Bug 1635217 [wpt PR 23388] - Add WPT tests for bug 1074317, a=testonly
[gecko.git] / mfbt / HashTable.h
blob40451f30f90267f6c058cf1d8cd6371115f2a2c6
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 //---------------------------------------------------------------------------
8 // Overview
9 //---------------------------------------------------------------------------
11 // This file defines HashMap<Key, Value> and HashSet<T>, hash tables that are
12 // fast and have a nice API.
14 // Both hash tables have two optional template parameters.
16 // - HashPolicy. This defines the operations for hashing and matching keys. The
17 // default HashPolicy is appropriate when both of the following two
18 // conditions are true.
20 // - The key type stored in the table (|Key| for |HashMap<Key, Value>|, |T|
21 // for |HashSet<T>|) is an integer, pointer, UniquePtr, float, or double.
23 // - The type used for lookups (|Lookup|) is the same as the key type. This
24 // is usually the case, but not always.
26 // There is also a |CStringHasher| policy for |char*| keys. If your keys
27 // don't match any of the above cases, you must provide your own hash policy;
28 // see the "Hash Policy" section below.
30 // - AllocPolicy. This defines how allocations are done by the table.
32 // - |MallocAllocPolicy| is the default and is usually appropriate; note that
33 // operations (such as insertions) that might cause allocations are
34 // fallible and must be checked for OOM. These checks are enforced by the
35 // use of MOZ_MUST_USE.
37 // - |InfallibleAllocPolicy| is another possibility; it allows the
38 // abovementioned OOM checks to be done with MOZ_ALWAYS_TRUE().
40 // Note that entry storage allocation is lazy, and not done until the first
41 // lookupForAdd(), put(), or putNew() is performed.
43 // See AllocPolicy.h for more details.
45 // Documentation on how to use HashMap and HashSet, including examples, is
46 // present within those classes. Search for "class HashMap" and "class
47 // HashSet".
49 // Both HashMap and HashSet are implemented on top of a third class, HashTable.
50 // You only need to look at HashTable if you want to understand the
51 // implementation.
53 // How does mozilla::HashTable (this file) compare with PLDHashTable (and its
54 // subclasses, such as nsTHashtable)?
56 // - mozilla::HashTable is a lot faster, largely because it uses templates
57 // throughout *and* inlines everything. PLDHashTable inlines operations much
58 // less aggressively, and also uses "virtual ops" for operations like hashing
59 // and matching entries that require function calls.
61 // - Correspondingly, mozilla::HashTable use is likely to increase executable
62 // size much more than PLDHashTable.
64 // - mozilla::HashTable has a nicer API, with a proper HashSet vs. HashMap
65 // distinction.
67 // - mozilla::HashTable requires more explicit OOM checking. As mentioned
68 // above, the use of |InfallibleAllocPolicy| can simplify things.
70 // - mozilla::HashTable has a default capacity on creation of 32 and a minimum
71 // capacity of 4. PLDHashTable has a default capacity on creation of 8 and a
72 // minimum capacity of 8.
74 #ifndef mozilla_HashTable_h
75 #define mozilla_HashTable_h
77 #include <utility>
78 #include <type_traits>
80 #include "mozilla/AllocPolicy.h"
81 #include "mozilla/Assertions.h"
82 #include "mozilla/Attributes.h"
83 #include "mozilla/Casting.h"
84 #include "mozilla/HashFunctions.h"
85 #include "mozilla/MathAlgorithms.h"
86 #include "mozilla/Maybe.h"
87 #include "mozilla/MemoryChecking.h"
88 #include "mozilla/MemoryReporting.h"
89 #include "mozilla/Opaque.h"
90 #include "mozilla/OperatorNewExtensions.h"
91 #include "mozilla/ReentrancyGuard.h"
92 #include "mozilla/UniquePtr.h"
93 #include "mozilla/WrappingOperations.h"
95 namespace mozilla {
97 template <class>
98 struct DefaultHasher;
100 template <class, class>
101 class HashMapEntry;
103 namespace detail {
105 template <typename T>
106 class HashTableEntry;
108 template <class T, class HashPolicy, class AllocPolicy>
109 class HashTable;
111 } // namespace detail
113 // The "generation" of a hash table is an opaque value indicating the state of
114 // modification of the hash table through its lifetime. If the generation of
115 // a hash table compares equal at times T1 and T2, then lookups in the hash
116 // table, pointers to (or into) hash table entries, etc. at time T1 are valid
117 // at time T2. If the generation compares unequal, these computations are all
118 // invalid and must be performed again to be used.
120 // Generations are meaningfully comparable only with respect to a single hash
121 // table. It's always nonsensical to compare the generation of distinct hash
122 // tables H1 and H2.
123 using Generation = Opaque<uint64_t>;
125 //---------------------------------------------------------------------------
126 // HashMap
127 //---------------------------------------------------------------------------
129 // HashMap is a fast hash-based map from keys to values.
131 // Template parameter requirements:
132 // - Key/Value: movable, destructible, assignable.
133 // - HashPolicy: see the "Hash Policy" section below.
134 // - AllocPolicy: see AllocPolicy.h.
136 // Note:
137 // - HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members
138 // called by HashMap must not call back into the same HashMap object.
140 template <class Key, class Value, class HashPolicy = DefaultHasher<Key>,
141 class AllocPolicy = MallocAllocPolicy>
142 class HashMap {
143 // -- Implementation details -----------------------------------------------
145 // HashMap is not copyable or assignable.
146 HashMap(const HashMap& hm) = delete;
147 HashMap& operator=(const HashMap& hm) = delete;
149 using TableEntry = HashMapEntry<Key, Value>;
151 struct MapHashPolicy : HashPolicy {
152 using Base = HashPolicy;
153 using KeyType = Key;
155 static const Key& getKey(TableEntry& aEntry) { return aEntry.key(); }
157 static void setKey(TableEntry& aEntry, Key& aKey) {
158 HashPolicy::rekey(aEntry.mutableKey(), aKey);
162 using Impl = detail::HashTable<TableEntry, MapHashPolicy, AllocPolicy>;
163 Impl mImpl;
165 friend class Impl::Enum;
167 public:
168 using Lookup = typename HashPolicy::Lookup;
169 using Entry = TableEntry;
171 // -- Initialization -------------------------------------------------------
173 explicit HashMap(AllocPolicy aAllocPolicy = AllocPolicy(),
174 uint32_t aLen = Impl::sDefaultLen)
175 : mImpl(std::move(aAllocPolicy), aLen) {}
177 explicit HashMap(uint32_t aLen) : mImpl(AllocPolicy(), aLen) {}
179 // HashMap is movable.
180 HashMap(HashMap&& aRhs) = default;
181 HashMap& operator=(HashMap&& aRhs) = default;
183 // -- Status and sizing ----------------------------------------------------
185 // The map's current generation.
186 Generation generation() const { return mImpl.generation(); }
188 // Is the map empty?
189 bool empty() const { return mImpl.empty(); }
191 // Number of keys/values in the map.
192 uint32_t count() const { return mImpl.count(); }
194 // Number of key/value slots in the map. Note: resize will happen well before
195 // count() == capacity().
196 uint32_t capacity() const { return mImpl.capacity(); }
198 // The size of the map's entry storage, in bytes. If the keys/values contain
199 // pointers to other heap blocks, you must iterate over the map and measure
200 // them separately; hence the "shallow" prefix.
201 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
202 return mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
204 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
205 return aMallocSizeOf(this) +
206 mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
209 // Attempt to minimize the capacity(). If the table is empty, this will free
210 // the empty storage and upon regrowth it will be given the minimum capacity.
211 void compact() { mImpl.compact(); }
213 // Attempt to reserve enough space to fit at least |aLen| elements. Does
214 // nothing if the map already has sufficient capacity.
215 MOZ_MUST_USE bool reserve(uint32_t aLen) { return mImpl.reserve(aLen); }
217 // -- Lookups --------------------------------------------------------------
219 // Does the map contain a key/value matching |aLookup|?
220 bool has(const Lookup& aLookup) const {
221 return mImpl.lookup(aLookup).found();
224 // Return a Ptr indicating whether a key/value matching |aLookup| is
225 // present in the map. E.g.:
227 // using HM = HashMap<int,char>;
228 // HM h;
229 // if (HM::Ptr p = h.lookup(3)) {
230 // assert(p->key() == 3);
231 // char val = p->value();
232 // }
234 using Ptr = typename Impl::Ptr;
235 MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const {
236 return mImpl.lookup(aLookup);
239 // Like lookup(), but does not assert if two threads call it at the same
240 // time. Only use this method when none of the threads will modify the map.
241 MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const {
242 return mImpl.readonlyThreadsafeLookup(aLookup);
245 // -- Insertions -----------------------------------------------------------
247 // Overwrite existing value with |aValue|, or add it if not present. Returns
248 // false on OOM.
249 template <typename KeyInput, typename ValueInput>
250 MOZ_MUST_USE bool put(KeyInput&& aKey, ValueInput&& aValue) {
251 AddPtr p = lookupForAdd(aKey);
252 if (p) {
253 p->value() = std::forward<ValueInput>(aValue);
254 return true;
256 return add(p, std::forward<KeyInput>(aKey),
257 std::forward<ValueInput>(aValue));
260 // Like put(), but slightly faster. Must only be used when the given key is
261 // not already present. (In debug builds, assertions check this.)
262 template <typename KeyInput, typename ValueInput>
263 MOZ_MUST_USE bool putNew(KeyInput&& aKey, ValueInput&& aValue) {
264 return mImpl.putNew(aKey, std::forward<KeyInput>(aKey),
265 std::forward<ValueInput>(aValue));
268 // Like putNew(), but should be only used when the table is known to be big
269 // enough for the insertion, and hashing cannot fail. Typically this is used
270 // to populate an empty map with known-unique keys after reserving space with
271 // reserve(), e.g.
273 // using HM = HashMap<int,char>;
274 // HM h;
275 // if (!h.reserve(3)) {
276 // MOZ_CRASH("OOM");
277 // }
278 // h.putNewInfallible(1, 'a'); // unique key
279 // h.putNewInfallible(2, 'b'); // unique key
280 // h.putNewInfallible(3, 'c'); // unique key
282 template <typename KeyInput, typename ValueInput>
283 void putNewInfallible(KeyInput&& aKey, ValueInput&& aValue) {
284 mImpl.putNewInfallible(aKey, std::forward<KeyInput>(aKey),
285 std::forward<ValueInput>(aValue));
288 // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
289 // insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using
290 // |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new key/value. E.g.:
292 // using HM = HashMap<int,char>;
293 // HM h;
294 // HM::AddPtr p = h.lookupForAdd(3);
295 // if (!p) {
296 // if (!h.add(p, 3, 'a')) {
297 // return false;
298 // }
299 // }
300 // assert(p->key() == 3);
301 // char val = p->value();
303 // N.B. The caller must ensure that no mutating hash table operations occur
304 // between a pair of lookupForAdd() and add() calls. To avoid looking up the
305 // key a second time, the caller may use the more efficient relookupOrAdd()
306 // method. This method reuses part of the hashing computation to more
307 // efficiently insert the key if it has not been added. For example, a
308 // mutation-handling version of the previous example:
310 // HM::AddPtr p = h.lookupForAdd(3);
311 // if (!p) {
312 // call_that_may_mutate_h();
313 // if (!h.relookupOrAdd(p, 3, 'a')) {
314 // return false;
315 // }
316 // }
317 // assert(p->key() == 3);
318 // char val = p->value();
320 using AddPtr = typename Impl::AddPtr;
321 MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) {
322 return mImpl.lookupForAdd(aLookup);
325 // Add a key/value. Returns false on OOM.
326 template <typename KeyInput, typename ValueInput>
327 MOZ_MUST_USE bool add(AddPtr& aPtr, KeyInput&& aKey, ValueInput&& aValue) {
328 return mImpl.add(aPtr, std::forward<KeyInput>(aKey),
329 std::forward<ValueInput>(aValue));
332 // See the comment above lookupForAdd() for details.
333 template <typename KeyInput, typename ValueInput>
334 MOZ_MUST_USE bool relookupOrAdd(AddPtr& aPtr, KeyInput&& aKey,
335 ValueInput&& aValue) {
336 return mImpl.relookupOrAdd(aPtr, aKey, std::forward<KeyInput>(aKey),
337 std::forward<ValueInput>(aValue));
340 // -- Removal --------------------------------------------------------------
342 // Lookup and remove the key/value matching |aLookup|, if present.
343 void remove(const Lookup& aLookup) {
344 if (Ptr p = lookup(aLookup)) {
345 remove(p);
349 // Remove a previously found key/value (assuming aPtr.found()). The map must
350 // not have been mutated in the interim.
351 void remove(Ptr aPtr) { mImpl.remove(aPtr); }
353 // Remove all keys/values without changing the capacity.
354 void clear() { mImpl.clear(); }
356 // Like clear() followed by compact().
357 void clearAndCompact() { mImpl.clearAndCompact(); }
359 // -- Rekeying -------------------------------------------------------------
361 // Infallibly rekey one entry, if necessary. Requires that template
362 // parameters Key and HashPolicy::Lookup are the same type.
363 void rekeyIfMoved(const Key& aOldKey, const Key& aNewKey) {
364 if (aOldKey != aNewKey) {
365 rekeyAs(aOldKey, aNewKey, aNewKey);
369 // Infallibly rekey one entry if present, and return whether that happened.
370 bool rekeyAs(const Lookup& aOldLookup, const Lookup& aNewLookup,
371 const Key& aNewKey) {
372 if (Ptr p = lookup(aOldLookup)) {
373 mImpl.rekeyAndMaybeRehash(p, aNewLookup, aNewKey);
374 return true;
376 return false;
379 // -- Iteration ------------------------------------------------------------
381 // |iter()| returns an Iterator:
383 // HashMap<int, char> h;
384 // for (auto iter = h.iter(); !iter.done(); iter.next()) {
385 // char c = iter.get().value();
386 // }
388 using Iterator = typename Impl::Iterator;
389 Iterator iter() const { return mImpl.iter(); }
391 // |modIter()| returns a ModIterator:
393 // HashMap<int, char> h;
394 // for (auto iter = h.modIter(); !iter.done(); iter.next()) {
395 // if (iter.get().value() == 'l') {
396 // iter.remove();
397 // }
398 // }
400 // Table resize may occur in ModIterator's destructor.
401 using ModIterator = typename Impl::ModIterator;
402 ModIterator modIter() { return mImpl.modIter(); }
404 // These are similar to Iterator/ModIterator/iter(), but use different
405 // terminology.
406 using Range = typename Impl::Range;
407 using Enum = typename Impl::Enum;
408 Range all() const { return mImpl.all(); }
411 //---------------------------------------------------------------------------
412 // HashSet
413 //---------------------------------------------------------------------------
415 // HashSet is a fast hash-based set of values.
417 // Template parameter requirements:
418 // - T: movable, destructible, assignable.
419 // - HashPolicy: see the "Hash Policy" section below.
420 // - AllocPolicy: see AllocPolicy.h
422 // Note:
423 // - HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by
424 // HashSet must not call back into the same HashSet object.
426 template <class T, class HashPolicy = DefaultHasher<T>,
427 class AllocPolicy = MallocAllocPolicy>
428 class HashSet {
429 // -- Implementation details -----------------------------------------------
431 // HashSet is not copyable or assignable.
432 HashSet(const HashSet& hs) = delete;
433 HashSet& operator=(const HashSet& hs) = delete;
435 struct SetHashPolicy : HashPolicy {
436 using Base = HashPolicy;
437 using KeyType = T;
439 static const KeyType& getKey(const T& aT) { return aT; }
441 static void setKey(T& aT, KeyType& aKey) { HashPolicy::rekey(aT, aKey); }
444 using Impl = detail::HashTable<const T, SetHashPolicy, AllocPolicy>;
445 Impl mImpl;
447 friend class Impl::Enum;
449 public:
450 using Lookup = typename HashPolicy::Lookup;
451 using Entry = T;
453 // -- Initialization -------------------------------------------------------
455 explicit HashSet(AllocPolicy aAllocPolicy = AllocPolicy(),
456 uint32_t aLen = Impl::sDefaultLen)
457 : mImpl(std::move(aAllocPolicy), aLen) {}
459 explicit HashSet(uint32_t aLen) : mImpl(AllocPolicy(), aLen) {}
461 // HashSet is movable.
462 HashSet(HashSet&& aRhs) = default;
463 HashSet& operator=(HashSet&& aRhs) = default;
465 // -- Status and sizing ----------------------------------------------------
467 // The set's current generation.
468 Generation generation() const { return mImpl.generation(); }
470 // Is the set empty?
471 bool empty() const { return mImpl.empty(); }
473 // Number of elements in the set.
474 uint32_t count() const { return mImpl.count(); }
476 // Number of element slots in the set. Note: resize will happen well before
477 // count() == capacity().
478 uint32_t capacity() const { return mImpl.capacity(); }
480 // The size of the set's entry storage, in bytes. If the elements contain
481 // pointers to other heap blocks, you must iterate over the set and measure
482 // them separately; hence the "shallow" prefix.
483 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
484 return mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
486 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
487 return aMallocSizeOf(this) +
488 mImpl.shallowSizeOfExcludingThis(aMallocSizeOf);
491 // Attempt to minimize the capacity(). If the table is empty, this will free
492 // the empty storage and upon regrowth it will be given the minimum capacity.
493 void compact() { mImpl.compact(); }
495 // Attempt to reserve enough space to fit at least |aLen| elements. Does
496 // nothing if the map already has sufficient capacity.
497 MOZ_MUST_USE bool reserve(uint32_t aLen) { return mImpl.reserve(aLen); }
499 // -- Lookups --------------------------------------------------------------
501 // Does the set contain an element matching |aLookup|?
502 bool has(const Lookup& aLookup) const {
503 return mImpl.lookup(aLookup).found();
506 // Return a Ptr indicating whether an element matching |aLookup| is present
507 // in the set. E.g.:
509 // using HS = HashSet<int>;
510 // HS h;
511 // if (HS::Ptr p = h.lookup(3)) {
512 // assert(*p == 3); // p acts like a pointer to int
513 // }
515 using Ptr = typename Impl::Ptr;
516 MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const {
517 return mImpl.lookup(aLookup);
520 // Like lookup(), but does not assert if two threads call it at the same
521 // time. Only use this method when none of the threads will modify the set.
522 MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const {
523 return mImpl.readonlyThreadsafeLookup(aLookup);
526 // -- Insertions -----------------------------------------------------------
528 // Add |aU| if it is not present already. Returns false on OOM.
529 template <typename U>
530 MOZ_MUST_USE bool put(U&& aU) {
531 AddPtr p = lookupForAdd(aU);
532 return p ? true : add(p, std::forward<U>(aU));
535 // Like put(), but slightly faster. Must only be used when the given element
536 // is not already present. (In debug builds, assertions check this.)
537 template <typename U>
538 MOZ_MUST_USE bool putNew(U&& aU) {
539 return mImpl.putNew(aU, std::forward<U>(aU));
542 // Like the other putNew(), but for when |Lookup| is different to |T|.
543 template <typename U>
544 MOZ_MUST_USE bool putNew(const Lookup& aLookup, U&& aU) {
545 return mImpl.putNew(aLookup, std::forward<U>(aU));
548 // Like putNew(), but should be only used when the table is known to be big
549 // enough for the insertion, and hashing cannot fail. Typically this is used
550 // to populate an empty set with known-unique elements after reserving space
551 // with reserve(), e.g.
553 // using HS = HashMap<int>;
554 // HS h;
555 // if (!h.reserve(3)) {
556 // MOZ_CRASH("OOM");
557 // }
558 // h.putNewInfallible(1); // unique element
559 // h.putNewInfallible(2); // unique element
560 // h.putNewInfallible(3); // unique element
562 template <typename U>
563 void putNewInfallible(const Lookup& aLookup, U&& aU) {
564 mImpl.putNewInfallible(aLookup, std::forward<U>(aU));
567 // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
568 // insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using
569 // |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.:
571 // using HS = HashSet<int>;
572 // HS h;
573 // HS::AddPtr p = h.lookupForAdd(3);
574 // if (!p) {
575 // if (!h.add(p, 3)) {
576 // return false;
577 // }
578 // }
579 // assert(*p == 3); // p acts like a pointer to int
581 // N.B. The caller must ensure that no mutating hash table operations occur
582 // between a pair of lookupForAdd() and add() calls. To avoid looking up the
583 // key a second time, the caller may use the more efficient relookupOrAdd()
584 // method. This method reuses part of the hashing computation to more
585 // efficiently insert the key if it has not been added. For example, a
586 // mutation-handling version of the previous example:
588 // HS::AddPtr p = h.lookupForAdd(3);
589 // if (!p) {
590 // call_that_may_mutate_h();
591 // if (!h.relookupOrAdd(p, 3, 3)) {
592 // return false;
593 // }
594 // }
595 // assert(*p == 3);
597 // Note that relookupOrAdd(p,l,t) performs Lookup using |l| and adds the
598 // entry |t|, where the caller ensures match(l,t).
599 using AddPtr = typename Impl::AddPtr;
600 MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) {
601 return mImpl.lookupForAdd(aLookup);
604 // Add an element. Returns false on OOM.
605 template <typename U>
606 MOZ_MUST_USE bool add(AddPtr& aPtr, U&& aU) {
607 return mImpl.add(aPtr, std::forward<U>(aU));
610 // See the comment above lookupForAdd() for details.
611 template <typename U>
612 MOZ_MUST_USE bool relookupOrAdd(AddPtr& aPtr, const Lookup& aLookup, U&& aU) {
613 return mImpl.relookupOrAdd(aPtr, aLookup, std::forward<U>(aU));
616 // -- Removal --------------------------------------------------------------
618 // Lookup and remove the element matching |aLookup|, if present.
619 void remove(const Lookup& aLookup) {
620 if (Ptr p = lookup(aLookup)) {
621 remove(p);
625 // Remove a previously found element (assuming aPtr.found()). The set must
626 // not have been mutated in the interim.
627 void remove(Ptr aPtr) { mImpl.remove(aPtr); }
629 // Remove all keys/values without changing the capacity.
630 void clear() { mImpl.clear(); }
632 // Like clear() followed by compact().
633 void clearAndCompact() { mImpl.clearAndCompact(); }
635 // -- Rekeying -------------------------------------------------------------
637 // Infallibly rekey one entry, if present. Requires that template parameters
638 // T and HashPolicy::Lookup are the same type.
639 void rekeyIfMoved(const Lookup& aOldValue, const T& aNewValue) {
640 if (aOldValue != aNewValue) {
641 rekeyAs(aOldValue, aNewValue, aNewValue);
645 // Infallibly rekey one entry if present, and return whether that happened.
646 bool rekeyAs(const Lookup& aOldLookup, const Lookup& aNewLookup,
647 const T& aNewValue) {
648 if (Ptr p = lookup(aOldLookup)) {
649 mImpl.rekeyAndMaybeRehash(p, aNewLookup, aNewValue);
650 return true;
652 return false;
655 // Infallibly replace the current key at |aPtr| with an equivalent key.
656 // Specifically, both HashPolicy::hash and HashPolicy::match must return
657 // identical results for the new and old key when applied against all
658 // possible matching values.
659 void replaceKey(Ptr aPtr, const T& aNewValue) {
660 MOZ_ASSERT(aPtr.found());
661 MOZ_ASSERT(*aPtr != aNewValue);
662 MOZ_ASSERT(HashPolicy::hash(*aPtr) == HashPolicy::hash(aNewValue));
663 MOZ_ASSERT(HashPolicy::match(*aPtr, aNewValue));
664 const_cast<T&>(*aPtr) = aNewValue;
667 // -- Iteration ------------------------------------------------------------
669 // |iter()| returns an Iterator:
671 // HashSet<int> h;
672 // for (auto iter = h.iter(); !iter.done(); iter.next()) {
673 // int i = iter.get();
674 // }
676 using Iterator = typename Impl::Iterator;
677 Iterator iter() const { return mImpl.iter(); }
679 // |modIter()| returns a ModIterator:
681 // HashSet<int> h;
682 // for (auto iter = h.modIter(); !iter.done(); iter.next()) {
683 // if (iter.get() == 42) {
684 // iter.remove();
685 // }
686 // }
688 // Table resize may occur in ModIterator's destructor.
689 using ModIterator = typename Impl::ModIterator;
690 ModIterator modIter() { return mImpl.modIter(); }
692 // These are similar to Iterator/ModIterator/iter(), but use different
693 // terminology.
694 using Range = typename Impl::Range;
695 using Enum = typename Impl::Enum;
696 Range all() const { return mImpl.all(); }
699 //---------------------------------------------------------------------------
700 // Hash Policy
701 //---------------------------------------------------------------------------
703 // A hash policy |HP| for a hash table with key-type |Key| must provide:
705 // - a type |HP::Lookup| to use to lookup table entries;
707 // - a static member function |HP::hash| that hashes lookup values:
709 // static mozilla::HashNumber hash(const Lookup&);
711 // - a static member function |HP::match| that tests equality of key and
712 // lookup values:
714 // static bool match(const Key&, const Lookup&);
716 // Normally, Lookup = Key. In general, though, different values and types of
717 // values can be used to lookup and store. If a Lookup value |l| is not equal
718 // to the added Key value |k|, the user must ensure that |HP::match(k,l)| is
719 // true. E.g.:
721 // mozilla::HashSet<Key, HP>::AddPtr p = h.lookup(l);
722 // if (!p) {
723 // assert(HP::match(k, l)); // must hold
724 // h.add(p, k);
725 // }
727 // A pointer hashing policy that uses HashGeneric() to create good hashes for
728 // pointers. Note that we don't shift out the lowest k bits because we don't
729 // want to assume anything about the alignment of the pointers.
730 template <typename Key>
731 struct PointerHasher {
732 using Lookup = Key;
734 static HashNumber hash(const Lookup& aLookup) {
735 size_t word = reinterpret_cast<size_t>(aLookup);
736 return HashGeneric(word);
739 static bool match(const Key& aKey, const Lookup& aLookup) {
740 return aKey == aLookup;
743 static void rekey(Key& aKey, const Key& aNewKey) { aKey = aNewKey; }
746 // The default hash policy, which only works with integers.
747 template <class Key>
748 struct DefaultHasher {
749 using Lookup = Key;
751 static HashNumber hash(const Lookup& aLookup) {
752 // Just convert the integer to a HashNumber and use that as is. (This
753 // discards the high 32-bits of 64-bit integers!) ScrambleHashCode() is
754 // subsequently called on the value to improve the distribution.
755 return aLookup;
758 static bool match(const Key& aKey, const Lookup& aLookup) {
759 // Use builtin or overloaded operator==.
760 return aKey == aLookup;
763 static void rekey(Key& aKey, const Key& aNewKey) { aKey = aNewKey; }
766 // A DefaultHasher specialization for pointers.
767 template <class T>
768 struct DefaultHasher<T*> : PointerHasher<T*> {};
770 // A DefaultHasher specialization for mozilla::UniquePtr.
771 template <class T, class D>
772 struct DefaultHasher<UniquePtr<T, D>> {
773 using Key = UniquePtr<T, D>;
774 using Lookup = Key;
775 using PtrHasher = PointerHasher<T*>;
777 static HashNumber hash(const Lookup& aLookup) {
778 return PtrHasher::hash(aLookup.get());
781 static bool match(const Key& aKey, const Lookup& aLookup) {
782 return PtrHasher::match(aKey.get(), aLookup.get());
785 static void rekey(UniquePtr<T, D>& aKey, UniquePtr<T, D>&& aNewKey) {
786 aKey = std::move(aNewKey);
790 // A DefaultHasher specialization for doubles.
791 template <>
792 struct DefaultHasher<double> {
793 using Key = double;
794 using Lookup = Key;
796 static HashNumber hash(const Lookup& aLookup) {
797 // Just xor the high bits with the low bits, and then treat the bits of the
798 // result as a uint32_t.
799 static_assert(sizeof(HashNumber) == 4,
800 "subsequent code assumes a four-byte hash");
801 uint64_t u = BitwiseCast<uint64_t>(aLookup);
802 return HashNumber(u ^ (u >> 32));
805 static bool match(const Key& aKey, const Lookup& aLookup) {
806 return BitwiseCast<uint64_t>(aKey) == BitwiseCast<uint64_t>(aLookup);
810 // A DefaultHasher specialization for floats.
811 template <>
812 struct DefaultHasher<float> {
813 using Key = float;
814 using Lookup = Key;
816 static HashNumber hash(const Lookup& aLookup) {
817 // Just use the value as if its bits form an integer. ScrambleHashCode() is
818 // subsequently called on the value to improve the distribution.
819 static_assert(sizeof(HashNumber) == 4,
820 "subsequent code assumes a four-byte hash");
821 return HashNumber(BitwiseCast<uint32_t>(aLookup));
824 static bool match(const Key& aKey, const Lookup& aLookup) {
825 return BitwiseCast<uint32_t>(aKey) == BitwiseCast<uint32_t>(aLookup);
829 // A hash policy for C strings.
830 struct CStringHasher {
831 using Key = const char*;
832 using Lookup = const char*;
834 static HashNumber hash(const Lookup& aLookup) { return HashString(aLookup); }
836 static bool match(const Key& aKey, const Lookup& aLookup) {
837 return strcmp(aKey, aLookup) == 0;
841 //---------------------------------------------------------------------------
842 // Fallible Hashing Interface
843 //---------------------------------------------------------------------------
845 // Most of the time generating a hash code is infallible so this class provides
846 // default methods that always succeed. Specialize this class for your own hash
847 // policy to provide fallible hashing.
849 // This is used by MovableCellHasher to handle the fact that generating a unique
850 // ID for cell pointer may fail due to OOM.
851 template <typename HashPolicy>
852 struct FallibleHashMethods {
853 // Return true if a hashcode is already available for its argument. Once
854 // this returns true for a specific argument it must continue to do so.
855 template <typename Lookup>
856 static bool hasHash(Lookup&& aLookup) {
857 return true;
860 // Fallible method to ensure a hashcode exists for its argument and create
861 // one if not. Returns false on error, e.g. out of memory.
862 template <typename Lookup>
863 static bool ensureHash(Lookup&& aLookup) {
864 return true;
868 template <typename HashPolicy, typename Lookup>
869 static bool HasHash(Lookup&& aLookup) {
870 return FallibleHashMethods<typename HashPolicy::Base>::hasHash(
871 std::forward<Lookup>(aLookup));
874 template <typename HashPolicy, typename Lookup>
875 static bool EnsureHash(Lookup&& aLookup) {
876 return FallibleHashMethods<typename HashPolicy::Base>::ensureHash(
877 std::forward<Lookup>(aLookup));
880 //---------------------------------------------------------------------------
881 // Implementation Details (HashMapEntry, HashTableEntry, HashTable)
882 //---------------------------------------------------------------------------
884 // Both HashMap and HashSet are implemented by a single HashTable that is even
885 // more heavily parameterized than the other two. This leaves HashTable gnarly
886 // and extremely coupled to HashMap and HashSet; thus code should not use
887 // HashTable directly.
889 template <class Key, class Value>
890 class HashMapEntry {
891 Key key_;
892 Value value_;
894 template <class, class, class>
895 friend class detail::HashTable;
896 template <class>
897 friend class detail::HashTableEntry;
898 template <class, class, class, class>
899 friend class HashMap;
901 public:
902 template <typename KeyInput, typename ValueInput>
903 HashMapEntry(KeyInput&& aKey, ValueInput&& aValue)
904 : key_(std::forward<KeyInput>(aKey)),
905 value_(std::forward<ValueInput>(aValue)) {}
907 HashMapEntry(HashMapEntry&& aRhs) = default;
908 HashMapEntry& operator=(HashMapEntry&& aRhs) = default;
910 using KeyType = Key;
911 using ValueType = Value;
913 const Key& key() const { return key_; }
915 // Use this method with caution! If the key is changed such that its hash
916 // value also changes, the map will be left in an invalid state.
917 Key& mutableKey() { return key_; }
919 const Value& value() const { return value_; }
920 Value& value() { return value_; }
922 private:
923 HashMapEntry(const HashMapEntry&) = delete;
924 void operator=(const HashMapEntry&) = delete;
927 namespace detail {
929 template <class T, class HashPolicy, class AllocPolicy>
930 class HashTable;
932 template <typename T>
933 class EntrySlot;
935 template <typename T>
936 class HashTableEntry {
937 private:
938 using NonConstT = std::remove_const_t<T>;
940 // Instead of having a hash table entry store that looks like this:
942 // +--------+--------+--------+--------+
943 // | entry0 | entry1 | .... | entryN |
944 // +--------+--------+--------+--------+
946 // where the entries contained their cached hash code, we're going to lay out
947 // the entry store thusly:
949 // +-------+-------+-------+-------+--------+--------+--------+--------+
950 // | hash0 | hash1 | ... | hashN | entry0 | entry1 | .... | entryN |
951 // +-------+-------+-------+-------+--------+--------+--------+--------+
953 // with all the cached hashes prior to the actual entries themselves.
955 // We do this because implementing the first strategy requires us to make
956 // HashTableEntry look roughly like:
958 // template <typename T>
959 // class HashTableEntry {
960 // HashNumber mKeyHash;
961 // T mValue;
962 // };
964 // The problem with this setup is that, depending on the layout of `T`, there
965 // may be platform ABI-mandated padding between `mKeyHash` and the first
966 // member of `T`. This ABI-mandated padding is wasted space, and can be
967 // surprisingly common, e.g. when `T` is a single pointer on 64-bit platforms.
968 // In such cases, we're throwing away a quarter of our entry store on padding,
969 // which is undesirable.
971 // The second layout above, namely:
973 // +-------+-------+-------+-------+--------+--------+--------+--------+
974 // | hash0 | hash1 | ... | hashN | entry0 | entry1 | .... | entryN |
975 // +-------+-------+-------+-------+--------+--------+--------+--------+
977 // means there is no wasted space between the hashes themselves, and no wasted
978 // space between the entries themselves. However, we would also like there to
979 // be no gap between the last hash and the first entry. The memory allocator
980 // guarantees the alignment of the start of the hashes. The use of a
981 // power-of-two capacity of at least 4 guarantees that the alignment of the
982 // *end* of the hash array is no less than the alignment of the start.
983 // Finally, the static_asserts here guarantee that the entries themselves
984 // don't need to be any more aligned than the alignment of the entry store
985 // itself.
987 // This assertion is safe for 32-bit builds because on both Windows and Linux
988 // (including Android), the minimum alignment for allocations larger than 8
989 // bytes is 8 bytes, and the actual data for entries in our entry store is
990 // guaranteed to have that alignment as well, thanks to the power-of-two
991 // number of cached hash values stored prior to the entry data.
993 // The allocation policy must allocate a table with at least this much
994 // alignment.
995 static constexpr size_t kMinimumAlignment = 8;
997 static_assert(alignof(HashNumber) <= kMinimumAlignment,
998 "[N*2 hashes, N*2 T values] allocation's alignment must be "
999 "enough to align each hash");
1000 static_assert(alignof(NonConstT) <= 2 * sizeof(HashNumber),
1001 "subsequent N*2 T values must not require more than an even "
1002 "number of HashNumbers provides");
1004 static const HashNumber sFreeKey = 0;
1005 static const HashNumber sRemovedKey = 1;
1006 static const HashNumber sCollisionBit = 1;
1008 alignas(NonConstT) unsigned char mValueData[sizeof(NonConstT)];
1010 private:
1011 template <class, class, class>
1012 friend class HashTable;
1013 template <typename>
1014 friend class EntrySlot;
1016 // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
1017 // -Werror compile error) to reinterpret_cast<> |mValueData| to |T*|, even
1018 // through |void*|. Placing the latter cast in these separate functions
1019 // breaks the chain such that affected GCC versions no longer warn/error.
1020 void* rawValuePtr() { return mValueData; }
1022 static bool isLiveHash(HashNumber hash) { return hash > sRemovedKey; }
1024 HashTableEntry(const HashTableEntry&) = delete;
1025 void operator=(const HashTableEntry&) = delete;
1027 NonConstT* valuePtr() { return reinterpret_cast<NonConstT*>(rawValuePtr()); }
1029 void destroyStoredT() {
1030 NonConstT* ptr = valuePtr();
1031 ptr->~T();
1032 MOZ_MAKE_MEM_UNDEFINED(ptr, sizeof(*ptr));
1035 public:
1036 HashTableEntry() = default;
1038 ~HashTableEntry() { MOZ_MAKE_MEM_UNDEFINED(this, sizeof(*this)); }
1040 void destroy() { destroyStoredT(); }
1042 void swap(HashTableEntry* aOther, bool aIsLive) {
1043 // This allows types to use Argument-Dependent-Lookup, and thus use a custom
1044 // std::swap, which is needed by types like JS::Heap and such.
1045 using std::swap;
1047 if (this == aOther) {
1048 return;
1050 if (aIsLive) {
1051 swap(*valuePtr(), *aOther->valuePtr());
1052 } else {
1053 *aOther->valuePtr() = std::move(*valuePtr());
1054 destroy();
1058 T& get() { return *valuePtr(); }
1060 NonConstT& getMutable() { return *valuePtr(); }
1063 // A slot represents a cached hash value and its associated entry stored
1064 // in the hash table. These two things are not stored in contiguous memory.
1065 template <class T>
1066 class EntrySlot {
1067 using NonConstT = std::remove_const_t<T>;
1069 using Entry = HashTableEntry<T>;
1071 Entry* mEntry;
1072 HashNumber* mKeyHash;
1074 template <class, class, class>
1075 friend class HashTable;
1077 EntrySlot(Entry* aEntry, HashNumber* aKeyHash)
1078 : mEntry(aEntry), mKeyHash(aKeyHash) {}
1080 public:
1081 static bool isLiveHash(HashNumber hash) { return hash > Entry::sRemovedKey; }
1083 EntrySlot(const EntrySlot&) = default;
1084 EntrySlot(EntrySlot&& aOther) = default;
1086 EntrySlot& operator=(const EntrySlot&) = default;
1087 EntrySlot& operator=(EntrySlot&&) = default;
1089 bool operator==(const EntrySlot& aRhs) const { return mEntry == aRhs.mEntry; }
1091 bool operator<(const EntrySlot& aRhs) const { return mEntry < aRhs.mEntry; }
1093 EntrySlot& operator++() {
1094 ++mEntry;
1095 ++mKeyHash;
1096 return *this;
1099 void destroy() { mEntry->destroy(); }
1101 void swap(EntrySlot& aOther) {
1102 mEntry->swap(aOther.mEntry, aOther.isLive());
1103 std::swap(*mKeyHash, *aOther.mKeyHash);
1106 T& get() const { return mEntry->get(); }
1108 NonConstT& getMutable() { return mEntry->getMutable(); }
1110 bool isFree() const { return *mKeyHash == Entry::sFreeKey; }
1112 void clearLive() {
1113 MOZ_ASSERT(isLive());
1114 *mKeyHash = Entry::sFreeKey;
1115 mEntry->destroyStoredT();
1118 void clear() {
1119 if (isLive()) {
1120 mEntry->destroyStoredT();
1122 MOZ_MAKE_MEM_UNDEFINED(mEntry, sizeof(*mEntry));
1123 *mKeyHash = Entry::sFreeKey;
1126 bool isRemoved() const { return *mKeyHash == Entry::sRemovedKey; }
1128 void removeLive() {
1129 MOZ_ASSERT(isLive());
1130 *mKeyHash = Entry::sRemovedKey;
1131 mEntry->destroyStoredT();
1134 bool isLive() const { return isLiveHash(*mKeyHash); }
1136 void setCollision() {
1137 MOZ_ASSERT(isLive());
1138 *mKeyHash |= Entry::sCollisionBit;
1140 void unsetCollision() { *mKeyHash &= ~Entry::sCollisionBit; }
1141 bool hasCollision() const { return *mKeyHash & Entry::sCollisionBit; }
1142 bool matchHash(HashNumber hn) {
1143 return (*mKeyHash & ~Entry::sCollisionBit) == hn;
1145 HashNumber getKeyHash() const { return *mKeyHash & ~Entry::sCollisionBit; }
1147 template <typename... Args>
1148 void setLive(HashNumber aHashNumber, Args&&... aArgs) {
1149 MOZ_ASSERT(!isLive());
1150 *mKeyHash = aHashNumber;
1151 new (KnownNotNull, mEntry->valuePtr()) T(std::forward<Args>(aArgs)...);
1152 MOZ_ASSERT(isLive());
1155 Entry* toEntry() const { return mEntry; }
1158 template <class T, class HashPolicy, class AllocPolicy>
1159 class HashTable : private AllocPolicy {
1160 friend class mozilla::ReentrancyGuard;
1162 using NonConstT = std::remove_const_t<T>;
1163 using Key = typename HashPolicy::KeyType;
1164 using Lookup = typename HashPolicy::Lookup;
1166 public:
1167 using Entry = HashTableEntry<T>;
1168 using Slot = EntrySlot<T>;
1170 template <typename F>
1171 static void forEachSlot(char* aTable, uint32_t aCapacity, F&& f) {
1172 auto hashes = reinterpret_cast<HashNumber*>(aTable);
1173 auto entries = reinterpret_cast<Entry*>(&hashes[aCapacity]);
1174 Slot slot(entries, hashes);
1175 for (size_t i = 0; i < size_t(aCapacity); ++i) {
1176 f(slot);
1177 ++slot;
1181 // A nullable pointer to a hash table element. A Ptr |p| can be tested
1182 // either explicitly |if (p.found()) p->...| or using boolean conversion
1183 // |if (p) p->...|. Ptr objects must not be used after any mutating hash
1184 // table operations unless |generation()| is tested.
1185 class Ptr {
1186 friend class HashTable;
1188 Slot mSlot;
1189 #ifdef DEBUG
1190 const HashTable* mTable;
1191 Generation mGeneration;
1192 #endif
1194 protected:
1195 Ptr(Slot aSlot, const HashTable& aTable)
1196 : mSlot(aSlot)
1197 #ifdef DEBUG
1199 mTable(&aTable),
1200 mGeneration(aTable.generation())
1201 #endif
1205 // This constructor is used only by AddPtr() within lookupForAdd().
1206 explicit Ptr(const HashTable& aTable)
1207 : mSlot(nullptr, nullptr)
1208 #ifdef DEBUG
1210 mTable(&aTable),
1211 mGeneration(aTable.generation())
1212 #endif
1216 bool isValid() const { return !!mSlot.toEntry(); }
1218 public:
1219 Ptr()
1220 : mSlot(nullptr, nullptr)
1221 #ifdef DEBUG
1223 mTable(nullptr),
1224 mGeneration(0)
1225 #endif
1229 bool found() const {
1230 if (!isValid()) {
1231 return false;
1233 #ifdef DEBUG
1234 MOZ_ASSERT(mGeneration == mTable->generation());
1235 #endif
1236 return mSlot.isLive();
1239 explicit operator bool() const { return found(); }
1241 bool operator==(const Ptr& aRhs) const {
1242 MOZ_ASSERT(found() && aRhs.found());
1243 return mSlot == aRhs.mSlot;
1246 bool operator!=(const Ptr& aRhs) const {
1247 #ifdef DEBUG
1248 MOZ_ASSERT(mGeneration == mTable->generation());
1249 #endif
1250 return !(*this == aRhs);
1253 T& operator*() const {
1254 #ifdef DEBUG
1255 MOZ_ASSERT(found());
1256 MOZ_ASSERT(mGeneration == mTable->generation());
1257 #endif
1258 return mSlot.get();
1261 T* operator->() const {
1262 #ifdef DEBUG
1263 MOZ_ASSERT(found());
1264 MOZ_ASSERT(mGeneration == mTable->generation());
1265 #endif
1266 return &mSlot.get();
1270 // A Ptr that can be used to add a key after a failed lookup.
1271 class AddPtr : public Ptr {
1272 friend class HashTable;
1274 HashNumber mKeyHash;
1275 #ifdef DEBUG
1276 uint64_t mMutationCount;
1277 #endif
1279 AddPtr(Slot aSlot, const HashTable& aTable, HashNumber aHashNumber)
1280 : Ptr(aSlot, aTable),
1281 mKeyHash(aHashNumber)
1282 #ifdef DEBUG
1284 mMutationCount(aTable.mMutationCount)
1285 #endif
1289 // This constructor is used when lookupForAdd() is performed on a table
1290 // lacking entry storage; it leaves mSlot null but initializes everything
1291 // else.
1292 AddPtr(const HashTable& aTable, HashNumber aHashNumber)
1293 : Ptr(aTable),
1294 mKeyHash(aHashNumber)
1295 #ifdef DEBUG
1297 mMutationCount(aTable.mMutationCount)
1298 #endif
1300 MOZ_ASSERT(isLive());
1303 bool isLive() const { return isLiveHash(mKeyHash); }
1305 public:
1306 AddPtr() : mKeyHash(0) {}
1309 // A hash table iterator that (mostly) doesn't allow table modifications.
1310 // As with Ptr/AddPtr, Iterator objects must not be used after any mutating
1311 // hash table operation unless the |generation()| is tested.
1312 class Iterator {
1313 void moveToNextLiveEntry() {
1314 while (++mCur < mEnd && !mCur.isLive()) {
1315 continue;
1319 protected:
1320 friend class HashTable;
1322 explicit Iterator(const HashTable& aTable)
1323 : mCur(aTable.slotForIndex(0)),
1324 mEnd(aTable.slotForIndex(aTable.capacity()))
1325 #ifdef DEBUG
1327 mTable(aTable),
1328 mMutationCount(aTable.mMutationCount),
1329 mGeneration(aTable.generation()),
1330 mValidEntry(true)
1331 #endif
1333 if (!done() && !mCur.isLive()) {
1334 moveToNextLiveEntry();
1338 Slot mCur;
1339 Slot mEnd;
1340 #ifdef DEBUG
1341 const HashTable& mTable;
1342 uint64_t mMutationCount;
1343 Generation mGeneration;
1344 bool mValidEntry;
1345 #endif
1347 public:
1348 bool done() const {
1349 MOZ_ASSERT(mGeneration == mTable.generation());
1350 MOZ_ASSERT(mMutationCount == mTable.mMutationCount);
1351 return mCur == mEnd;
1354 T& get() const {
1355 MOZ_ASSERT(!done());
1356 MOZ_ASSERT(mValidEntry);
1357 MOZ_ASSERT(mGeneration == mTable.generation());
1358 MOZ_ASSERT(mMutationCount == mTable.mMutationCount);
1359 return mCur.get();
1362 void next() {
1363 MOZ_ASSERT(!done());
1364 MOZ_ASSERT(mGeneration == mTable.generation());
1365 MOZ_ASSERT(mMutationCount == mTable.mMutationCount);
1366 moveToNextLiveEntry();
1367 #ifdef DEBUG
1368 mValidEntry = true;
1369 #endif
1373 // A hash table iterator that permits modification, removal and rekeying.
1374 // Since rehashing when elements were removed during enumeration would be
1375 // bad, it is postponed until the ModIterator is destructed. Since the
1376 // ModIterator's destructor touches the hash table, the user must ensure
1377 // that the hash table is still alive when the destructor runs.
1378 class ModIterator : public Iterator {
1379 friend class HashTable;
1381 HashTable& mTable;
1382 bool mRekeyed;
1383 bool mRemoved;
1385 // ModIterator is movable but not copyable.
1386 ModIterator(const ModIterator&) = delete;
1387 void operator=(const ModIterator&) = delete;
1389 protected:
1390 explicit ModIterator(HashTable& aTable)
1391 : Iterator(aTable), mTable(aTable), mRekeyed(false), mRemoved(false) {}
1393 public:
1394 MOZ_IMPLICIT ModIterator(ModIterator&& aOther)
1395 : Iterator(aOther),
1396 mTable(aOther.mTable),
1397 mRekeyed(aOther.mRekeyed),
1398 mRemoved(aOther.mRemoved) {
1399 aOther.mRekeyed = false;
1400 aOther.mRemoved = false;
1403 // Removes the current element from the table, leaving |get()|
1404 // invalid until the next call to |next()|.
1405 void remove() {
1406 mTable.remove(this->mCur);
1407 mRemoved = true;
1408 #ifdef DEBUG
1409 this->mValidEntry = false;
1410 this->mMutationCount = mTable.mMutationCount;
1411 #endif
1414 NonConstT& getMutable() {
1415 MOZ_ASSERT(!this->done());
1416 MOZ_ASSERT(this->mValidEntry);
1417 MOZ_ASSERT(this->mGeneration == this->Iterator::mTable.generation());
1418 MOZ_ASSERT(this->mMutationCount == this->Iterator::mTable.mMutationCount);
1419 return this->mCur.getMutable();
1422 // Removes the current element and re-inserts it into the table with
1423 // a new key at the new Lookup position. |get()| is invalid after
1424 // this operation until the next call to |next()|.
1425 void rekey(const Lookup& l, const Key& k) {
1426 MOZ_ASSERT(&k != &HashPolicy::getKey(this->mCur.get()));
1427 Ptr p(this->mCur, mTable);
1428 mTable.rekeyWithoutRehash(p, l, k);
1429 mRekeyed = true;
1430 #ifdef DEBUG
1431 this->mValidEntry = false;
1432 this->mMutationCount = mTable.mMutationCount;
1433 #endif
1436 void rekey(const Key& k) { rekey(k, k); }
1438 // Potentially rehashes the table.
1439 ~ModIterator() {
1440 if (mRekeyed) {
1441 mTable.mGen++;
1442 mTable.infallibleRehashIfOverloaded();
1445 if (mRemoved) {
1446 mTable.compact();
1451 // Range is similar to Iterator, but uses different terminology.
1452 class Range {
1453 friend class HashTable;
1455 Iterator mIter;
1457 protected:
1458 explicit Range(const HashTable& table) : mIter(table) {}
1460 public:
1461 bool empty() const { return mIter.done(); }
1463 T& front() const { return mIter.get(); }
1465 void popFront() { return mIter.next(); }
1468 // Enum is similar to ModIterator, but uses different terminology.
1469 class Enum {
1470 ModIterator mIter;
1472 // Enum is movable but not copyable.
1473 Enum(const Enum&) = delete;
1474 void operator=(const Enum&) = delete;
1476 public:
1477 template <class Map>
1478 explicit Enum(Map& map) : mIter(map.mImpl) {}
1480 MOZ_IMPLICIT Enum(Enum&& other) : mIter(std::move(other.mIter)) {}
1482 bool empty() const { return mIter.done(); }
1484 T& front() const { return mIter.get(); }
1486 void popFront() { return mIter.next(); }
1488 void removeFront() { mIter.remove(); }
1490 NonConstT& mutableFront() { return mIter.getMutable(); }
1492 void rekeyFront(const Lookup& aLookup, const Key& aKey) {
1493 mIter.rekey(aLookup, aKey);
1496 void rekeyFront(const Key& aKey) { mIter.rekey(aKey); }
1499 // HashTable is movable
1500 HashTable(HashTable&& aRhs) : AllocPolicy(std::move(aRhs)) { moveFrom(aRhs); }
1501 HashTable& operator=(HashTable&& aRhs) {
1502 MOZ_ASSERT(this != &aRhs, "self-move assignment is prohibited");
1503 if (mTable) {
1504 destroyTable(*this, mTable, capacity());
1506 AllocPolicy::operator=(std::move(aRhs));
1507 moveFrom(aRhs);
1508 return *this;
1511 private:
1512 void moveFrom(HashTable& aRhs) {
1513 mGen = aRhs.mGen;
1514 mHashShift = aRhs.mHashShift;
1515 mTable = aRhs.mTable;
1516 mEntryCount = aRhs.mEntryCount;
1517 mRemovedCount = aRhs.mRemovedCount;
1518 #ifdef DEBUG
1519 mMutationCount = aRhs.mMutationCount;
1520 mEntered = aRhs.mEntered;
1521 #endif
1522 aRhs.mTable = nullptr;
1523 aRhs.clearAndCompact();
1526 // HashTable is not copyable or assignable
1527 HashTable(const HashTable&) = delete;
1528 void operator=(const HashTable&) = delete;
1530 static const uint32_t CAP_BITS = 30;
1532 public:
1533 uint64_t mGen : 56; // entry storage generation number
1534 uint64_t mHashShift : 8; // multiplicative hash shift
1535 char* mTable; // entry storage
1536 uint32_t mEntryCount; // number of entries in mTable
1537 uint32_t mRemovedCount; // removed entry sentinels in mTable
1539 #ifdef DEBUG
1540 uint64_t mMutationCount;
1541 mutable bool mEntered;
1542 #endif
1544 // The default initial capacity is 32 (enough to hold 16 elements), but it
1545 // can be as low as 4.
1546 static const uint32_t sDefaultLen = 16;
1547 static const uint32_t sMinCapacity = 4;
1548 // See the comments in HashTableEntry about this value.
1549 static_assert(sMinCapacity >= 4, "too-small sMinCapacity breaks assumptions");
1550 static const uint32_t sMaxInit = 1u << (CAP_BITS - 1);
1551 static const uint32_t sMaxCapacity = 1u << CAP_BITS;
1553 // Hash-table alpha is conceptually a fraction, but to avoid floating-point
1554 // math we implement it as a ratio of integers.
1555 static const uint8_t sAlphaDenominator = 4;
1556 static const uint8_t sMinAlphaNumerator = 1; // min alpha: 1/4
1557 static const uint8_t sMaxAlphaNumerator = 3; // max alpha: 3/4
1559 static const HashNumber sFreeKey = Entry::sFreeKey;
1560 static const HashNumber sRemovedKey = Entry::sRemovedKey;
1561 static const HashNumber sCollisionBit = Entry::sCollisionBit;
1563 static uint32_t bestCapacity(uint32_t aLen) {
1564 static_assert(
1565 (sMaxInit * sAlphaDenominator) / sAlphaDenominator == sMaxInit,
1566 "multiplication in numerator below could overflow");
1567 static_assert(
1568 sMaxInit * sAlphaDenominator <= UINT32_MAX - sMaxAlphaNumerator,
1569 "numerator calculation below could potentially overflow");
1571 // Callers should ensure this is true.
1572 MOZ_ASSERT(aLen <= sMaxInit);
1574 // Compute the smallest capacity allowing |aLen| elements to be
1575 // inserted without rehashing: ceil(aLen / max-alpha). (Ceiling
1576 // integral division: <http://stackoverflow.com/a/2745086>.)
1577 uint32_t capacity = (aLen * sAlphaDenominator + sMaxAlphaNumerator - 1) /
1578 sMaxAlphaNumerator;
1579 capacity = (capacity < sMinCapacity) ? sMinCapacity : RoundUpPow2(capacity);
1581 MOZ_ASSERT(capacity >= aLen);
1582 MOZ_ASSERT(capacity <= sMaxCapacity);
1584 return capacity;
1587 static uint32_t hashShift(uint32_t aLen) {
1588 // Reject all lengths whose initial computed capacity would exceed
1589 // sMaxCapacity. Round that maximum aLen down to the nearest power of two
1590 // for speedier code.
1591 if (MOZ_UNLIKELY(aLen > sMaxInit)) {
1592 MOZ_CRASH("initial length is too large");
1595 return kHashNumberBits - mozilla::CeilingLog2(bestCapacity(aLen));
1598 static bool isLiveHash(HashNumber aHash) { return Entry::isLiveHash(aHash); }
1600 static HashNumber prepareHash(const Lookup& aLookup) {
1601 HashNumber keyHash = ScrambleHashCode(HashPolicy::hash(aLookup));
1603 // Avoid reserved hash codes.
1604 if (!isLiveHash(keyHash)) {
1605 keyHash -= (sRemovedKey + 1);
1607 return keyHash & ~sCollisionBit;
1610 enum FailureBehavior { DontReportFailure = false, ReportFailure = true };
1612 // Fake a struct that we're going to alloc. See the comments in
1613 // HashTableEntry about how the table is laid out, and why it's safe.
1614 struct FakeSlot {
1615 unsigned char c[sizeof(HashNumber) + sizeof(typename Entry::NonConstT)];
1618 static char* createTable(AllocPolicy& aAllocPolicy, uint32_t aCapacity,
1619 FailureBehavior aReportFailure = ReportFailure) {
1620 FakeSlot* fake =
1621 aReportFailure
1622 ? aAllocPolicy.template pod_malloc<FakeSlot>(aCapacity)
1623 : aAllocPolicy.template maybe_pod_malloc<FakeSlot>(aCapacity);
1625 MOZ_ASSERT((reinterpret_cast<uintptr_t>(fake) % Entry::kMinimumAlignment) ==
1628 char* table = reinterpret_cast<char*>(fake);
1629 if (table) {
1630 forEachSlot(table, aCapacity, [&](Slot& slot) {
1631 *slot.mKeyHash = sFreeKey;
1632 new (KnownNotNull, slot.toEntry()) Entry();
1635 return table;
1638 static void destroyTable(AllocPolicy& aAllocPolicy, char* aOldTable,
1639 uint32_t aCapacity) {
1640 forEachSlot(aOldTable, aCapacity, [&](const Slot& slot) {
1641 if (slot.isLive()) {
1642 slot.toEntry()->destroyStoredT();
1645 freeTable(aAllocPolicy, aOldTable, aCapacity);
1648 static void freeTable(AllocPolicy& aAllocPolicy, char* aOldTable,
1649 uint32_t aCapacity) {
1650 FakeSlot* fake = reinterpret_cast<FakeSlot*>(aOldTable);
1651 aAllocPolicy.free_(fake, aCapacity);
1654 public:
1655 HashTable(AllocPolicy aAllocPolicy, uint32_t aLen)
1656 : AllocPolicy(std::move(aAllocPolicy)),
1657 mGen(0),
1658 mHashShift(hashShift(aLen)),
1659 mTable(nullptr),
1660 mEntryCount(0),
1661 mRemovedCount(0)
1662 #ifdef DEBUG
1664 mMutationCount(0),
1665 mEntered(false)
1666 #endif
1670 explicit HashTable(AllocPolicy aAllocPolicy)
1671 : HashTable(aAllocPolicy, sDefaultLen) {}
1673 ~HashTable() {
1674 if (mTable) {
1675 destroyTable(*this, mTable, capacity());
1679 private:
1680 HashNumber hash1(HashNumber aHash0) const { return aHash0 >> mHashShift; }
1682 struct DoubleHash {
1683 HashNumber mHash2;
1684 HashNumber mSizeMask;
1687 DoubleHash hash2(HashNumber aCurKeyHash) const {
1688 uint32_t sizeLog2 = kHashNumberBits - mHashShift;
1689 DoubleHash dh = {((aCurKeyHash << sizeLog2) >> mHashShift) | 1,
1690 (HashNumber(1) << sizeLog2) - 1};
1691 return dh;
1694 static HashNumber applyDoubleHash(HashNumber aHash1,
1695 const DoubleHash& aDoubleHash) {
1696 return WrappingSubtract(aHash1, aDoubleHash.mHash2) & aDoubleHash.mSizeMask;
1699 static MOZ_ALWAYS_INLINE bool match(T& aEntry, const Lookup& aLookup) {
1700 return HashPolicy::match(HashPolicy::getKey(aEntry), aLookup);
1703 enum LookupReason { ForNonAdd, ForAdd };
1705 Slot slotForIndex(HashNumber aIndex) const {
1706 auto hashes = reinterpret_cast<HashNumber*>(mTable);
1707 auto entries = reinterpret_cast<Entry*>(&hashes[capacity()]);
1708 return Slot(&entries[aIndex], &hashes[aIndex]);
1711 // Warning: in order for readonlyThreadsafeLookup() to be safe this
1712 // function must not modify the table in any way when Reason==ForNonAdd.
1713 template <LookupReason Reason>
1714 MOZ_ALWAYS_INLINE Slot lookup(const Lookup& aLookup,
1715 HashNumber aKeyHash) const {
1716 MOZ_ASSERT(isLiveHash(aKeyHash));
1717 MOZ_ASSERT(!(aKeyHash & sCollisionBit));
1718 MOZ_ASSERT(mTable);
1720 // Compute the primary hash address.
1721 HashNumber h1 = hash1(aKeyHash);
1722 Slot slot = slotForIndex(h1);
1724 // Miss: return space for a new entry.
1725 if (slot.isFree()) {
1726 return slot;
1729 // Hit: return entry.
1730 if (slot.matchHash(aKeyHash) && match(slot.get(), aLookup)) {
1731 return slot;
1734 // Collision: double hash.
1735 DoubleHash dh = hash2(aKeyHash);
1737 // Save the first removed entry pointer so we can recycle later.
1738 Maybe<Slot> firstRemoved;
1740 while (true) {
1741 if (Reason == ForAdd && !firstRemoved) {
1742 if (MOZ_UNLIKELY(slot.isRemoved())) {
1743 firstRemoved.emplace(slot);
1744 } else {
1745 slot.setCollision();
1749 h1 = applyDoubleHash(h1, dh);
1751 slot = slotForIndex(h1);
1752 if (slot.isFree()) {
1753 return firstRemoved.refOr(slot);
1756 if (slot.matchHash(aKeyHash) && match(slot.get(), aLookup)) {
1757 return slot;
1762 // This is a copy of lookup() hardcoded to the assumptions:
1763 // 1. the lookup is for an add;
1764 // 2. the key, whose |keyHash| has been passed, is not in the table.
1765 Slot findNonLiveSlot(HashNumber aKeyHash) {
1766 MOZ_ASSERT(!(aKeyHash & sCollisionBit));
1767 MOZ_ASSERT(mTable);
1769 // We assume 'aKeyHash' has already been distributed.
1771 // Compute the primary hash address.
1772 HashNumber h1 = hash1(aKeyHash);
1773 Slot slot = slotForIndex(h1);
1775 // Miss: return space for a new entry.
1776 if (!slot.isLive()) {
1777 return slot;
1780 // Collision: double hash.
1781 DoubleHash dh = hash2(aKeyHash);
1783 while (true) {
1784 slot.setCollision();
1786 h1 = applyDoubleHash(h1, dh);
1788 slot = slotForIndex(h1);
1789 if (!slot.isLive()) {
1790 return slot;
1795 enum RebuildStatus { NotOverloaded, Rehashed, RehashFailed };
1797 RebuildStatus changeTableSize(
1798 uint32_t newCapacity, FailureBehavior aReportFailure = ReportFailure) {
1799 MOZ_ASSERT(IsPowerOfTwo(newCapacity));
1800 MOZ_ASSERT(!!mTable == !!capacity());
1802 // Look, but don't touch, until we succeed in getting new entry store.
1803 char* oldTable = mTable;
1804 uint32_t oldCapacity = capacity();
1805 uint32_t newLog2 = mozilla::CeilingLog2(newCapacity);
1807 if (MOZ_UNLIKELY(newCapacity > sMaxCapacity)) {
1808 if (aReportFailure) {
1809 this->reportAllocOverflow();
1811 return RehashFailed;
1814 char* newTable = createTable(*this, newCapacity, aReportFailure);
1815 if (!newTable) {
1816 return RehashFailed;
1819 // We can't fail from here on, so update table parameters.
1820 mHashShift = kHashNumberBits - newLog2;
1821 mRemovedCount = 0;
1822 mGen++;
1823 mTable = newTable;
1825 // Copy only live entries, leaving removed ones behind.
1826 forEachSlot(oldTable, oldCapacity, [&](Slot& slot) {
1827 if (slot.isLive()) {
1828 HashNumber hn = slot.getKeyHash();
1829 findNonLiveSlot(hn).setLive(
1830 hn, std::move(const_cast<typename Entry::NonConstT&>(slot.get())));
1833 slot.clear();
1836 // All entries have been destroyed, no need to destroyTable.
1837 freeTable(*this, oldTable, oldCapacity);
1838 return Rehashed;
1841 RebuildStatus rehashIfOverloaded(
1842 FailureBehavior aReportFailure = ReportFailure) {
1843 static_assert(sMaxCapacity <= UINT32_MAX / sMaxAlphaNumerator,
1844 "multiplication below could overflow");
1846 // Note: if capacity() is zero, this will always succeed, which is
1847 // what we want.
1848 bool overloaded = mEntryCount + mRemovedCount >=
1849 capacity() * sMaxAlphaNumerator / sAlphaDenominator;
1851 if (!overloaded) {
1852 return NotOverloaded;
1855 // Succeed if a quarter or more of all entries are removed. Note that this
1856 // always succeeds if capacity() == 0 (i.e. entry storage has not been
1857 // allocated), which is what we want, because it means changeTableSize()
1858 // will allocate the requested capacity rather than doubling it.
1859 bool manyRemoved = mRemovedCount >= (capacity() >> 2);
1860 uint32_t newCapacity = manyRemoved ? rawCapacity() : rawCapacity() * 2;
1861 return changeTableSize(newCapacity, aReportFailure);
1864 void infallibleRehashIfOverloaded() {
1865 if (rehashIfOverloaded(DontReportFailure) == RehashFailed) {
1866 rehashTableInPlace();
1870 void remove(Slot& aSlot) {
1871 MOZ_ASSERT(mTable);
1873 if (aSlot.hasCollision()) {
1874 aSlot.removeLive();
1875 mRemovedCount++;
1876 } else {
1877 aSlot.clearLive();
1879 mEntryCount--;
1880 #ifdef DEBUG
1881 mMutationCount++;
1882 #endif
1885 void shrinkIfUnderloaded() {
1886 static_assert(sMaxCapacity <= UINT32_MAX / sMinAlphaNumerator,
1887 "multiplication below could overflow");
1888 bool underloaded =
1889 capacity() > sMinCapacity &&
1890 mEntryCount <= capacity() * sMinAlphaNumerator / sAlphaDenominator;
1892 if (underloaded) {
1893 (void)changeTableSize(capacity() / 2, DontReportFailure);
1897 // This is identical to changeTableSize(currentSize), but without requiring
1898 // a second table. We do this by recycling the collision bits to tell us if
1899 // the element is already inserted or still waiting to be inserted. Since
1900 // already-inserted elements win any conflicts, we get the same table as we
1901 // would have gotten through random insertion order.
1902 void rehashTableInPlace() {
1903 mRemovedCount = 0;
1904 mGen++;
1905 forEachSlot(mTable, capacity(), [&](Slot& slot) { slot.unsetCollision(); });
1906 for (uint32_t i = 0; i < capacity();) {
1907 Slot src = slotForIndex(i);
1909 if (!src.isLive() || src.hasCollision()) {
1910 ++i;
1911 continue;
1914 HashNumber keyHash = src.getKeyHash();
1915 HashNumber h1 = hash1(keyHash);
1916 DoubleHash dh = hash2(keyHash);
1917 Slot tgt = slotForIndex(h1);
1918 while (true) {
1919 if (!tgt.hasCollision()) {
1920 src.swap(tgt);
1921 tgt.setCollision();
1922 break;
1925 h1 = applyDoubleHash(h1, dh);
1926 tgt = slotForIndex(h1);
1930 // TODO: this algorithm leaves collision bits on *all* elements, even if
1931 // they are on no collision path. We have the option of setting the
1932 // collision bits correctly on a subsequent pass or skipping the rehash
1933 // unless we are totally filled with tombstones: benchmark to find out
1934 // which approach is best.
1937 // Note: |aLookup| may be a reference to a piece of |u|, so this function
1938 // must take care not to use |aLookup| after moving |u|.
1940 // Prefer to use putNewInfallible; this function does not check
1941 // invariants.
1942 template <typename... Args>
1943 void putNewInfallibleInternal(const Lookup& aLookup, Args&&... aArgs) {
1944 MOZ_ASSERT(mTable);
1946 HashNumber keyHash = prepareHash(aLookup);
1947 Slot slot = findNonLiveSlot(keyHash);
1949 if (slot.isRemoved()) {
1950 mRemovedCount--;
1951 keyHash |= sCollisionBit;
1954 slot.setLive(keyHash, std::forward<Args>(aArgs)...);
1955 mEntryCount++;
1956 #ifdef DEBUG
1957 mMutationCount++;
1958 #endif
1961 public:
1962 void clear() {
1963 forEachSlot(mTable, capacity(), [&](Slot& slot) { slot.clear(); });
1964 mRemovedCount = 0;
1965 mEntryCount = 0;
1966 #ifdef DEBUG
1967 mMutationCount++;
1968 #endif
1971 // Resize the table down to the smallest capacity that doesn't overload the
1972 // table. Since we call shrinkIfUnderloaded() on every remove, you only need
1973 // to call this after a bulk removal of items done without calling remove().
1974 void compact() {
1975 if (empty()) {
1976 // Free the entry storage.
1977 freeTable(*this, mTable, capacity());
1978 mGen++;
1979 mHashShift = hashShift(0); // gives minimum capacity on regrowth
1980 mTable = nullptr;
1981 mRemovedCount = 0;
1982 return;
1985 uint32_t bestCapacity = this->bestCapacity(mEntryCount);
1986 MOZ_ASSERT(bestCapacity <= capacity());
1988 if (bestCapacity < capacity()) {
1989 (void)changeTableSize(bestCapacity, DontReportFailure);
1993 void clearAndCompact() {
1994 clear();
1995 compact();
1998 MOZ_MUST_USE bool reserve(uint32_t aLen) {
1999 if (aLen == 0) {
2000 return true;
2003 if (MOZ_UNLIKELY(aLen > sMaxInit)) {
2004 return false;
2007 uint32_t bestCapacity = this->bestCapacity(aLen);
2008 if (bestCapacity <= capacity()) {
2009 return true; // Capacity is already sufficient.
2012 RebuildStatus status = changeTableSize(bestCapacity, ReportFailure);
2013 MOZ_ASSERT(status != NotOverloaded);
2014 return status != RehashFailed;
2017 Iterator iter() const { return Iterator(*this); }
2019 ModIterator modIter() { return ModIterator(*this); }
2021 Range all() const { return Range(*this); }
2023 bool empty() const { return mEntryCount == 0; }
2025 uint32_t count() const { return mEntryCount; }
2027 uint32_t rawCapacity() const { return 1u << (kHashNumberBits - mHashShift); }
2029 uint32_t capacity() const { return mTable ? rawCapacity() : 0; }
2031 Generation generation() const { return Generation(mGen); }
2033 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
2034 return aMallocSizeOf(mTable);
2037 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
2038 return aMallocSizeOf(this) + shallowSizeOfExcludingThis(aMallocSizeOf);
2041 MOZ_ALWAYS_INLINE Ptr readonlyThreadsafeLookup(const Lookup& aLookup) const {
2042 if (empty() || !HasHash<HashPolicy>(aLookup)) {
2043 return Ptr();
2045 HashNumber keyHash = prepareHash(aLookup);
2046 return Ptr(lookup<ForNonAdd>(aLookup, keyHash), *this);
2049 MOZ_ALWAYS_INLINE Ptr lookup(const Lookup& aLookup) const {
2050 ReentrancyGuard g(*this);
2051 return readonlyThreadsafeLookup(aLookup);
2054 MOZ_ALWAYS_INLINE AddPtr lookupForAdd(const Lookup& aLookup) {
2055 ReentrancyGuard g(*this);
2056 if (!EnsureHash<HashPolicy>(aLookup)) {
2057 return AddPtr();
2060 HashNumber keyHash = prepareHash(aLookup);
2062 if (!mTable) {
2063 return AddPtr(*this, keyHash);
2066 // Directly call the constructor in the return statement to avoid
2067 // excess copying when building with Visual Studio 2017.
2068 // See bug 1385181.
2069 return AddPtr(lookup<ForAdd>(aLookup, keyHash), *this, keyHash);
2072 template <typename... Args>
2073 MOZ_MUST_USE bool add(AddPtr& aPtr, Args&&... aArgs) {
2074 ReentrancyGuard g(*this);
2075 MOZ_ASSERT_IF(aPtr.isValid(), mTable);
2076 MOZ_ASSERT_IF(aPtr.isValid(), aPtr.mTable == this);
2077 MOZ_ASSERT(!aPtr.found());
2078 MOZ_ASSERT(!(aPtr.mKeyHash & sCollisionBit));
2080 // Check for error from ensureHash() here.
2081 if (!aPtr.isLive()) {
2082 return false;
2085 MOZ_ASSERT(aPtr.mGeneration == generation());
2086 #ifdef DEBUG
2087 MOZ_ASSERT(aPtr.mMutationCount == mMutationCount);
2088 #endif
2090 if (!aPtr.isValid()) {
2091 MOZ_ASSERT(!mTable && mEntryCount == 0);
2092 uint32_t newCapacity = rawCapacity();
2093 RebuildStatus status = changeTableSize(newCapacity, ReportFailure);
2094 MOZ_ASSERT(status != NotOverloaded);
2095 if (status == RehashFailed) {
2096 return false;
2098 aPtr.mSlot = findNonLiveSlot(aPtr.mKeyHash);
2100 } else if (aPtr.mSlot.isRemoved()) {
2101 // Changing an entry from removed to live does not affect whether we are
2102 // overloaded and can be handled separately.
2103 if (!this->checkSimulatedOOM()) {
2104 return false;
2106 mRemovedCount--;
2107 aPtr.mKeyHash |= sCollisionBit;
2109 } else {
2110 // Preserve the validity of |aPtr.mSlot|.
2111 RebuildStatus status = rehashIfOverloaded();
2112 if (status == RehashFailed) {
2113 return false;
2115 if (status == NotOverloaded && !this->checkSimulatedOOM()) {
2116 return false;
2118 if (status == Rehashed) {
2119 aPtr.mSlot = findNonLiveSlot(aPtr.mKeyHash);
2123 aPtr.mSlot.setLive(aPtr.mKeyHash, std::forward<Args>(aArgs)...);
2124 mEntryCount++;
2125 #ifdef DEBUG
2126 mMutationCount++;
2127 aPtr.mGeneration = generation();
2128 aPtr.mMutationCount = mMutationCount;
2129 #endif
2130 return true;
2133 // Note: |aLookup| may be a reference to a piece of |u|, so this function
2134 // must take care not to use |aLookup| after moving |u|.
2135 template <typename... Args>
2136 void putNewInfallible(const Lookup& aLookup, Args&&... aArgs) {
2137 MOZ_ASSERT(!lookup(aLookup).found());
2138 ReentrancyGuard g(*this);
2139 putNewInfallibleInternal(aLookup, std::forward<Args>(aArgs)...);
2142 // Note: |aLookup| may be alias arguments in |aArgs|, so this function must
2143 // take care not to use |aLookup| after moving |aArgs|.
2144 template <typename... Args>
2145 MOZ_MUST_USE bool putNew(const Lookup& aLookup, Args&&... aArgs) {
2146 if (!this->checkSimulatedOOM()) {
2147 return false;
2149 if (!EnsureHash<HashPolicy>(aLookup)) {
2150 return false;
2152 if (rehashIfOverloaded() == RehashFailed) {
2153 return false;
2155 putNewInfallible(aLookup, std::forward<Args>(aArgs)...);
2156 return true;
2159 // Note: |aLookup| may be a reference to a piece of |u|, so this function
2160 // must take care not to use |aLookup| after moving |u|.
2161 template <typename... Args>
2162 MOZ_MUST_USE bool relookupOrAdd(AddPtr& aPtr, const Lookup& aLookup,
2163 Args&&... aArgs) {
2164 // Check for error from ensureHash() here.
2165 if (!aPtr.isLive()) {
2166 return false;
2168 #ifdef DEBUG
2169 aPtr.mGeneration = generation();
2170 aPtr.mMutationCount = mMutationCount;
2171 #endif
2172 if (mTable) {
2173 ReentrancyGuard g(*this);
2174 // Check that aLookup has not been destroyed.
2175 MOZ_ASSERT(prepareHash(aLookup) == aPtr.mKeyHash);
2176 aPtr.mSlot = lookup<ForAdd>(aLookup, aPtr.mKeyHash);
2177 if (aPtr.found()) {
2178 return true;
2180 } else {
2181 // Clear aPtr so it's invalid; add() will allocate storage and redo the
2182 // lookup.
2183 aPtr.mSlot = Slot(nullptr, nullptr);
2185 return add(aPtr, std::forward<Args>(aArgs)...);
2188 void remove(Ptr aPtr) {
2189 MOZ_ASSERT(mTable);
2190 ReentrancyGuard g(*this);
2191 MOZ_ASSERT(aPtr.found());
2192 MOZ_ASSERT(aPtr.mGeneration == generation());
2193 remove(aPtr.mSlot);
2194 shrinkIfUnderloaded();
2197 void rekeyWithoutRehash(Ptr aPtr, const Lookup& aLookup, const Key& aKey) {
2198 MOZ_ASSERT(mTable);
2199 ReentrancyGuard g(*this);
2200 MOZ_ASSERT(aPtr.found());
2201 MOZ_ASSERT(aPtr.mGeneration == generation());
2202 typename HashTableEntry<T>::NonConstT t(std::move(*aPtr));
2203 HashPolicy::setKey(t, const_cast<Key&>(aKey));
2204 remove(aPtr.mSlot);
2205 putNewInfallibleInternal(aLookup, std::move(t));
2208 void rekeyAndMaybeRehash(Ptr aPtr, const Lookup& aLookup, const Key& aKey) {
2209 rekeyWithoutRehash(aPtr, aLookup, aKey);
2210 infallibleRehashIfOverloaded();
2214 } // namespace detail
2215 } // namespace mozilla
2217 #endif /* mozilla_HashTable_h */