (NS_IsMainThread() && !aAlwaysProxy
) {
1878 RefPtr
<image::Image
> image
= std::move(aImage
);
1882 // Don't try to dispatch the release after shutdown, we'll just leak the
1884 if (gXPCOMThreadsShutDown
) {
1888 StaticMutexAutoLock
lock(sInstanceMutex
);
1890 sInstance
->ReleaseImageOnMainThread(std::move(aImage
), lock
);
1892 NS_ReleaseOnMainThread("SurfaceCache::ReleaseImageOnMainThread",
1893 std::move(aImage
), /* aAlwaysProxy */ true);
1898 void SurfaceCache::ClearReleasingImages() {
1899 MOZ_ASSERT(NS_IsMainThread());
1901 nsTArray
<RefPtr
<image::Image
>> images
;
1903 StaticMutexAutoLock
lock(sInstanceMutex
);
1905 sInstance
->TakeReleasingImages(images
, lock
);
1910 } // namespace image
1911 } // namespace mozilla