4 * This file was part of the Independent JPEG Group's software:
5 * Developed 1997-2009 by Guido Vollbeding.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2015, 2018, 2021-2022, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
11 * This file contains portable arithmetic entropy encoding routines for JPEG
12 * (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1).
14 * Both sequential and progressive modes are supported in this single module.
16 * Suspension is not currently supported in this module.
18 * NOTE: All referenced figures are from
19 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
22 #define JPEG_INTERNALS
27 /* Expanded entropy encoder object for arithmetic encoding. */
30 struct jpeg_entropy_encoder pub
; /* public fields */
32 JLONG c
; /* C register, base of coding interval, layout as in sec. D.1.3 */
33 JLONG a
; /* A register, normalized size of coding interval */
34 JLONG sc
; /* counter for stacked 0xFF values which might overflow */
35 JLONG zc
; /* counter for pending 0x00 output values which might *
36 * be discarded at the end ("Pacman" termination) */
37 int ct
; /* bit shift counter, determines when next byte will be written */
38 int buffer
; /* buffer for most recent output byte != 0xFF */
40 int last_dc_val
[MAX_COMPS_IN_SCAN
]; /* last DC coef for each component */
41 int dc_context
[MAX_COMPS_IN_SCAN
]; /* context index for DC conditioning */
43 unsigned int restarts_to_go
; /* MCUs left in this restart interval */
44 int next_restart_num
; /* next restart number to write (0-7) */
46 /* Pointers to statistics areas (these workspaces have image lifespan) */
47 unsigned char *dc_stats
[NUM_ARITH_TBLS
];
48 unsigned char *ac_stats
[NUM_ARITH_TBLS
];
50 /* Statistics bin for coding with fixed probability 0.5 */
51 unsigned char fixed_bin
[4];
52 } arith_entropy_encoder
;
54 typedef arith_entropy_encoder
*arith_entropy_ptr
;
56 /* The following two definitions specify the allocation chunk size
57 * for the statistics area.
58 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
59 * 49 statistics bins for DC, and 245 statistics bins for AC coding.
61 * We use a compact representation with 1 byte per statistics bin,
62 * thus the numbers directly represent byte sizes.
63 * This 1 byte per statistics bin contains the meaning of the MPS
64 * (more probable symbol) in the highest bit (mask 0x80), and the
65 * index into the probability estimation state machine table
66 * in the lower bits (mask 0x7F).
69 #define DC_STAT_BINS 64
70 #define AC_STAT_BINS 256
72 /* NOTE: Uncomment the following #define if you want to use the
73 * given formula for calculating the AC conditioning parameter Kx
74 * for spectral selection progressive coding in section G.1.3.2
75 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
76 * Although the spec and P&M authors claim that this "has proven
77 * to give good results for 8 bit precision samples", I'm not
78 * convinced yet that this is really beneficial.
79 * Early tests gave only very marginal compression enhancements
80 * (a few - around 5 or so - bytes even for very large files),
81 * which would turn out rather negative if we'd suppress the
82 * DAC (Define Arithmetic Conditioning) marker segments for
83 * the default parameters in the future.
84 * Note that currently the marker writing module emits 12-byte
85 * DAC segments for a full-component scan in a color image.
86 * This is not worth worrying about IMHO. However, since the
87 * spec defines the default values to be used if the tables
88 * are omitted (unlike Huffman tables, which are required
89 * anyway), one might optimize this behaviour in the future,
90 * and then it would be disadvantageous to use custom tables if
91 * they don't provide sufficient gain to exceed the DAC size.
93 * On the other hand, I'd consider it as a reasonable result
94 * that the conditioning has no significant influence on the
95 * compression performance. This means that the basic
96 * statistical model is already rather stable.
98 * Thus, at the moment, we use the default conditioning values
99 * anyway, and do not use the custom formula.
101 #define CALCULATE_SPECTRAL_CONDITIONING
104 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG.
105 * We assume that int right shift is unsigned if JLONG right shift is,
106 * which should be safe.
109 #ifdef RIGHT_SHIFT_IS_UNSIGNED
110 #define ISHIFT_TEMPS int ishift_temp;
111 #define IRIGHT_SHIFT(x, shft) \
112 ((ishift_temp = (x)) < 0 ? \
113 (ishift_temp >> (shft)) | ((~0) << (16 - (shft))) : \
114 (ishift_temp >> (shft)))
117 #define IRIGHT_SHIFT(x, shft) ((x) >> (shft))
122 emit_byte(int val
, j_compress_ptr cinfo
)
123 /* Write next output byte; we do not support suspension in this module. */
125 struct jpeg_destination_mgr
*dest
= cinfo
->dest
;
127 *dest
->next_output_byte
++ = (JOCTET
)val
;
128 if (--dest
->free_in_buffer
== 0)
129 if (!(*dest
->empty_output_buffer
) (cinfo
))
130 ERREXIT(cinfo
, JERR_CANT_SUSPEND
);
135 * Finish up at the end of an arithmetic-compressed scan.
139 finish_pass(j_compress_ptr cinfo
)
141 arith_entropy_ptr e
= (arith_entropy_ptr
)cinfo
->entropy
;
144 /* Section D.1.8: Termination of encoding */
146 /* Find the e->c in the coding interval with the largest
147 * number of trailing zero bits */
148 if ((temp
= (e
->a
- 1 + e
->c
) & 0xFFFF0000UL
) < e
->c
)
149 e
->c
= temp
+ 0x8000L
;
152 /* Send remaining bytes to output */
154 if (e
->c
& 0xF8000000UL
) {
155 /* One final overflow has to be handled */
156 if (e
->buffer
>= 0) {
158 do emit_byte(0x00, cinfo
);
160 emit_byte(e
->buffer
+ 1, cinfo
);
161 if (e
->buffer
+ 1 == 0xFF)
162 emit_byte(0x00, cinfo
);
164 e
->zc
+= e
->sc
; /* carry-over converts stacked 0xFF bytes to 0x00 */
169 else if (e
->buffer
>= 0) {
171 do emit_byte(0x00, cinfo
);
173 emit_byte(e
->buffer
, cinfo
);
177 do emit_byte(0x00, cinfo
);
180 emit_byte(0xFF, cinfo
);
181 emit_byte(0x00, cinfo
);
185 /* Output final bytes only if they are not 0x00 */
186 if (e
->c
& 0x7FFF800L
) {
187 if (e
->zc
) /* output final pending zero bytes */
188 do emit_byte(0x00, cinfo
);
190 emit_byte((e
->c
>> 19) & 0xFF, cinfo
);
191 if (((e
->c
>> 19) & 0xFF) == 0xFF)
192 emit_byte(0x00, cinfo
);
193 if (e
->c
& 0x7F800L
) {
194 emit_byte((e
->c
>> 11) & 0xFF, cinfo
);
195 if (((e
->c
>> 11) & 0xFF) == 0xFF)
196 emit_byte(0x00, cinfo
);
203 * The core arithmetic encoding routine (common in JPEG and JBIG).
204 * This needs to go as fast as possible.
205 * Machine-dependent optimization facilities
206 * are not utilized in this portable implementation.
207 * However, this code should be fairly efficient and
208 * may be a good base for further optimizations anyway.
210 * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
212 * Note: I've added full "Pacman" termination support to the
213 * byte output routines, which is equivalent to the optional
214 * Discard_final_zeros procedure (Figure D.15) in the spec.
215 * Thus, we always produce the shortest possible output
216 * stream compliant to the spec (no trailing zero bytes,
217 * except for FF stuffing).
219 * I've also introduced a new scheme for accessing
220 * the probability estimation state machine table,
221 * derived from Markus Kuhn's JBIG implementation.
225 arith_encode(j_compress_ptr cinfo
, unsigned char *st
, int val
)
227 register arith_entropy_ptr e
= (arith_entropy_ptr
)cinfo
->entropy
;
228 register unsigned char nl
, nm
;
229 register JLONG qe
, temp
;
232 /* Fetch values from our compact representation of Table D.2:
233 * Qe values and probability estimation state machine
236 qe
= jpeg_aritab
[sv
& 0x7F]; /* => Qe_Value */
237 nl
= qe
& 0xFF; qe
>>= 8; /* Next_Index_LPS + Switch_MPS */
238 nm
= qe
& 0xFF; qe
>>= 8; /* Next_Index_MPS */
240 /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
242 if (val
!= (sv
>> 7)) {
243 /* Encode the less probable symbol */
245 /* If the interval size (qe) for the less probable symbol (LPS)
246 * is larger than the interval size for the MPS, then exchange
247 * the two symbols for coding efficiency, otherwise code the LPS
252 *st
= (sv
& 0x80) ^ nl
; /* Estimate_after_LPS */
254 /* Encode the more probable symbol */
256 return; /* A >= 0x8000 -> ready, no renormalization required */
258 /* If the interval size (qe) for the less probable symbol (LPS)
259 * is larger than the interval size for the MPS, then exchange
260 * the two symbols for coding efficiency: */
264 *st
= (sv
& 0x80) ^ nm
; /* Estimate_after_MPS */
267 /* Renormalization & data output per section D.1.6 */
272 /* Another byte is ready for output */
275 /* Handle overflow over all stacked 0xFF bytes */
276 if (e
->buffer
>= 0) {
278 do emit_byte(0x00, cinfo
);
280 emit_byte(e
->buffer
+ 1, cinfo
);
281 if (e
->buffer
+ 1 == 0xFF)
282 emit_byte(0x00, cinfo
);
284 e
->zc
+= e
->sc
; /* carry-over converts stacked 0xFF bytes to 0x00 */
286 /* Note: The 3 spacer bits in the C register guarantee
287 * that the new buffer byte can't be 0xFF here
288 * (see page 160 in the P&M JPEG book). */
289 e
->buffer
= temp
& 0xFF; /* new output byte, might overflow later */
290 } else if (temp
== 0xFF) {
291 ++e
->sc
; /* stack 0xFF byte (which might overflow later) */
293 /* Output all stacked 0xFF bytes, they will not overflow any more */
296 else if (e
->buffer
>= 0) {
298 do emit_byte(0x00, cinfo
);
300 emit_byte(e
->buffer
, cinfo
);
304 do emit_byte(0x00, cinfo
);
307 emit_byte(0xFF, cinfo
);
308 emit_byte(0x00, cinfo
);
311 e
->buffer
= temp
& 0xFF; /* new output byte (can still overflow) */
316 } while (e
->a
< 0x8000L
);
321 * Emit a restart marker & resynchronize predictions.
325 emit_restart(j_compress_ptr cinfo
, int restart_num
)
327 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
329 jpeg_component_info
*compptr
;
333 emit_byte(0xFF, cinfo
);
334 emit_byte(JPEG_RST0
+ restart_num
, cinfo
);
336 /* Re-initialize statistics areas */
337 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
338 compptr
= cinfo
->cur_comp_info
[ci
];
339 /* DC needs no table for refinement scan */
340 if (cinfo
->progressive_mode
== 0 || (cinfo
->Ss
== 0 && cinfo
->Ah
== 0)) {
341 memset(entropy
->dc_stats
[compptr
->dc_tbl_no
], 0, DC_STAT_BINS
);
342 /* Reset DC predictions to 0 */
343 entropy
->last_dc_val
[ci
] = 0;
344 entropy
->dc_context
[ci
] = 0;
346 /* AC needs no table when not present */
347 if (cinfo
->progressive_mode
== 0 || cinfo
->Se
) {
348 memset(entropy
->ac_stats
[compptr
->ac_tbl_no
], 0, AC_STAT_BINS
);
352 /* Reset arithmetic encoding variables */
354 entropy
->a
= 0x10000L
;
358 entropy
->buffer
= -1; /* empty */
363 * MCU encoding for DC initial scan (either spectral selection,
364 * or first pass of successive approximation).
368 encode_mcu_DC_first(j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
370 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
377 /* Emit restart marker if needed */
378 if (cinfo
->restart_interval
) {
379 if (entropy
->restarts_to_go
== 0) {
380 emit_restart(cinfo
, entropy
->next_restart_num
);
381 entropy
->restarts_to_go
= cinfo
->restart_interval
;
382 entropy
->next_restart_num
++;
383 entropy
->next_restart_num
&= 7;
385 entropy
->restarts_to_go
--;
388 /* Encode the MCU data blocks */
389 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
390 block
= MCU_data
[blkn
];
391 ci
= cinfo
->MCU_membership
[blkn
];
392 tbl
= cinfo
->cur_comp_info
[ci
]->dc_tbl_no
;
394 /* Compute the DC value after the required point transform by Al.
395 * This is simply an arithmetic right shift.
397 m
= IRIGHT_SHIFT((int)((*block
)[0]), cinfo
->Al
);
399 /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
401 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
402 st
= entropy
->dc_stats
[tbl
] + entropy
->dc_context
[ci
];
404 /* Figure F.4: Encode_DC_DIFF */
405 if ((v
= m
- entropy
->last_dc_val
[ci
]) == 0) {
406 arith_encode(cinfo
, st
, 0);
407 entropy
->dc_context
[ci
] = 0; /* zero diff category */
409 entropy
->last_dc_val
[ci
] = m
;
410 arith_encode(cinfo
, st
, 1);
411 /* Figure F.6: Encoding nonzero value v */
412 /* Figure F.7: Encoding the sign of v */
414 arith_encode(cinfo
, st
+ 1, 0); /* Table F.4: SS = S0 + 1 */
415 st
+= 2; /* Table F.4: SP = S0 + 2 */
416 entropy
->dc_context
[ci
] = 4; /* small positive diff category */
419 arith_encode(cinfo
, st
+ 1, 1); /* Table F.4: SS = S0 + 1 */
420 st
+= 3; /* Table F.4: SN = S0 + 3 */
421 entropy
->dc_context
[ci
] = 8; /* small negative diff category */
423 /* Figure F.8: Encoding the magnitude category of v */
426 arith_encode(cinfo
, st
, 1);
429 st
= entropy
->dc_stats
[tbl
] + 20; /* Table F.4: X1 = 20 */
431 arith_encode(cinfo
, st
, 1);
436 arith_encode(cinfo
, st
, 0);
437 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
438 if (m
< (int)((1L << cinfo
->arith_dc_L
[tbl
]) >> 1))
439 entropy
->dc_context
[ci
] = 0; /* zero diff category */
440 else if (m
> (int)((1L << cinfo
->arith_dc_U
[tbl
]) >> 1))
441 entropy
->dc_context
[ci
] += 8; /* large diff category */
442 /* Figure F.9: Encoding the magnitude bit pattern of v */
445 arith_encode(cinfo
, st
, (m
& v
) ? 1 : 0);
454 * MCU encoding for AC initial scan (either spectral selection,
455 * or first pass of successive approximation).
459 encode_mcu_AC_first(j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
461 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
467 /* Emit restart marker if needed */
468 if (cinfo
->restart_interval
) {
469 if (entropy
->restarts_to_go
== 0) {
470 emit_restart(cinfo
, entropy
->next_restart_num
);
471 entropy
->restarts_to_go
= cinfo
->restart_interval
;
472 entropy
->next_restart_num
++;
473 entropy
->next_restart_num
&= 7;
475 entropy
->restarts_to_go
--;
478 /* Encode the MCU data block */
480 tbl
= cinfo
->cur_comp_info
[0]->ac_tbl_no
;
482 /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
484 /* Establish EOB (end-of-block) index */
485 for (ke
= cinfo
->Se
; ke
> 0; ke
--)
486 /* We must apply the point transform by Al. For AC coefficients this
487 * is an integer division with rounding towards 0. To do this portably
488 * in C, we shift after obtaining the absolute value.
490 if ((v
= (*block
)[jpeg_natural_order
[ke
]]) >= 0) {
491 if (v
>>= cinfo
->Al
) break;
494 if (v
>>= cinfo
->Al
) break;
497 /* Figure F.5: Encode_AC_Coefficients */
498 for (k
= cinfo
->Ss
; k
<= ke
; k
++) {
499 st
= entropy
->ac_stats
[tbl
] + 3 * (k
- 1);
500 arith_encode(cinfo
, st
, 0); /* EOB decision */
502 if ((v
= (*block
)[jpeg_natural_order
[k
]]) >= 0) {
503 if (v
>>= cinfo
->Al
) {
504 arith_encode(cinfo
, st
+ 1, 1);
505 arith_encode(cinfo
, entropy
->fixed_bin
, 0);
510 if (v
>>= cinfo
->Al
) {
511 arith_encode(cinfo
, st
+ 1, 1);
512 arith_encode(cinfo
, entropy
->fixed_bin
, 1);
516 arith_encode(cinfo
, st
+ 1, 0); st
+= 3; k
++;
519 /* Figure F.8: Encoding the magnitude category of v */
522 arith_encode(cinfo
, st
, 1);
526 arith_encode(cinfo
, st
, 1);
528 st
= entropy
->ac_stats
[tbl
] +
529 (k
<= cinfo
->arith_ac_K
[tbl
] ? 189 : 217);
531 arith_encode(cinfo
, st
, 1);
537 arith_encode(cinfo
, st
, 0);
538 /* Figure F.9: Encoding the magnitude bit pattern of v */
541 arith_encode(cinfo
, st
, (m
& v
) ? 1 : 0);
543 /* Encode EOB decision only if k <= cinfo->Se */
544 if (k
<= cinfo
->Se
) {
545 st
= entropy
->ac_stats
[tbl
] + 3 * (k
- 1);
546 arith_encode(cinfo
, st
, 1);
554 * MCU encoding for DC successive approximation refinement scan.
558 encode_mcu_DC_refine(j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
560 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
564 /* Emit restart marker if needed */
565 if (cinfo
->restart_interval
) {
566 if (entropy
->restarts_to_go
== 0) {
567 emit_restart(cinfo
, entropy
->next_restart_num
);
568 entropy
->restarts_to_go
= cinfo
->restart_interval
;
569 entropy
->next_restart_num
++;
570 entropy
->next_restart_num
&= 7;
572 entropy
->restarts_to_go
--;
575 st
= entropy
->fixed_bin
; /* use fixed probability estimation */
578 /* Encode the MCU data blocks */
579 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
580 /* We simply emit the Al'th bit of the DC coefficient value. */
581 arith_encode(cinfo
, st
, (MCU_data
[blkn
][0][0] >> Al
) & 1);
589 * MCU encoding for AC successive approximation refinement scan.
593 encode_mcu_AC_refine(j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
595 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
601 /* Emit restart marker if needed */
602 if (cinfo
->restart_interval
) {
603 if (entropy
->restarts_to_go
== 0) {
604 emit_restart(cinfo
, entropy
->next_restart_num
);
605 entropy
->restarts_to_go
= cinfo
->restart_interval
;
606 entropy
->next_restart_num
++;
607 entropy
->next_restart_num
&= 7;
609 entropy
->restarts_to_go
--;
612 /* Encode the MCU data block */
614 tbl
= cinfo
->cur_comp_info
[0]->ac_tbl_no
;
616 /* Section G.1.3.3: Encoding of AC coefficients */
618 /* Establish EOB (end-of-block) index */
619 for (ke
= cinfo
->Se
; ke
> 0; ke
--)
620 /* We must apply the point transform by Al. For AC coefficients this
621 * is an integer division with rounding towards 0. To do this portably
622 * in C, we shift after obtaining the absolute value.
624 if ((v
= (*block
)[jpeg_natural_order
[ke
]]) >= 0) {
625 if (v
>>= cinfo
->Al
) break;
628 if (v
>>= cinfo
->Al
) break;
631 /* Establish EOBx (previous stage end-of-block) index */
632 for (kex
= ke
; kex
> 0; kex
--)
633 if ((v
= (*block
)[jpeg_natural_order
[kex
]]) >= 0) {
634 if (v
>>= cinfo
->Ah
) break;
637 if (v
>>= cinfo
->Ah
) break;
640 /* Figure G.10: Encode_AC_Coefficients_SA */
641 for (k
= cinfo
->Ss
; k
<= ke
; k
++) {
642 st
= entropy
->ac_stats
[tbl
] + 3 * (k
- 1);
644 arith_encode(cinfo
, st
, 0); /* EOB decision */
646 if ((v
= (*block
)[jpeg_natural_order
[k
]]) >= 0) {
647 if (v
>>= cinfo
->Al
) {
648 if (v
>> 1) /* previously nonzero coef */
649 arith_encode(cinfo
, st
+ 2, (v
& 1));
650 else { /* newly nonzero coef */
651 arith_encode(cinfo
, st
+ 1, 1);
652 arith_encode(cinfo
, entropy
->fixed_bin
, 0);
658 if (v
>>= cinfo
->Al
) {
659 if (v
>> 1) /* previously nonzero coef */
660 arith_encode(cinfo
, st
+ 2, (v
& 1));
661 else { /* newly nonzero coef */
662 arith_encode(cinfo
, st
+ 1, 1);
663 arith_encode(cinfo
, entropy
->fixed_bin
, 1);
668 arith_encode(cinfo
, st
+ 1, 0); st
+= 3; k
++;
671 /* Encode EOB decision only if k <= cinfo->Se */
672 if (k
<= cinfo
->Se
) {
673 st
= entropy
->ac_stats
[tbl
] + 3 * (k
- 1);
674 arith_encode(cinfo
, st
, 1);
682 * Encode and output one MCU's worth of arithmetic-compressed coefficients.
686 encode_mcu(j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
688 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
689 jpeg_component_info
*compptr
;
692 int blkn
, ci
, tbl
, k
, ke
;
695 /* Emit restart marker if needed */
696 if (cinfo
->restart_interval
) {
697 if (entropy
->restarts_to_go
== 0) {
698 emit_restart(cinfo
, entropy
->next_restart_num
);
699 entropy
->restarts_to_go
= cinfo
->restart_interval
;
700 entropy
->next_restart_num
++;
701 entropy
->next_restart_num
&= 7;
703 entropy
->restarts_to_go
--;
706 /* Encode the MCU data blocks */
707 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
708 block
= MCU_data
[blkn
];
709 ci
= cinfo
->MCU_membership
[blkn
];
710 compptr
= cinfo
->cur_comp_info
[ci
];
712 /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
714 tbl
= compptr
->dc_tbl_no
;
716 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
717 st
= entropy
->dc_stats
[tbl
] + entropy
->dc_context
[ci
];
719 /* Figure F.4: Encode_DC_DIFF */
720 if ((v
= (*block
)[0] - entropy
->last_dc_val
[ci
]) == 0) {
721 arith_encode(cinfo
, st
, 0);
722 entropy
->dc_context
[ci
] = 0; /* zero diff category */
724 entropy
->last_dc_val
[ci
] = (*block
)[0];
725 arith_encode(cinfo
, st
, 1);
726 /* Figure F.6: Encoding nonzero value v */
727 /* Figure F.7: Encoding the sign of v */
729 arith_encode(cinfo
, st
+ 1, 0); /* Table F.4: SS = S0 + 1 */
730 st
+= 2; /* Table F.4: SP = S0 + 2 */
731 entropy
->dc_context
[ci
] = 4; /* small positive diff category */
734 arith_encode(cinfo
, st
+ 1, 1); /* Table F.4: SS = S0 + 1 */
735 st
+= 3; /* Table F.4: SN = S0 + 3 */
736 entropy
->dc_context
[ci
] = 8; /* small negative diff category */
738 /* Figure F.8: Encoding the magnitude category of v */
741 arith_encode(cinfo
, st
, 1);
744 st
= entropy
->dc_stats
[tbl
] + 20; /* Table F.4: X1 = 20 */
746 arith_encode(cinfo
, st
, 1);
751 arith_encode(cinfo
, st
, 0);
752 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
753 if (m
< (int)((1L << cinfo
->arith_dc_L
[tbl
]) >> 1))
754 entropy
->dc_context
[ci
] = 0; /* zero diff category */
755 else if (m
> (int)((1L << cinfo
->arith_dc_U
[tbl
]) >> 1))
756 entropy
->dc_context
[ci
] += 8; /* large diff category */
757 /* Figure F.9: Encoding the magnitude bit pattern of v */
760 arith_encode(cinfo
, st
, (m
& v
) ? 1 : 0);
763 /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
765 tbl
= compptr
->ac_tbl_no
;
767 /* Establish EOB (end-of-block) index */
768 for (ke
= DCTSIZE2
- 1; ke
> 0; ke
--)
769 if ((*block
)[jpeg_natural_order
[ke
]]) break;
771 /* Figure F.5: Encode_AC_Coefficients */
772 for (k
= 1; k
<= ke
; k
++) {
773 st
= entropy
->ac_stats
[tbl
] + 3 * (k
- 1);
774 arith_encode(cinfo
, st
, 0); /* EOB decision */
775 while ((v
= (*block
)[jpeg_natural_order
[k
]]) == 0) {
776 arith_encode(cinfo
, st
+ 1, 0); st
+= 3; k
++;
778 arith_encode(cinfo
, st
+ 1, 1);
779 /* Figure F.6: Encoding nonzero value v */
780 /* Figure F.7: Encoding the sign of v */
782 arith_encode(cinfo
, entropy
->fixed_bin
, 0);
785 arith_encode(cinfo
, entropy
->fixed_bin
, 1);
788 /* Figure F.8: Encoding the magnitude category of v */
791 arith_encode(cinfo
, st
, 1);
795 arith_encode(cinfo
, st
, 1);
797 st
= entropy
->ac_stats
[tbl
] +
798 (k
<= cinfo
->arith_ac_K
[tbl
] ? 189 : 217);
800 arith_encode(cinfo
, st
, 1);
806 arith_encode(cinfo
, st
, 0);
807 /* Figure F.9: Encoding the magnitude bit pattern of v */
810 arith_encode(cinfo
, st
, (m
& v
) ? 1 : 0);
812 /* Encode EOB decision only if k <= DCTSIZE2 - 1 */
813 if (k
<= DCTSIZE2
- 1) {
814 st
= entropy
->ac_stats
[tbl
] + 3 * (k
- 1);
815 arith_encode(cinfo
, st
, 1);
824 * Initialize for an arithmetic-compressed scan.
828 start_pass(j_compress_ptr cinfo
, boolean gather_statistics
)
830 arith_entropy_ptr entropy
= (arith_entropy_ptr
)cinfo
->entropy
;
832 jpeg_component_info
*compptr
;
834 if (gather_statistics
)
835 /* Make sure to avoid that in the master control logic!
836 * We are fully adaptive here and need no extra
837 * statistics gathering pass!
839 ERREXIT(cinfo
, JERR_NOTIMPL
);
841 /* We assume jcmaster.c already validated the progressive scan parameters. */
843 /* Select execution routines */
844 if (cinfo
->progressive_mode
) {
845 if (cinfo
->Ah
== 0) {
847 entropy
->pub
.encode_mcu
= encode_mcu_DC_first
;
849 entropy
->pub
.encode_mcu
= encode_mcu_AC_first
;
852 entropy
->pub
.encode_mcu
= encode_mcu_DC_refine
;
854 entropy
->pub
.encode_mcu
= encode_mcu_AC_refine
;
857 entropy
->pub
.encode_mcu
= encode_mcu
;
859 /* Allocate & initialize requested statistics areas */
860 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
861 compptr
= cinfo
->cur_comp_info
[ci
];
862 /* DC needs no table for refinement scan */
863 if (cinfo
->progressive_mode
== 0 || (cinfo
->Ss
== 0 && cinfo
->Ah
== 0)) {
864 tbl
= compptr
->dc_tbl_no
;
865 if (tbl
< 0 || tbl
>= NUM_ARITH_TBLS
)
866 ERREXIT1(cinfo
, JERR_NO_ARITH_TABLE
, tbl
);
867 if (entropy
->dc_stats
[tbl
] == NULL
)
868 entropy
->dc_stats
[tbl
] = (unsigned char *)(*cinfo
->mem
->alloc_small
)
869 ((j_common_ptr
)cinfo
, JPOOL_IMAGE
, DC_STAT_BINS
);
870 memset(entropy
->dc_stats
[tbl
], 0, DC_STAT_BINS
);
871 /* Initialize DC predictions to 0 */
872 entropy
->last_dc_val
[ci
] = 0;
873 entropy
->dc_context
[ci
] = 0;
875 /* AC needs no table when not present */
876 if (cinfo
->progressive_mode
== 0 || cinfo
->Se
) {
877 tbl
= compptr
->ac_tbl_no
;
878 if (tbl
< 0 || tbl
>= NUM_ARITH_TBLS
)
879 ERREXIT1(cinfo
, JERR_NO_ARITH_TABLE
, tbl
);
880 if (entropy
->ac_stats
[tbl
] == NULL
)
881 entropy
->ac_stats
[tbl
] = (unsigned char *)(*cinfo
->mem
->alloc_small
)
882 ((j_common_ptr
)cinfo
, JPOOL_IMAGE
, AC_STAT_BINS
);
883 memset(entropy
->ac_stats
[tbl
], 0, AC_STAT_BINS
);
884 #ifdef CALCULATE_SPECTRAL_CONDITIONING
885 if (cinfo
->progressive_mode
)
886 /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
887 cinfo
->arith_ac_K
[tbl
] = cinfo
->Ss
+
888 ((8 + cinfo
->Se
- cinfo
->Ss
) >> 4);
893 /* Initialize arithmetic encoding variables */
895 entropy
->a
= 0x10000L
;
899 entropy
->buffer
= -1; /* empty */
901 /* Initialize restart stuff */
902 entropy
->restarts_to_go
= cinfo
->restart_interval
;
903 entropy
->next_restart_num
= 0;
908 * Module initialization routine for arithmetic entropy encoding.
912 jinit_arith_encoder(j_compress_ptr cinfo
)
914 arith_entropy_ptr entropy
;
917 entropy
= (arith_entropy_ptr
)
918 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
919 sizeof(arith_entropy_encoder
));
920 cinfo
->entropy
= (struct jpeg_entropy_encoder
*)entropy
;
921 entropy
->pub
.start_pass
= start_pass
;
922 entropy
->pub
.finish_pass
= finish_pass
;
924 /* Mark tables unallocated */
925 for (i
= 0; i
< NUM_ARITH_TBLS
; i
++) {
926 entropy
->dc_stats
[i
] = NULL
;
927 entropy
->ac_stats
[i
] = NULL
;
930 /* Initialize index for fixed probability estimation */
931 entropy
->fixed_bin
[0] = 113;