1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "fast-dtoa.h"
30 #include "cached-powers.h"
34 namespace double_conversion
{
36 // The minimal and maximal target exponent define the range of w's binary
37 // exponent, where 'w' is the result of multiplying the input by a cached power
40 // A different range might be chosen on a different platform, to optimize digit
41 // generation, but a smaller range requires more powers of ten to be cached.
42 static const int kMinimalTargetExponent
= -60;
43 static const int kMaximalTargetExponent
= -32;
46 // Adjusts the last digit of the generated number, and screens out generated
47 // solutions that may be inaccurate. A solution may be inaccurate if it is
48 // outside the safe interval, or if we cannot prove that it is closer to the
49 // input than a neighboring representation of the same length.
51 // Input: * buffer containing the digits of too_high / 10^kappa
52 // * the buffer's length
53 // * distance_too_high_w == (too_high - w).f() * unit
54 // * unsafe_interval == (too_high - too_low).f() * unit
55 // * rest = (too_high - buffer * 10^kappa).f() * unit
56 // * ten_kappa = 10^kappa * unit
57 // * unit = the common multiplier
58 // Output: returns true if the buffer is guaranteed to contain the closest
59 // representable number to the input.
60 // Modifies the generated digits in the buffer to approach (round towards) w.
61 static bool RoundWeed(Vector
<char> buffer
,
63 uint64_t distance_too_high_w
,
64 uint64_t unsafe_interval
,
68 uint64_t small_distance
= distance_too_high_w
- unit
;
69 uint64_t big_distance
= distance_too_high_w
+ unit
;
70 // Let w_low = too_high - big_distance, and
71 // w_high = too_high - small_distance.
72 // Note: w_low < w < w_high
74 // The real w (* unit) must lie somewhere inside the interval
75 // ]w_low; w_high[ (often written as "(w_low; w_high)")
77 // Basically the buffer currently contains a number in the unsafe interval
78 // ]too_low; too_high[ with too_low < w < too_high
80 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
82 // boundary_high --------------------- . . . .
84 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
86 // . big_distance . . .
88 // small_distance . . . .
90 // w_high - - - - - - - - - - - - - - - - - - . . . .
92 // w ---------------------------------------- . . . .
94 // w_low - - - - - - - - - - - - - - - - - - - - - . . .
96 // buffer --------------------------------------------------+-------+--------
100 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
102 // boundary_low ------------------------- unsafe_interval
104 // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
107 // Note that the value of buffer could lie anywhere inside the range too_low
110 // boundary_low, boundary_high and w are approximations of the real boundaries
111 // and v (the input number). They are guaranteed to be precise up to one unit.
112 // In fact the error is guaranteed to be strictly less than one unit.
114 // Anything that lies outside the unsafe interval is guaranteed not to round
115 // to v when read again.
116 // Anything that lies inside the safe interval is guaranteed to round to v
118 // If the number inside the buffer lies inside the unsafe interval but not
119 // inside the safe interval then we simply do not know and bail out (returning
122 // Similarly we have to take into account the imprecision of 'w' when finding
123 // the closest representation of 'w'. If we have two potential
124 // representations, and one is closer to both w_low and w_high, then we know
125 // it is closer to the actual value v.
127 // By generating the digits of too_high we got the largest (closest to
128 // too_high) buffer that is still in the unsafe interval. In the case where
129 // w_high < buffer < too_high we try to decrement the buffer.
130 // This way the buffer approaches (rounds towards) w.
131 // There are 3 conditions that stop the decrementation process:
132 // 1) the buffer is already below w_high
133 // 2) decrementing the buffer would make it leave the unsafe interval
134 // 3) decrementing the buffer would yield a number below w_high and farther
135 // away than the current number. In other words:
136 // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
137 // Instead of using the buffer directly we use its distance to too_high.
138 // Conceptually rest ~= too_high - buffer
139 // We need to do the following tests in this order to avoid over- and
141 ASSERT(rest
<= unsafe_interval
);
142 while (rest
< small_distance
&& // Negated condition 1
143 unsafe_interval
- rest
>= ten_kappa
&& // Negated condition 2
144 (rest
+ ten_kappa
< small_distance
|| // buffer{-1} > w_high
145 small_distance
- rest
>= rest
+ ten_kappa
- small_distance
)) {
146 buffer
[length
- 1]--;
150 // We have approached w+ as much as possible. We now test if approaching w-
151 // would require changing the buffer. If yes, then we have two possible
152 // representations close to w, but we cannot decide which one is closer.
153 if (rest
< big_distance
&&
154 unsafe_interval
- rest
>= ten_kappa
&&
155 (rest
+ ten_kappa
< big_distance
||
156 big_distance
- rest
> rest
+ ten_kappa
- big_distance
)) {
161 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
162 // Since too_low = too_high - unsafe_interval this is equivalent to
163 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
164 // Conceptually we have: rest ~= too_high - buffer
165 return (2 * unit
<= rest
) && (rest
<= unsafe_interval
- 4 * unit
);
169 // Rounds the buffer upwards if the result is closer to v by possibly adding
170 // 1 to the buffer. If the precision of the calculation is not sufficient to
171 // round correctly, return false.
172 // The rounding might shift the whole buffer in which case the kappa is
173 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
175 // If 2*rest > ten_kappa then the buffer needs to be round up.
176 // rest can have an error of +/- 1 unit. This function accounts for the
177 // imprecision and returns false, if the rounding direction cannot be
178 // unambiguously determined.
180 // Precondition: rest < ten_kappa.
181 static bool RoundWeedCounted(Vector
<char> buffer
,
187 ASSERT(rest
< ten_kappa
);
188 // The following tests are done in a specific order to avoid overflows. They
189 // will work correctly with any uint64 values of rest < ten_kappa and unit.
191 // If the unit is too big, then we don't know which way to round. For example
192 // a unit of 50 means that the real number lies within rest +/- 50. If
193 // 10^kappa == 40 then there is no way to tell which way to round.
194 if (unit
>= ten_kappa
) return false;
195 // Even if unit is just half the size of 10^kappa we are already completely
196 // lost. (And after the previous test we know that the expression will not
198 if (ten_kappa
- unit
<= unit
) return false;
199 // If 2 * (rest + unit) <= 10^kappa we can safely round down.
200 if ((ten_kappa
- rest
> rest
) && (ten_kappa
- 2 * rest
>= 2 * unit
)) {
203 // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
204 if ((rest
> unit
) && (ten_kappa
- (rest
- unit
) <= (rest
- unit
))) {
205 // Increment the last digit recursively until we find a non '9' digit.
206 buffer
[length
- 1]++;
207 for (int i
= length
- 1; i
> 0; --i
) {
208 if (buffer
[i
] != '0' + 10) break;
212 // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
213 // exception of the first digit all digits are now '0'. Simply switch the
214 // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
215 // the power (the kappa) is increased.
216 if (buffer
[0] == '0' + 10) {
225 // Returns the biggest power of ten that is less than or equal to the given
226 // number. We furthermore receive the maximum number of bits 'number' has.
228 // Returns power == 10^(exponent_plus_one-1) such that
229 // power <= number < power * 10.
230 // If number_bits == 0 then 0^(0-1) is returned.
231 // The number of bits must be <= 32.
232 // Precondition: number < (1 << (number_bits + 1)).
234 // Inspired by the method for finding an integer log base 10 from here:
235 // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
236 static unsigned int const kSmallPowersOfTen
[] =
237 {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
240 static void BiggestPowerTen(uint32_t number
,
243 int* exponent_plus_one
) {
244 ASSERT(number
< (1u << (number_bits
+ 1)));
245 // 1233/4096 is approximately 1/lg(10).
246 int exponent_plus_one_guess
= ((number_bits
+ 1) * 1233 >> 12);
247 // We increment to skip over the first entry in the kPowersOf10 table.
248 // Note: kPowersOf10[i] == 10^(i-1).
249 exponent_plus_one_guess
++;
250 // We don't have any guarantees that 2^number_bits <= number.
251 // TODO(floitsch): can we change the 'while' into an 'if'? We definitely see
252 // number < (2^number_bits - 1), but I haven't encountered
253 // number < (2^number_bits - 2) yet.
254 while (number
< kSmallPowersOfTen
[exponent_plus_one_guess
]) {
255 exponent_plus_one_guess
--;
257 *power
= kSmallPowersOfTen
[exponent_plus_one_guess
];
258 *exponent_plus_one
= exponent_plus_one_guess
;
261 // Generates the digits of input number w.
262 // w is a floating-point number (DiyFp), consisting of a significand and an
263 // exponent. Its exponent is bounded by kMinimalTargetExponent and
264 // kMaximalTargetExponent.
265 // Hence -60 <= w.e() <= -32.
267 // Returns false if it fails, in which case the generated digits in the buffer
268 // should not be used.
270 // * low, w and high are correct up to 1 ulp (unit in the last place). That
271 // is, their error must be less than a unit of their last digits.
272 // * low.e() == w.e() == high.e()
273 // * low < w < high, and taking into account their error: low~ <= high~
274 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
275 // Postconditions: returns false if procedure fails.
277 // * buffer is not null-terminated, but len contains the number of digits.
278 // * buffer contains the shortest possible decimal digit-sequence
279 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
280 // correct values of low and high (without their error).
281 // * if more than one decimal representation gives the minimal number of
282 // decimal digits then the one closest to W (where W is the correct value
284 // Remark: this procedure takes into account the imprecision of its input
285 // numbers. If the precision is not enough to guarantee all the postconditions
286 // then false is returned. This usually happens rarely (~0.5%).
288 // Say, for the sake of example, that
289 // w.e() == -48, and w.f() == 0x1234567890abcdef
290 // w's value can be computed by w.f() * 2^w.e()
291 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
292 // -> w's integral part is 0x1234
293 // w's fractional part is therefore 0x567890abcdef.
294 // Printing w's integral part is easy (simply print 0x1234 in decimal).
295 // In order to print its fraction we repeatedly multiply the fraction by 10 and
296 // get each digit. Example the first digit after the point would be computed by
297 // (0x567890abcdef * 10) >> 48. -> 3
298 // The whole thing becomes slightly more complicated because we want to stop
299 // once we have enough digits. That is, once the digits inside the buffer
300 // represent 'w' we can stop. Everything inside the interval low - high
301 // represents w. However we have to pay attention to low, high and w's
303 static bool DigitGen(DiyFp low
,
309 ASSERT(low
.e() == w
.e() && w
.e() == high
.e());
310 ASSERT(low
.f() + 1 <= high
.f() - 1);
311 ASSERT(kMinimalTargetExponent
<= w
.e() && w
.e() <= kMaximalTargetExponent
);
312 // low, w and high are imprecise, but by less than one ulp (unit in the last
314 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
315 // the new numbers are outside of the interval we want the final
316 // representation to lie in.
317 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
318 // numbers that are certain to lie in the interval. We will use this fact
320 // We will now start by generating the digits within the uncertain
321 // interval. Later we will weed out representations that lie outside the safe
322 // interval and thus _might_ lie outside the correct interval.
324 DiyFp too_low
= DiyFp(low
.f() - unit
, low
.e());
325 DiyFp too_high
= DiyFp(high
.f() + unit
, high
.e());
326 // too_low and too_high are guaranteed to lie outside the interval we want the
327 // generated number in.
328 DiyFp unsafe_interval
= DiyFp::Minus(too_high
, too_low
);
329 // We now cut the input number into two parts: the integral digits and the
330 // fractionals. We will not write any decimal separator though, but adapt
332 // Reminder: we are currently computing the digits (stored inside the buffer)
333 // such that: too_low < buffer * 10^kappa < too_high
334 // We use too_high for the digit_generation and stop as soon as possible.
335 // If we stop early we effectively round down.
336 DiyFp one
= DiyFp(static_cast<uint64_t>(1) << -w
.e(), w
.e());
337 // Division by one is a shift.
338 uint32_t integrals
= static_cast<uint32_t>(too_high
.f() >> -one
.e());
339 // Modulo by one is an and.
340 uint64_t fractionals
= too_high
.f() & (one
.f() - 1);
342 int divisor_exponent_plus_one
;
343 BiggestPowerTen(integrals
, DiyFp::kSignificandSize
- (-one
.e()),
344 &divisor
, &divisor_exponent_plus_one
);
345 *kappa
= divisor_exponent_plus_one
;
347 // Loop invariant: buffer = too_high / 10^kappa (integer division)
348 // The invariant holds for the first iteration: kappa has been initialized
349 // with the divisor exponent + 1. And the divisor is the biggest power of ten
350 // that is smaller than integrals.
352 int digit
= integrals
/ divisor
;
353 buffer
[*length
] = '0' + digit
;
355 integrals
%= divisor
;
357 // Note that kappa now equals the exponent of the divisor and that the
358 // invariant thus holds again.
360 (static_cast<uint64_t>(integrals
) << -one
.e()) + fractionals
;
361 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
362 // Reminder: unsafe_interval.e() == one.e()
363 if (rest
< unsafe_interval
.f()) {
364 // Rounding down (by not emitting the remaining digits) yields a number
365 // that lies within the unsafe interval.
366 return RoundWeed(buffer
, *length
, DiyFp::Minus(too_high
, w
).f(),
367 unsafe_interval
.f(), rest
,
368 static_cast<uint64_t>(divisor
) << -one
.e(), unit
);
373 // The integrals have been generated. We are at the point of the decimal
374 // separator. In the following loop we simply multiply the remaining digits by
375 // 10 and divide by one. We just need to pay attention to multiply associated
376 // data (like the interval or 'unit'), too.
377 // Note that the multiplication by 10 does not overflow, because w.e >= -60
378 // and thus one.e >= -60.
379 ASSERT(one
.e() >= -60);
380 ASSERT(fractionals
< one
.f());
381 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF
) / 10 >= one
.f());
385 unsafe_interval
.set_f(unsafe_interval
.f() * 10);
386 // Integer division by one.
387 int digit
= static_cast<int>(fractionals
>> -one
.e());
388 buffer
[*length
] = '0' + digit
;
390 fractionals
&= one
.f() - 1; // Modulo by one.
392 if (fractionals
< unsafe_interval
.f()) {
393 return RoundWeed(buffer
, *length
, DiyFp::Minus(too_high
, w
).f() * unit
,
394 unsafe_interval
.f(), fractionals
, one
.f(), unit
);
401 // Generates (at most) requested_digits digits of input number w.
402 // w is a floating-point number (DiyFp), consisting of a significand and an
403 // exponent. Its exponent is bounded by kMinimalTargetExponent and
404 // kMaximalTargetExponent.
405 // Hence -60 <= w.e() <= -32.
407 // Returns false if it fails, in which case the generated digits in the buffer
408 // should not be used.
410 // * w is correct up to 1 ulp (unit in the last place). That
411 // is, its error must be strictly less than a unit of its last digit.
412 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
414 // Postconditions: returns false if procedure fails.
416 // * buffer is not null-terminated, but length contains the number of
418 // * the representation in buffer is the most precise representation of
419 // requested_digits digits.
420 // * buffer contains at most requested_digits digits of w. If there are less
421 // than requested_digits digits then some trailing '0's have been removed.
422 // * kappa is such that
423 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
425 // Remark: This procedure takes into account the imprecision of its input
426 // numbers. If the precision is not enough to guarantee all the postconditions
427 // then false is returned. This usually happens rarely, but the failure-rate
428 // increases with higher requested_digits.
429 static bool DigitGenCounted(DiyFp w
,
430 int requested_digits
,
434 ASSERT(kMinimalTargetExponent
<= w
.e() && w
.e() <= kMaximalTargetExponent
);
435 ASSERT(kMinimalTargetExponent
>= -60);
436 ASSERT(kMaximalTargetExponent
<= -32);
437 // w is assumed to have an error less than 1 unit. Whenever w is scaled we
438 // also scale its error.
439 uint64_t w_error
= 1;
440 // We cut the input number into two parts: the integral digits and the
441 // fractional digits. We don't emit any decimal separator, but adapt kappa
442 // instead. Example: instead of writing "1.2" we put "12" into the buffer and
443 // increase kappa by 1.
444 DiyFp one
= DiyFp(static_cast<uint64_t>(1) << -w
.e(), w
.e());
445 // Division by one is a shift.
446 uint32_t integrals
= static_cast<uint32_t>(w
.f() >> -one
.e());
447 // Modulo by one is an and.
448 uint64_t fractionals
= w
.f() & (one
.f() - 1);
450 int divisor_exponent_plus_one
;
451 BiggestPowerTen(integrals
, DiyFp::kSignificandSize
- (-one
.e()),
452 &divisor
, &divisor_exponent_plus_one
);
453 *kappa
= divisor_exponent_plus_one
;
456 // Loop invariant: buffer = w / 10^kappa (integer division)
457 // The invariant holds for the first iteration: kappa has been initialized
458 // with the divisor exponent + 1. And the divisor is the biggest power of ten
459 // that is smaller than 'integrals'.
461 int digit
= integrals
/ divisor
;
462 buffer
[*length
] = '0' + digit
;
465 integrals
%= divisor
;
467 // Note that kappa now equals the exponent of the divisor and that the
468 // invariant thus holds again.
469 if (requested_digits
== 0) break;
473 if (requested_digits
== 0) {
475 (static_cast<uint64_t>(integrals
) << -one
.e()) + fractionals
;
476 return RoundWeedCounted(buffer
, *length
, rest
,
477 static_cast<uint64_t>(divisor
) << -one
.e(), w_error
,
481 // The integrals have been generated. We are at the point of the decimal
482 // separator. In the following loop we simply multiply the remaining digits by
483 // 10 and divide by one. We just need to pay attention to multiply associated
484 // data (the 'unit'), too.
485 // Note that the multiplication by 10 does not overflow, because w.e >= -60
486 // and thus one.e >= -60.
487 ASSERT(one
.e() >= -60);
488 ASSERT(fractionals
< one
.f());
489 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF
) / 10 >= one
.f());
490 while (requested_digits
> 0 && fractionals
> w_error
) {
493 // Integer division by one.
494 int digit
= static_cast<int>(fractionals
>> -one
.e());
495 buffer
[*length
] = '0' + digit
;
498 fractionals
&= one
.f() - 1; // Modulo by one.
501 if (requested_digits
!= 0) return false;
502 return RoundWeedCounted(buffer
, *length
, fractionals
, one
.f(), w_error
,
507 // Provides a decimal representation of v.
508 // Returns true if it succeeds, otherwise the result cannot be trusted.
509 // There will be *length digits inside the buffer (not null-terminated).
510 // If the function returns true then
511 // v == (double) (buffer * 10^decimal_exponent).
512 // The digits in the buffer are the shortest representation possible: no
513 // 0.09999999999999999 instead of 0.1. The shorter representation will even be
514 // chosen even if the longer one would be closer to v.
515 // The last digit will be closest to the actual v. That is, even if several
516 // digits might correctly yield 'v' when read again, the closest will be
518 static bool Grisu3(double v
,
522 int* decimal_exponent
) {
523 DiyFp w
= Double(v
).AsNormalizedDiyFp();
524 // boundary_minus and boundary_plus are the boundaries between v and its
525 // closest floating-point neighbors. Any number strictly between
526 // boundary_minus and boundary_plus will round to v when convert to a double.
527 // Grisu3 will never output representations that lie exactly on a boundary.
528 DiyFp boundary_minus
, boundary_plus
;
529 if (mode
== FAST_DTOA_SHORTEST
) {
530 Double(v
).NormalizedBoundaries(&boundary_minus
, &boundary_plus
);
532 ASSERT(mode
== FAST_DTOA_SHORTEST_SINGLE
);
533 float single_v
= static_cast<float>(v
);
534 Single(single_v
).NormalizedBoundaries(&boundary_minus
, &boundary_plus
);
536 ASSERT(boundary_plus
.e() == w
.e());
537 DiyFp ten_mk
; // Cached power of ten: 10^-k
539 int ten_mk_minimal_binary_exponent
=
540 kMinimalTargetExponent
- (w
.e() + DiyFp::kSignificandSize
);
541 int ten_mk_maximal_binary_exponent
=
542 kMaximalTargetExponent
- (w
.e() + DiyFp::kSignificandSize
);
543 PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
544 ten_mk_minimal_binary_exponent
,
545 ten_mk_maximal_binary_exponent
,
547 ASSERT((kMinimalTargetExponent
<= w
.e() + ten_mk
.e() +
548 DiyFp::kSignificandSize
) &&
549 (kMaximalTargetExponent
>= w
.e() + ten_mk
.e() +
550 DiyFp::kSignificandSize
));
551 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
552 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
554 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
555 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
556 // off by a small amount.
557 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
558 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
559 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
560 DiyFp scaled_w
= DiyFp::Times(w
, ten_mk
);
561 ASSERT(scaled_w
.e() ==
562 boundary_plus
.e() + ten_mk
.e() + DiyFp::kSignificandSize
);
563 // In theory it would be possible to avoid some recomputations by computing
564 // the difference between w and boundary_minus/plus (a power of 2) and to
565 // compute scaled_boundary_minus/plus by subtracting/adding from
566 // scaled_w. However the code becomes much less readable and the speed
567 // enhancements are not terriffic.
568 DiyFp scaled_boundary_minus
= DiyFp::Times(boundary_minus
, ten_mk
);
569 DiyFp scaled_boundary_plus
= DiyFp::Times(boundary_plus
, ten_mk
);
571 // DigitGen will generate the digits of scaled_w. Therefore we have
572 // v == (double) (scaled_w * 10^-mk).
573 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
574 // integer than it will be updated. For instance if scaled_w == 1.23 then
575 // the buffer will be filled with "123" und the decimal_exponent will be
578 bool result
= DigitGen(scaled_boundary_minus
, scaled_w
, scaled_boundary_plus
,
579 buffer
, length
, &kappa
);
580 *decimal_exponent
= -mk
+ kappa
;
585 // The "counted" version of grisu3 (see above) only generates requested_digits
586 // number of digits. This version does not generate the shortest representation,
587 // and with enough requested digits 0.1 will at some point print as 0.9999999...
588 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
589 // therefore the rounding strategy for halfway cases is irrelevant.
590 static bool Grisu3Counted(double v
,
591 int requested_digits
,
594 int* decimal_exponent
) {
595 DiyFp w
= Double(v
).AsNormalizedDiyFp();
596 DiyFp ten_mk
; // Cached power of ten: 10^-k
598 int ten_mk_minimal_binary_exponent
=
599 kMinimalTargetExponent
- (w
.e() + DiyFp::kSignificandSize
);
600 int ten_mk_maximal_binary_exponent
=
601 kMaximalTargetExponent
- (w
.e() + DiyFp::kSignificandSize
);
602 PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
603 ten_mk_minimal_binary_exponent
,
604 ten_mk_maximal_binary_exponent
,
606 ASSERT((kMinimalTargetExponent
<= w
.e() + ten_mk
.e() +
607 DiyFp::kSignificandSize
) &&
608 (kMaximalTargetExponent
>= w
.e() + ten_mk
.e() +
609 DiyFp::kSignificandSize
));
610 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
611 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
613 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
614 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
615 // off by a small amount.
616 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
617 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
618 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
619 DiyFp scaled_w
= DiyFp::Times(w
, ten_mk
);
621 // We now have (double) (scaled_w * 10^-mk).
622 // DigitGen will generate the first requested_digits digits of scaled_w and
623 // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
624 // will not always be exactly the same since DigitGenCounted only produces a
625 // limited number of digits.)
627 bool result
= DigitGenCounted(scaled_w
, requested_digits
,
628 buffer
, length
, &kappa
);
629 *decimal_exponent
= -mk
+ kappa
;
634 bool FastDtoa(double v
,
636 int requested_digits
,
639 int* decimal_point
) {
641 ASSERT(!Double(v
).IsSpecial());
644 int decimal_exponent
= 0;
646 case FAST_DTOA_SHORTEST
:
647 case FAST_DTOA_SHORTEST_SINGLE
:
648 result
= Grisu3(v
, mode
, buffer
, length
, &decimal_exponent
);
650 case FAST_DTOA_PRECISION
:
651 result
= Grisu3Counted(v
, requested_digits
,
652 buffer
, length
, &decimal_exponent
);
658 *decimal_point
= *length
+ decimal_exponent
;
659 buffer
[*length
] = '\0';
664 } // namespace double_conversion