1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 //---------------------------------------------------------------------------
9 //---------------------------------------------------------------------------
11 // This file defines HashMap<Key, Value> and HashSet<T>, hash tables that are
12 // fast and have a nice API.
14 // Both hash tables have two optional template parameters.
16 // - HashPolicy. This defines the operations for hashing and matching keys. The
17 // default HashPolicy is appropriate when both of the following two
18 // conditions are true.
20 // - The key type stored in the table (|Key| for |HashMap<Key, Value>|, |T|
21 // for |HashSet<T>|) is an integer, pointer, UniquePtr, float, or double.
23 // - The type used for lookups (|Lookup|) is the same as the key type. This
24 // is usually the case, but not always.
26 // There is also a |CStringHasher| policy for |char*| keys. If your keys
27 // don't match any of the above cases, you must provide your own hash policy;
28 // see the "Hash Policy" section below.
30 // - AllocPolicy. This defines how allocations are done by the table.
32 // - |MallocAllocPolicy| is the default and is usually appropriate; note that
33 // operations (such as insertions) that might cause allocations are
34 // fallible and must be checked for OOM. These checks are enforced by the
35 // use of [[nodiscard]].
37 // - |InfallibleAllocPolicy| is another possibility; it allows the
38 // abovementioned OOM checks to be done with MOZ_ALWAYS_TRUE().
40 // Note that entry storage allocation is lazy, and not done until the first
41 // lookupForAdd(), put(), or putNew() is performed.
43 // See AllocPolicy.h for more details.
45 // Documentation on how to use HashMap and HashSet, including examples, is
46 // present within those classes. Search for "class HashMap" and "class
49 // Both HashMap and HashSet are implemented on top of a third class, HashTable.
50 // You only need to look at HashTable if you want to understand the
53 // How does mozilla::HashTable (this file) compare with PLDHashTable (and its
54 // subclasses, such as nsTHashtable)?
56 // - mozilla::HashTable is a lot faster, largely because it uses templates
57 // throughout *and* inlines everything. PLDHashTable inlines operations much
58 // less aggressively, and also uses "virtual ops" for operations like hashing
59 // and matching entries that require function calls.
61 // - Correspondingly, mozilla::HashTable use is likely to increase executable
62 // size much more than PLDHashTable.
64 // - mozilla::HashTable has a nicer API, with a proper HashSet vs. HashMap
67 // - mozilla::HashTable requires more explicit OOM checking. As mentioned
68 // above, the use of |InfallibleAllocPolicy| can simplify things.
70 // - mozilla::HashTable has a default capacity on creation of 32 and a minimum
71 // capacity of 4. PLDHashTable has a default capacity on creation of 8 and a
72 // minimum capacity of 8.
74 #ifndef mozilla_HashTable_h
75 #define mozilla_HashTable_h
78 #include <type_traits>
80 #include "mozilla/AllocPolicy.h"
81 #include "mozilla/Assertions.h"
82 #include "mozilla/Attributes.h"
83 #include "mozilla/Casting.h"
84 #include "mozilla/HashFunctions.h"
85 #include "mozilla/MathAlgorithms.h"
86 #include "mozilla/Maybe.h"
87 #include "mozilla/MemoryChecking.h"
88 #include "mozilla/MemoryReporting.h"
89 #include "mozilla/Opaque.h"
90 #include "mozilla/OperatorNewExtensions.h"
91 #include "mozilla/ReentrancyGuard.h"
92 #include "mozilla/UniquePtr.h"
93 #include "mozilla/WrappingOperations.h"
97 template <class, class = void>
100 template <class, class>
105 template <typename T
>
106 class HashTableEntry
;
108 template <class T
, class HashPolicy
, class AllocPolicy
>
111 } // namespace detail
113 // The "generation" of a hash table is an opaque value indicating the state of
114 // modification of the hash table through its lifetime. If the generation of
115 // a hash table compares equal at times T1 and T2, then lookups in the hash
116 // table, pointers to (or into) hash table entries, etc. at time T1 are valid
117 // at time T2. If the generation compares unequal, these computations are all
118 // invalid and must be performed again to be used.
120 // Generations are meaningfully comparable only with respect to a single hash
121 // table. It's always nonsensical to compare the generation of distinct hash
123 using Generation
= Opaque
<uint64_t>;
125 //---------------------------------------------------------------------------
127 //---------------------------------------------------------------------------
129 // HashMap is a fast hash-based map from keys to values.
131 // Template parameter requirements:
132 // - Key/Value: movable, destructible, assignable.
133 // - HashPolicy: see the "Hash Policy" section below.
134 // - AllocPolicy: see AllocPolicy.h.
137 // - HashMap is not reentrant: Key/Value/HashPolicy/AllocPolicy members
138 // called by HashMap must not call back into the same HashMap object.
140 template <class Key
, class Value
, class HashPolicy
= DefaultHasher
<Key
>,
141 class AllocPolicy
= MallocAllocPolicy
>
143 // -- Implementation details -----------------------------------------------
145 // HashMap is not copyable or assignable.
146 HashMap(const HashMap
& hm
) = delete;
147 HashMap
& operator=(const HashMap
& hm
) = delete;
149 using TableEntry
= HashMapEntry
<Key
, Value
>;
151 struct MapHashPolicy
: HashPolicy
{
152 using Base
= HashPolicy
;
155 static const Key
& getKey(TableEntry
& aEntry
) { return aEntry
.key(); }
157 static void setKey(TableEntry
& aEntry
, Key
& aKey
) {
158 HashPolicy::rekey(aEntry
.mutableKey(), aKey
);
162 using Impl
= detail::HashTable
<TableEntry
, MapHashPolicy
, AllocPolicy
>;
165 friend class Impl::Enum
;
168 using Lookup
= typename
HashPolicy::Lookup
;
169 using Entry
= TableEntry
;
171 // -- Initialization -------------------------------------------------------
173 explicit HashMap(AllocPolicy aAllocPolicy
= AllocPolicy(),
174 uint32_t aLen
= Impl::sDefaultLen
)
175 : mImpl(std::move(aAllocPolicy
), aLen
) {}
177 explicit HashMap(uint32_t aLen
) : mImpl(AllocPolicy(), aLen
) {}
179 // HashMap is movable.
180 HashMap(HashMap
&& aRhs
) = default;
181 HashMap
& operator=(HashMap
&& aRhs
) = default;
183 // -- Status and sizing ----------------------------------------------------
185 // The map's current generation.
186 Generation
generation() const { return mImpl
.generation(); }
189 bool empty() const { return mImpl
.empty(); }
191 // Number of keys/values in the map.
192 uint32_t count() const { return mImpl
.count(); }
194 // Number of key/value slots in the map. Note: resize will happen well before
195 // count() == capacity().
196 uint32_t capacity() const { return mImpl
.capacity(); }
198 // The size of the map's entry storage, in bytes. If the keys/values contain
199 // pointers to other heap blocks, you must iterate over the map and measure
200 // them separately; hence the "shallow" prefix.
201 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf
) const {
202 return mImpl
.shallowSizeOfExcludingThis(aMallocSizeOf
);
204 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
205 return aMallocSizeOf(this) +
206 mImpl
.shallowSizeOfExcludingThis(aMallocSizeOf
);
209 // Attempt to minimize the capacity(). If the table is empty, this will free
210 // the empty storage and upon regrowth it will be given the minimum capacity.
211 void compact() { mImpl
.compact(); }
213 // Attempt to reserve enough space to fit at least |aLen| elements. Does
214 // nothing if the map already has sufficient capacity.
215 [[nodiscard
]] bool reserve(uint32_t aLen
) { return mImpl
.reserve(aLen
); }
217 // -- Lookups --------------------------------------------------------------
219 // Does the map contain a key/value matching |aLookup|?
220 bool has(const Lookup
& aLookup
) const {
221 return mImpl
.lookup(aLookup
).found();
224 // Return a Ptr indicating whether a key/value matching |aLookup| is
225 // present in the map. E.g.:
227 // using HM = HashMap<int,char>;
229 // if (HM::Ptr p = h.lookup(3)) {
230 // assert(p->key() == 3);
231 // char val = p->value();
234 using Ptr
= typename
Impl::Ptr
;
235 MOZ_ALWAYS_INLINE Ptr
lookup(const Lookup
& aLookup
) const {
236 return mImpl
.lookup(aLookup
);
239 // Like lookup(), but does not assert if two threads call it at the same
240 // time. Only use this method when none of the threads will modify the map.
241 MOZ_ALWAYS_INLINE Ptr
readonlyThreadsafeLookup(const Lookup
& aLookup
) const {
242 return mImpl
.readonlyThreadsafeLookup(aLookup
);
245 // -- Insertions -----------------------------------------------------------
247 // Overwrite existing value with |aValue|, or add it if not present. Returns
249 template <typename KeyInput
, typename ValueInput
>
250 [[nodiscard
]] bool put(KeyInput
&& aKey
, ValueInput
&& aValue
) {
251 return put(aKey
, std::forward
<KeyInput
>(aKey
),
252 std::forward
<ValueInput
>(aValue
));
255 template <typename KeyInput
, typename ValueInput
>
256 [[nodiscard
]] bool put(const Lookup
& aLookup
, KeyInput
&& aKey
,
257 ValueInput
&& aValue
) {
258 AddPtr p
= lookupForAdd(aLookup
);
260 p
->value() = std::forward
<ValueInput
>(aValue
);
263 return add(p
, std::forward
<KeyInput
>(aKey
),
264 std::forward
<ValueInput
>(aValue
));
267 // Like put(), but slightly faster. Must only be used when the given key is
268 // not already present. (In debug builds, assertions check this.)
269 template <typename KeyInput
, typename ValueInput
>
270 [[nodiscard
]] bool putNew(KeyInput
&& aKey
, ValueInput
&& aValue
) {
271 return mImpl
.putNew(aKey
, std::forward
<KeyInput
>(aKey
),
272 std::forward
<ValueInput
>(aValue
));
275 template <typename KeyInput
, typename ValueInput
>
276 [[nodiscard
]] bool putNew(const Lookup
& aLookup
, KeyInput
&& aKey
,
277 ValueInput
&& aValue
) {
278 return mImpl
.putNew(aLookup
, std::forward
<KeyInput
>(aKey
),
279 std::forward
<ValueInput
>(aValue
));
282 // Like putNew(), but should be only used when the table is known to be big
283 // enough for the insertion, and hashing cannot fail. Typically this is used
284 // to populate an empty map with known-unique keys after reserving space with
287 // using HM = HashMap<int,char>;
289 // if (!h.reserve(3)) {
292 // h.putNewInfallible(1, 'a'); // unique key
293 // h.putNewInfallible(2, 'b'); // unique key
294 // h.putNewInfallible(3, 'c'); // unique key
296 template <typename KeyInput
, typename ValueInput
>
297 void putNewInfallible(KeyInput
&& aKey
, ValueInput
&& aValue
) {
298 mImpl
.putNewInfallible(aKey
, std::forward
<KeyInput
>(aKey
),
299 std::forward
<ValueInput
>(aValue
));
302 // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
303 // insertion of Key |k| (where |HashPolicy::match(k,l) == true|) using
304 // |add(p,k,v)|. After |add(p,k,v)|, |p| points to the new key/value. E.g.:
306 // using HM = HashMap<int,char>;
308 // HM::AddPtr p = h.lookupForAdd(3);
310 // if (!h.add(p, 3, 'a')) {
314 // assert(p->key() == 3);
315 // char val = p->value();
317 // N.B. The caller must ensure that no mutating hash table operations occur
318 // between a pair of lookupForAdd() and add() calls. To avoid looking up the
319 // key a second time, the caller may use the more efficient relookupOrAdd()
320 // method. This method reuses part of the hashing computation to more
321 // efficiently insert the key if it has not been added. For example, a
322 // mutation-handling version of the previous example:
324 // HM::AddPtr p = h.lookupForAdd(3);
326 // call_that_may_mutate_h();
327 // if (!h.relookupOrAdd(p, 3, 'a')) {
331 // assert(p->key() == 3);
332 // char val = p->value();
334 using AddPtr
= typename
Impl::AddPtr
;
335 MOZ_ALWAYS_INLINE AddPtr
lookupForAdd(const Lookup
& aLookup
) {
336 return mImpl
.lookupForAdd(aLookup
);
339 // Add a key/value. Returns false on OOM.
340 template <typename KeyInput
, typename ValueInput
>
341 [[nodiscard
]] bool add(AddPtr
& aPtr
, KeyInput
&& aKey
, ValueInput
&& aValue
) {
342 return mImpl
.add(aPtr
, std::forward
<KeyInput
>(aKey
),
343 std::forward
<ValueInput
>(aValue
));
346 // See the comment above lookupForAdd() for details.
347 template <typename KeyInput
, typename ValueInput
>
348 [[nodiscard
]] bool relookupOrAdd(AddPtr
& aPtr
, KeyInput
&& aKey
,
349 ValueInput
&& aValue
) {
350 return mImpl
.relookupOrAdd(aPtr
, aKey
, std::forward
<KeyInput
>(aKey
),
351 std::forward
<ValueInput
>(aValue
));
354 // -- Removal --------------------------------------------------------------
356 // Lookup and remove the key/value matching |aLookup|, if present.
357 void remove(const Lookup
& aLookup
) {
358 if (Ptr p
= lookup(aLookup
)) {
363 // Remove a previously found key/value (assuming aPtr.found()). The map must
364 // not have been mutated in the interim.
365 void remove(Ptr aPtr
) { mImpl
.remove(aPtr
); }
367 // Remove all keys/values without changing the capacity.
368 void clear() { mImpl
.clear(); }
370 // Like clear() followed by compact().
371 void clearAndCompact() { mImpl
.clearAndCompact(); }
373 // -- Rekeying -------------------------------------------------------------
375 // Infallibly rekey one entry, if necessary. Requires that template
376 // parameters Key and HashPolicy::Lookup are the same type.
377 void rekeyIfMoved(const Key
& aOldKey
, const Key
& aNewKey
) {
378 if (aOldKey
!= aNewKey
) {
379 rekeyAs(aOldKey
, aNewKey
, aNewKey
);
383 // Infallibly rekey one entry if present, and return whether that happened.
384 bool rekeyAs(const Lookup
& aOldLookup
, const Lookup
& aNewLookup
,
385 const Key
& aNewKey
) {
386 if (Ptr p
= lookup(aOldLookup
)) {
387 mImpl
.rekeyAndMaybeRehash(p
, aNewLookup
, aNewKey
);
393 // -- Iteration ------------------------------------------------------------
395 // |iter()| returns an Iterator:
397 // HashMap<int, char> h;
398 // for (auto iter = h.iter(); !iter.done(); iter.next()) {
399 // char c = iter.get().value();
402 using Iterator
= typename
Impl::Iterator
;
403 Iterator
iter() const { return mImpl
.iter(); }
405 // |modIter()| returns a ModIterator:
407 // HashMap<int, char> h;
408 // for (auto iter = h.modIter(); !iter.done(); iter.next()) {
409 // if (iter.get().value() == 'l') {
414 // Table resize may occur in ModIterator's destructor.
415 using ModIterator
= typename
Impl::ModIterator
;
416 ModIterator
modIter() { return mImpl
.modIter(); }
418 // These are similar to Iterator/ModIterator/iter(), but use different
420 using Range
= typename
Impl::Range
;
421 using Enum
= typename
Impl::Enum
;
422 Range
all() const { return mImpl
.all(); }
425 //---------------------------------------------------------------------------
427 //---------------------------------------------------------------------------
429 // HashSet is a fast hash-based set of values.
431 // Template parameter requirements:
432 // - T: movable, destructible, assignable.
433 // - HashPolicy: see the "Hash Policy" section below.
434 // - AllocPolicy: see AllocPolicy.h
437 // - HashSet is not reentrant: T/HashPolicy/AllocPolicy members called by
438 // HashSet must not call back into the same HashSet object.
440 template <class T
, class HashPolicy
= DefaultHasher
<T
>,
441 class AllocPolicy
= MallocAllocPolicy
>
443 // -- Implementation details -----------------------------------------------
445 // HashSet is not copyable or assignable.
446 HashSet(const HashSet
& hs
) = delete;
447 HashSet
& operator=(const HashSet
& hs
) = delete;
449 struct SetHashPolicy
: HashPolicy
{
450 using Base
= HashPolicy
;
453 static const KeyType
& getKey(const T
& aT
) { return aT
; }
455 static void setKey(T
& aT
, KeyType
& aKey
) { HashPolicy::rekey(aT
, aKey
); }
458 using Impl
= detail::HashTable
<const T
, SetHashPolicy
, AllocPolicy
>;
461 friend class Impl::Enum
;
464 using Lookup
= typename
HashPolicy::Lookup
;
467 // -- Initialization -------------------------------------------------------
469 explicit HashSet(AllocPolicy aAllocPolicy
= AllocPolicy(),
470 uint32_t aLen
= Impl::sDefaultLen
)
471 : mImpl(std::move(aAllocPolicy
), aLen
) {}
473 explicit HashSet(uint32_t aLen
) : mImpl(AllocPolicy(), aLen
) {}
475 // HashSet is movable.
476 HashSet(HashSet
&& aRhs
) = default;
477 HashSet
& operator=(HashSet
&& aRhs
) = default;
479 // -- Status and sizing ----------------------------------------------------
481 // The set's current generation.
482 Generation
generation() const { return mImpl
.generation(); }
485 bool empty() const { return mImpl
.empty(); }
487 // Number of elements in the set.
488 uint32_t count() const { return mImpl
.count(); }
490 // Number of element slots in the set. Note: resize will happen well before
491 // count() == capacity().
492 uint32_t capacity() const { return mImpl
.capacity(); }
494 // The size of the set's entry storage, in bytes. If the elements contain
495 // pointers to other heap blocks, you must iterate over the set and measure
496 // them separately; hence the "shallow" prefix.
497 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf
) const {
498 return mImpl
.shallowSizeOfExcludingThis(aMallocSizeOf
);
500 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
501 return aMallocSizeOf(this) +
502 mImpl
.shallowSizeOfExcludingThis(aMallocSizeOf
);
505 // Attempt to minimize the capacity(). If the table is empty, this will free
506 // the empty storage and upon regrowth it will be given the minimum capacity.
507 void compact() { mImpl
.compact(); }
509 // Attempt to reserve enough space to fit at least |aLen| elements. Does
510 // nothing if the map already has sufficient capacity.
511 [[nodiscard
]] bool reserve(uint32_t aLen
) { return mImpl
.reserve(aLen
); }
513 // -- Lookups --------------------------------------------------------------
515 // Does the set contain an element matching |aLookup|?
516 bool has(const Lookup
& aLookup
) const {
517 return mImpl
.lookup(aLookup
).found();
520 // Return a Ptr indicating whether an element matching |aLookup| is present
523 // using HS = HashSet<int>;
525 // if (HS::Ptr p = h.lookup(3)) {
526 // assert(*p == 3); // p acts like a pointer to int
529 using Ptr
= typename
Impl::Ptr
;
530 MOZ_ALWAYS_INLINE Ptr
lookup(const Lookup
& aLookup
) const {
531 return mImpl
.lookup(aLookup
);
534 // Like lookup(), but does not assert if two threads call it at the same
535 // time. Only use this method when none of the threads will modify the set.
536 MOZ_ALWAYS_INLINE Ptr
readonlyThreadsafeLookup(const Lookup
& aLookup
) const {
537 return mImpl
.readonlyThreadsafeLookup(aLookup
);
540 // -- Insertions -----------------------------------------------------------
542 // Add |aU| if it is not present already. Returns false on OOM.
543 template <typename U
>
544 [[nodiscard
]] bool put(U
&& aU
) {
545 AddPtr p
= lookupForAdd(aU
);
546 return p
? true : add(p
, std::forward
<U
>(aU
));
549 // Like put(), but slightly faster. Must only be used when the given element
550 // is not already present. (In debug builds, assertions check this.)
551 template <typename U
>
552 [[nodiscard
]] bool putNew(U
&& aU
) {
553 return mImpl
.putNew(aU
, std::forward
<U
>(aU
));
556 // Like the other putNew(), but for when |Lookup| is different to |T|.
557 template <typename U
>
558 [[nodiscard
]] bool putNew(const Lookup
& aLookup
, U
&& aU
) {
559 return mImpl
.putNew(aLookup
, std::forward
<U
>(aU
));
562 // Like putNew(), but should be only used when the table is known to be big
563 // enough for the insertion, and hashing cannot fail. Typically this is used
564 // to populate an empty set with known-unique elements after reserving space
565 // with reserve(), e.g.
567 // using HS = HashMap<int>;
569 // if (!h.reserve(3)) {
572 // h.putNewInfallible(1); // unique element
573 // h.putNewInfallible(2); // unique element
574 // h.putNewInfallible(3); // unique element
576 template <typename U
>
577 void putNewInfallible(const Lookup
& aLookup
, U
&& aU
) {
578 mImpl
.putNewInfallible(aLookup
, std::forward
<U
>(aU
));
581 // Like |lookup(l)|, but on miss, |p = lookupForAdd(l)| allows efficient
582 // insertion of T value |t| (where |HashPolicy::match(t,l) == true|) using
583 // |add(p,t)|. After |add(p,t)|, |p| points to the new element. E.g.:
585 // using HS = HashSet<int>;
587 // HS::AddPtr p = h.lookupForAdd(3);
589 // if (!h.add(p, 3)) {
593 // assert(*p == 3); // p acts like a pointer to int
595 // N.B. The caller must ensure that no mutating hash table operations occur
596 // between a pair of lookupForAdd() and add() calls. To avoid looking up the
597 // key a second time, the caller may use the more efficient relookupOrAdd()
598 // method. This method reuses part of the hashing computation to more
599 // efficiently insert the key if it has not been added. For example, a
600 // mutation-handling version of the previous example:
602 // HS::AddPtr p = h.lookupForAdd(3);
604 // call_that_may_mutate_h();
605 // if (!h.relookupOrAdd(p, 3, 3)) {
611 // Note that relookupOrAdd(p,l,t) performs Lookup using |l| and adds the
612 // entry |t|, where the caller ensures match(l,t).
613 using AddPtr
= typename
Impl::AddPtr
;
614 MOZ_ALWAYS_INLINE AddPtr
lookupForAdd(const Lookup
& aLookup
) {
615 return mImpl
.lookupForAdd(aLookup
);
618 // Add an element. Returns false on OOM.
619 template <typename U
>
620 [[nodiscard
]] bool add(AddPtr
& aPtr
, U
&& aU
) {
621 return mImpl
.add(aPtr
, std::forward
<U
>(aU
));
624 // See the comment above lookupForAdd() for details.
625 template <typename U
>
626 [[nodiscard
]] bool relookupOrAdd(AddPtr
& aPtr
, const Lookup
& aLookup
,
628 return mImpl
.relookupOrAdd(aPtr
, aLookup
, std::forward
<U
>(aU
));
631 // -- Removal --------------------------------------------------------------
633 // Lookup and remove the element matching |aLookup|, if present.
634 void remove(const Lookup
& aLookup
) {
635 if (Ptr p
= lookup(aLookup
)) {
640 // Remove a previously found element (assuming aPtr.found()). The set must
641 // not have been mutated in the interim.
642 void remove(Ptr aPtr
) { mImpl
.remove(aPtr
); }
644 // Remove all keys/values without changing the capacity.
645 void clear() { mImpl
.clear(); }
647 // Like clear() followed by compact().
648 void clearAndCompact() { mImpl
.clearAndCompact(); }
650 // -- Rekeying -------------------------------------------------------------
652 // Infallibly rekey one entry, if present. Requires that template parameters
653 // T and HashPolicy::Lookup are the same type.
654 void rekeyIfMoved(const Lookup
& aOldValue
, const T
& aNewValue
) {
655 if (aOldValue
!= aNewValue
) {
656 rekeyAs(aOldValue
, aNewValue
, aNewValue
);
660 // Infallibly rekey one entry if present, and return whether that happened.
661 bool rekeyAs(const Lookup
& aOldLookup
, const Lookup
& aNewLookup
,
662 const T
& aNewValue
) {
663 if (Ptr p
= lookup(aOldLookup
)) {
664 mImpl
.rekeyAndMaybeRehash(p
, aNewLookup
, aNewValue
);
670 // Infallibly replace the current key at |aPtr| with an equivalent key.
671 // Specifically, both HashPolicy::hash and HashPolicy::match must return
672 // identical results for the new and old key when applied against all
673 // possible matching values.
674 void replaceKey(Ptr aPtr
, const Lookup
& aLookup
, const T
& aNewValue
) {
675 MOZ_ASSERT(aPtr
.found());
676 MOZ_ASSERT(*aPtr
!= aNewValue
);
677 MOZ_ASSERT(HashPolicy::match(*aPtr
, aLookup
));
678 MOZ_ASSERT(HashPolicy::match(aNewValue
, aLookup
));
679 const_cast<T
&>(*aPtr
) = aNewValue
;
680 MOZ_ASSERT(*lookup(aLookup
) == aNewValue
);
682 void replaceKey(Ptr aPtr
, const T
& aNewValue
) {
683 replaceKey(aPtr
, aNewValue
, aNewValue
);
686 // -- Iteration ------------------------------------------------------------
688 // |iter()| returns an Iterator:
691 // for (auto iter = h.iter(); !iter.done(); iter.next()) {
692 // int i = iter.get();
695 using Iterator
= typename
Impl::Iterator
;
696 Iterator
iter() const { return mImpl
.iter(); }
698 // |modIter()| returns a ModIterator:
701 // for (auto iter = h.modIter(); !iter.done(); iter.next()) {
702 // if (iter.get() == 42) {
707 // Table resize may occur in ModIterator's destructor.
708 using ModIterator
= typename
Impl::ModIterator
;
709 ModIterator
modIter() { return mImpl
.modIter(); }
711 // These are similar to Iterator/ModIterator/iter(), but use different
713 using Range
= typename
Impl::Range
;
714 using Enum
= typename
Impl::Enum
;
715 Range
all() const { return mImpl
.all(); }
718 //---------------------------------------------------------------------------
720 //---------------------------------------------------------------------------
722 // A hash policy |HP| for a hash table with key-type |Key| must provide:
724 // - a type |HP::Lookup| to use to lookup table entries;
726 // - a static member function |HP::hash| that hashes lookup values:
728 // static mozilla::HashNumber hash(const Lookup&);
730 // - a static member function |HP::match| that tests equality of key and
733 // static bool match(const Key&, const Lookup&);
735 // Normally, Lookup = Key. In general, though, different values and types of
736 // values can be used to lookup and store. If a Lookup value |l| is not equal
737 // to the added Key value |k|, the user must ensure that |HP::match(k,l)| is
740 // mozilla::HashSet<Key, HP>::AddPtr p = h.lookup(l);
742 // assert(HP::match(k, l)); // must hold
746 // A pointer hashing policy that uses HashGeneric() to create good hashes for
747 // pointers. Note that we don't shift out the lowest k bits because we don't
748 // want to assume anything about the alignment of the pointers.
749 template <typename Key
>
750 struct PointerHasher
{
753 static HashNumber
hash(const Lookup
& aLookup
) {
754 size_t word
= reinterpret_cast<size_t>(aLookup
);
755 return HashGeneric(word
);
758 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
759 return aKey
== aLookup
;
762 static void rekey(Key
& aKey
, const Key
& aNewKey
) { aKey
= aNewKey
; }
765 // The default hash policy, which only works with integers.
766 template <class Key
, typename
>
767 struct DefaultHasher
{
770 static HashNumber
hash(const Lookup
& aLookup
) {
771 // Just convert the integer to a HashNumber and use that as is. (This
772 // discards the high 32-bits of 64-bit integers!) ScrambleHashCode() is
773 // subsequently called on the value to improve the distribution.
777 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
778 // Use builtin or overloaded operator==.
779 return aKey
== aLookup
;
782 static void rekey(Key
& aKey
, const Key
& aNewKey
) { aKey
= aNewKey
; }
785 // A DefaultHasher specialization for enums.
787 struct DefaultHasher
<T
, std::enable_if_t
<std::is_enum_v
<T
>>> {
791 static HashNumber
hash(const Lookup
& aLookup
) { return HashGeneric(aLookup
); }
793 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
794 // Use builtin or overloaded operator==.
795 return aKey
== static_cast<Key
>(aLookup
);
798 static void rekey(Key
& aKey
, const Key
& aNewKey
) { aKey
= aNewKey
; }
801 // A DefaultHasher specialization for pointers.
803 struct DefaultHasher
<T
*> : PointerHasher
<T
*> {};
805 // A DefaultHasher specialization for mozilla::UniquePtr.
806 template <class T
, class D
>
807 struct DefaultHasher
<UniquePtr
<T
, D
>> {
808 using Key
= UniquePtr
<T
, D
>;
810 using PtrHasher
= PointerHasher
<T
*>;
812 static HashNumber
hash(const Lookup
& aLookup
) {
813 return PtrHasher::hash(aLookup
.get());
816 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
817 return PtrHasher::match(aKey
.get(), aLookup
.get());
820 static void rekey(UniquePtr
<T
, D
>& aKey
, UniquePtr
<T
, D
>&& aNewKey
) {
821 aKey
= std::move(aNewKey
);
825 // A DefaultHasher specialization for doubles.
827 struct DefaultHasher
<double> {
831 static HashNumber
hash(const Lookup
& aLookup
) {
832 // Just xor the high bits with the low bits, and then treat the bits of the
833 // result as a uint32_t.
834 static_assert(sizeof(HashNumber
) == 4,
835 "subsequent code assumes a four-byte hash");
836 uint64_t u
= BitwiseCast
<uint64_t>(aLookup
);
837 return HashNumber(u
^ (u
>> 32));
840 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
841 return BitwiseCast
<uint64_t>(aKey
) == BitwiseCast
<uint64_t>(aLookup
);
845 // A DefaultHasher specialization for floats.
847 struct DefaultHasher
<float> {
851 static HashNumber
hash(const Lookup
& aLookup
) {
852 // Just use the value as if its bits form an integer. ScrambleHashCode() is
853 // subsequently called on the value to improve the distribution.
854 static_assert(sizeof(HashNumber
) == 4,
855 "subsequent code assumes a four-byte hash");
856 return HashNumber(BitwiseCast
<uint32_t>(aLookup
));
859 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
860 return BitwiseCast
<uint32_t>(aKey
) == BitwiseCast
<uint32_t>(aLookup
);
864 // A hash policy for C strings.
865 struct CStringHasher
{
866 using Key
= const char*;
867 using Lookup
= const char*;
869 static HashNumber
hash(const Lookup
& aLookup
) { return HashString(aLookup
); }
871 static bool match(const Key
& aKey
, const Lookup
& aLookup
) {
872 return strcmp(aKey
, aLookup
) == 0;
876 //---------------------------------------------------------------------------
877 // Fallible Hashing Interface
878 //---------------------------------------------------------------------------
880 // Most of the time generating a hash code is infallible so this class provides
881 // default methods that always succeed. Specialize this class for your own hash
882 // policy to provide fallible hashing.
884 // This is used by MovableCellHasher to handle the fact that generating a unique
885 // ID for cell pointer may fail due to OOM.
886 template <typename HashPolicy
>
887 struct FallibleHashMethods
{
888 // Return true if a hashcode is already available for its argument. Once
889 // this returns true for a specific argument it must continue to do so.
890 template <typename Lookup
>
891 static bool hasHash(Lookup
&& aLookup
) {
895 // Fallible method to ensure a hashcode exists for its argument and create
896 // one if not. Returns false on error, e.g. out of memory.
897 template <typename Lookup
>
898 static bool ensureHash(Lookup
&& aLookup
) {
903 template <typename HashPolicy
, typename Lookup
>
904 static bool HasHash(Lookup
&& aLookup
) {
905 return FallibleHashMethods
<typename
HashPolicy::Base
>::hasHash(
906 std::forward
<Lookup
>(aLookup
));
909 template <typename HashPolicy
, typename Lookup
>
910 static bool EnsureHash(Lookup
&& aLookup
) {
911 return FallibleHashMethods
<typename
HashPolicy::Base
>::ensureHash(
912 std::forward
<Lookup
>(aLookup
));
915 //---------------------------------------------------------------------------
916 // Implementation Details (HashMapEntry, HashTableEntry, HashTable)
917 //---------------------------------------------------------------------------
919 // Both HashMap and HashSet are implemented by a single HashTable that is even
920 // more heavily parameterized than the other two. This leaves HashTable gnarly
921 // and extremely coupled to HashMap and HashSet; thus code should not use
922 // HashTable directly.
924 template <class Key
, class Value
>
929 template <class, class, class>
930 friend class detail::HashTable
;
932 friend class detail::HashTableEntry
;
933 template <class, class, class, class>
934 friend class HashMap
;
937 template <typename KeyInput
, typename ValueInput
>
938 HashMapEntry(KeyInput
&& aKey
, ValueInput
&& aValue
)
939 : key_(std::forward
<KeyInput
>(aKey
)),
940 value_(std::forward
<ValueInput
>(aValue
)) {}
942 HashMapEntry(HashMapEntry
&& aRhs
) = default;
943 HashMapEntry
& operator=(HashMapEntry
&& aRhs
) = default;
946 using ValueType
= Value
;
948 const Key
& key() const { return key_
; }
950 // Use this method with caution! If the key is changed such that its hash
951 // value also changes, the map will be left in an invalid state.
952 Key
& mutableKey() { return key_
; }
954 const Value
& value() const { return value_
; }
955 Value
& value() { return value_
; }
958 HashMapEntry(const HashMapEntry
&) = delete;
959 void operator=(const HashMapEntry
&) = delete;
964 template <class T
, class HashPolicy
, class AllocPolicy
>
967 template <typename T
>
970 template <typename T
>
971 class HashTableEntry
{
973 using NonConstT
= std::remove_const_t
<T
>;
975 // Instead of having a hash table entry store that looks like this:
977 // +--------+--------+--------+--------+
978 // | entry0 | entry1 | .... | entryN |
979 // +--------+--------+--------+--------+
981 // where the entries contained their cached hash code, we're going to lay out
982 // the entry store thusly:
984 // +-------+-------+-------+-------+--------+--------+--------+--------+
985 // | hash0 | hash1 | ... | hashN | entry0 | entry1 | .... | entryN |
986 // +-------+-------+-------+-------+--------+--------+--------+--------+
988 // with all the cached hashes prior to the actual entries themselves.
990 // We do this because implementing the first strategy requires us to make
991 // HashTableEntry look roughly like:
993 // template <typename T>
994 // class HashTableEntry {
995 // HashNumber mKeyHash;
999 // The problem with this setup is that, depending on the layout of `T`, there
1000 // may be platform ABI-mandated padding between `mKeyHash` and the first
1001 // member of `T`. This ABI-mandated padding is wasted space, and can be
1002 // surprisingly common, e.g. when `T` is a single pointer on 64-bit platforms.
1003 // In such cases, we're throwing away a quarter of our entry store on padding,
1004 // which is undesirable.
1006 // The second layout above, namely:
1008 // +-------+-------+-------+-------+--------+--------+--------+--------+
1009 // | hash0 | hash1 | ... | hashN | entry0 | entry1 | .... | entryN |
1010 // +-------+-------+-------+-------+--------+--------+--------+--------+
1012 // means there is no wasted space between the hashes themselves, and no wasted
1013 // space between the entries themselves. However, we would also like there to
1014 // be no gap between the last hash and the first entry. The memory allocator
1015 // guarantees the alignment of the start of the hashes. The use of a
1016 // power-of-two capacity of at least 4 guarantees that the alignment of the
1017 // *end* of the hash array is no less than the alignment of the start.
1018 // Finally, the static_asserts here guarantee that the entries themselves
1019 // don't need to be any more aligned than the alignment of the entry store
1022 // This assertion is safe for 32-bit builds because on both Windows and Linux
1023 // (including Android), the minimum alignment for allocations larger than 8
1024 // bytes is 8 bytes, and the actual data for entries in our entry store is
1025 // guaranteed to have that alignment as well, thanks to the power-of-two
1026 // number of cached hash values stored prior to the entry data.
1028 // The allocation policy must allocate a table with at least this much
1030 static constexpr size_t kMinimumAlignment
= 8;
1032 static_assert(alignof(HashNumber
) <= kMinimumAlignment
,
1033 "[N*2 hashes, N*2 T values] allocation's alignment must be "
1034 "enough to align each hash");
1035 static_assert(alignof(NonConstT
) <= 2 * sizeof(HashNumber
),
1036 "subsequent N*2 T values must not require more than an even "
1037 "number of HashNumbers provides");
1039 static const HashNumber sFreeKey
= 0;
1040 static const HashNumber sRemovedKey
= 1;
1041 static const HashNumber sCollisionBit
= 1;
1043 alignas(NonConstT
) unsigned char mValueData
[sizeof(NonConstT
)];
1046 template <class, class, class>
1047 friend class HashTable
;
1049 friend class EntrySlot
;
1051 // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
1052 // -Werror compile error) to reinterpret_cast<> |mValueData| to |T*|, even
1053 // through |void*|. Placing the latter cast in these separate functions
1054 // breaks the chain such that affected GCC versions no longer warn/error.
1055 void* rawValuePtr() { return mValueData
; }
1057 static bool isLiveHash(HashNumber hash
) { return hash
> sRemovedKey
; }
1059 HashTableEntry(const HashTableEntry
&) = delete;
1060 void operator=(const HashTableEntry
&) = delete;
1062 NonConstT
* valuePtr() { return reinterpret_cast<NonConstT
*>(rawValuePtr()); }
1064 void destroyStoredT() {
1065 NonConstT
* ptr
= valuePtr();
1067 MOZ_MAKE_MEM_UNDEFINED(ptr
, sizeof(*ptr
));
1071 HashTableEntry() = default;
1073 ~HashTableEntry() { MOZ_MAKE_MEM_UNDEFINED(this, sizeof(*this)); }
1075 void destroy() { destroyStoredT(); }
1077 void swap(HashTableEntry
* aOther
, bool aIsLive
) {
1078 // This allows types to use Argument-Dependent-Lookup, and thus use a custom
1079 // std::swap, which is needed by types like JS::Heap and such.
1082 if (this == aOther
) {
1086 swap(*valuePtr(), *aOther
->valuePtr());
1088 *aOther
->valuePtr() = std::move(*valuePtr());
1093 T
& get() { return *valuePtr(); }
1095 NonConstT
& getMutable() { return *valuePtr(); }
1098 // A slot represents a cached hash value and its associated entry stored
1099 // in the hash table. These two things are not stored in contiguous memory.
1102 using NonConstT
= std::remove_const_t
<T
>;
1104 using Entry
= HashTableEntry
<T
>;
1107 HashNumber
* mKeyHash
;
1109 template <class, class, class>
1110 friend class HashTable
;
1112 EntrySlot(Entry
* aEntry
, HashNumber
* aKeyHash
)
1113 : mEntry(aEntry
), mKeyHash(aKeyHash
) {}
1116 static bool isLiveHash(HashNumber hash
) { return hash
> Entry::sRemovedKey
; }
1118 EntrySlot(const EntrySlot
&) = default;
1119 EntrySlot(EntrySlot
&& aOther
) = default;
1121 EntrySlot
& operator=(const EntrySlot
&) = default;
1122 EntrySlot
& operator=(EntrySlot
&&) = default;
1124 bool operator==(const EntrySlot
& aRhs
) const { return mEntry
== aRhs
.mEntry
; }
1126 bool operator<(const EntrySlot
& aRhs
) const { return mEntry
< aRhs
.mEntry
; }
1128 EntrySlot
& operator++() {
1134 void destroy() { mEntry
->destroy(); }
1136 void swap(EntrySlot
& aOther
) {
1137 mEntry
->swap(aOther
.mEntry
, aOther
.isLive());
1138 std::swap(*mKeyHash
, *aOther
.mKeyHash
);
1141 T
& get() const { return mEntry
->get(); }
1143 NonConstT
& getMutable() { return mEntry
->getMutable(); }
1145 bool isFree() const { return *mKeyHash
== Entry::sFreeKey
; }
1148 MOZ_ASSERT(isLive());
1149 *mKeyHash
= Entry::sFreeKey
;
1150 mEntry
->destroyStoredT();
1155 mEntry
->destroyStoredT();
1157 MOZ_MAKE_MEM_UNDEFINED(mEntry
, sizeof(*mEntry
));
1158 *mKeyHash
= Entry::sFreeKey
;
1161 bool isRemoved() const { return *mKeyHash
== Entry::sRemovedKey
; }
1164 MOZ_ASSERT(isLive());
1165 *mKeyHash
= Entry::sRemovedKey
;
1166 mEntry
->destroyStoredT();
1169 bool isLive() const { return isLiveHash(*mKeyHash
); }
1171 void setCollision() {
1172 MOZ_ASSERT(isLive());
1173 *mKeyHash
|= Entry::sCollisionBit
;
1175 void unsetCollision() { *mKeyHash
&= ~Entry::sCollisionBit
; }
1176 bool hasCollision() const { return *mKeyHash
& Entry::sCollisionBit
; }
1177 bool matchHash(HashNumber hn
) {
1178 return (*mKeyHash
& ~Entry::sCollisionBit
) == hn
;
1180 HashNumber
getKeyHash() const { return *mKeyHash
& ~Entry::sCollisionBit
; }
1182 template <typename
... Args
>
1183 void setLive(HashNumber aHashNumber
, Args
&&... aArgs
) {
1184 MOZ_ASSERT(!isLive());
1185 *mKeyHash
= aHashNumber
;
1186 new (KnownNotNull
, mEntry
->valuePtr()) T(std::forward
<Args
>(aArgs
)...);
1187 MOZ_ASSERT(isLive());
1190 Entry
* toEntry() const { return mEntry
; }
1193 template <class T
, class HashPolicy
, class AllocPolicy
>
1194 class HashTable
: private AllocPolicy
{
1195 friend class mozilla::ReentrancyGuard
;
1197 using NonConstT
= std::remove_const_t
<T
>;
1198 using Key
= typename
HashPolicy::KeyType
;
1199 using Lookup
= typename
HashPolicy::Lookup
;
1202 using Entry
= HashTableEntry
<T
>;
1203 using Slot
= EntrySlot
<T
>;
1205 template <typename F
>
1206 static void forEachSlot(char* aTable
, uint32_t aCapacity
, F
&& f
) {
1207 auto hashes
= reinterpret_cast<HashNumber
*>(aTable
);
1208 auto entries
= reinterpret_cast<Entry
*>(&hashes
[aCapacity
]);
1209 Slot
slot(entries
, hashes
);
1210 for (size_t i
= 0; i
< size_t(aCapacity
); ++i
) {
1216 // A nullable pointer to a hash table element. A Ptr |p| can be tested
1217 // either explicitly |if (p.found()) p->...| or using boolean conversion
1218 // |if (p) p->...|. Ptr objects must not be used after any mutating hash
1219 // table operations unless |generation()| is tested.
1221 friend class HashTable
;
1225 const HashTable
* mTable
;
1226 Generation mGeneration
;
1230 Ptr(Slot aSlot
, const HashTable
& aTable
)
1235 mGeneration(aTable
.generation())
1240 // This constructor is used only by AddPtr() within lookupForAdd().
1241 explicit Ptr(const HashTable
& aTable
)
1242 : mSlot(nullptr, nullptr)
1246 mGeneration(aTable
.generation())
1251 bool isValid() const { return !!mSlot
.toEntry(); }
1255 : mSlot(nullptr, nullptr)
1264 bool found() const {
1269 MOZ_ASSERT(mGeneration
== mTable
->generation());
1271 return mSlot
.isLive();
1274 explicit operator bool() const { return found(); }
1276 bool operator==(const Ptr
& aRhs
) const {
1277 MOZ_ASSERT(found() && aRhs
.found());
1278 return mSlot
== aRhs
.mSlot
;
1281 bool operator!=(const Ptr
& aRhs
) const {
1283 MOZ_ASSERT(mGeneration
== mTable
->generation());
1285 return !(*this == aRhs
);
1288 T
& operator*() const {
1290 MOZ_ASSERT(found());
1291 MOZ_ASSERT(mGeneration
== mTable
->generation());
1296 T
* operator->() const {
1298 MOZ_ASSERT(found());
1299 MOZ_ASSERT(mGeneration
== mTable
->generation());
1301 return &mSlot
.get();
1305 // A Ptr that can be used to add a key after a failed lookup.
1306 class AddPtr
: public Ptr
{
1307 friend class HashTable
;
1309 HashNumber mKeyHash
;
1311 uint64_t mMutationCount
;
1314 AddPtr(Slot aSlot
, const HashTable
& aTable
, HashNumber aHashNumber
)
1315 : Ptr(aSlot
, aTable
),
1316 mKeyHash(aHashNumber
)
1319 mMutationCount(aTable
.mMutationCount
)
1324 // This constructor is used when lookupForAdd() is performed on a table
1325 // lacking entry storage; it leaves mSlot null but initializes everything
1327 AddPtr(const HashTable
& aTable
, HashNumber aHashNumber
)
1329 mKeyHash(aHashNumber
)
1332 mMutationCount(aTable
.mMutationCount
)
1335 MOZ_ASSERT(isLive());
1338 bool isLive() const { return isLiveHash(mKeyHash
); }
1341 AddPtr() : mKeyHash(0) {}
1344 // A hash table iterator that (mostly) doesn't allow table modifications.
1345 // As with Ptr/AddPtr, Iterator objects must not be used after any mutating
1346 // hash table operation unless the |generation()| is tested.
1348 void moveToNextLiveEntry() {
1349 while (++mCur
< mEnd
&& !mCur
.isLive()) {
1355 friend class HashTable
;
1357 explicit Iterator(const HashTable
& aTable
)
1358 : mCur(aTable
.slotForIndex(0)),
1359 mEnd(aTable
.slotForIndex(aTable
.capacity()))
1363 mMutationCount(aTable
.mMutationCount
),
1364 mGeneration(aTable
.generation()),
1368 if (!done() && !mCur
.isLive()) {
1369 moveToNextLiveEntry();
1376 const HashTable
& mTable
;
1377 uint64_t mMutationCount
;
1378 Generation mGeneration
;
1384 MOZ_ASSERT(mGeneration
== mTable
.generation());
1385 MOZ_ASSERT(mMutationCount
== mTable
.mMutationCount
);
1386 return mCur
== mEnd
;
1390 MOZ_ASSERT(!done());
1391 MOZ_ASSERT(mValidEntry
);
1392 MOZ_ASSERT(mGeneration
== mTable
.generation());
1393 MOZ_ASSERT(mMutationCount
== mTable
.mMutationCount
);
1398 MOZ_ASSERT(!done());
1399 MOZ_ASSERT(mGeneration
== mTable
.generation());
1400 MOZ_ASSERT(mMutationCount
== mTable
.mMutationCount
);
1401 moveToNextLiveEntry();
1408 // A hash table iterator that permits modification, removal and rekeying.
1409 // Since rehashing when elements were removed during enumeration would be
1410 // bad, it is postponed until the ModIterator is destructed. Since the
1411 // ModIterator's destructor touches the hash table, the user must ensure
1412 // that the hash table is still alive when the destructor runs.
1413 class ModIterator
: public Iterator
{
1414 friend class HashTable
;
1420 // ModIterator is movable but not copyable.
1421 ModIterator(const ModIterator
&) = delete;
1422 void operator=(const ModIterator
&) = delete;
1425 explicit ModIterator(HashTable
& aTable
)
1426 : Iterator(aTable
), mTable(aTable
), mRekeyed(false), mRemoved(false) {}
1429 MOZ_IMPLICIT
ModIterator(ModIterator
&& aOther
)
1431 mTable(aOther
.mTable
),
1432 mRekeyed(aOther
.mRekeyed
),
1433 mRemoved(aOther
.mRemoved
) {
1434 aOther
.mRekeyed
= false;
1435 aOther
.mRemoved
= false;
1438 // Removes the current element from the table, leaving |get()|
1439 // invalid until the next call to |next()|.
1441 mTable
.remove(this->mCur
);
1444 this->mValidEntry
= false;
1445 this->mMutationCount
= mTable
.mMutationCount
;
1449 NonConstT
& getMutable() {
1450 MOZ_ASSERT(!this->done());
1451 MOZ_ASSERT(this->mValidEntry
);
1452 MOZ_ASSERT(this->mGeneration
== this->Iterator::mTable
.generation());
1453 MOZ_ASSERT(this->mMutationCount
== this->Iterator::mTable
.mMutationCount
);
1454 return this->mCur
.getMutable();
1457 // Removes the current element and re-inserts it into the table with
1458 // a new key at the new Lookup position. |get()| is invalid after
1459 // this operation until the next call to |next()|.
1460 void rekey(const Lookup
& l
, const Key
& k
) {
1461 MOZ_ASSERT(&k
!= &HashPolicy::getKey(this->mCur
.get()));
1462 Ptr
p(this->mCur
, mTable
);
1463 mTable
.rekeyWithoutRehash(p
, l
, k
);
1466 this->mValidEntry
= false;
1467 this->mMutationCount
= mTable
.mMutationCount
;
1471 void rekey(const Key
& k
) { rekey(k
, k
); }
1473 // Potentially rehashes the table.
1477 mTable
.infallibleRehashIfOverloaded();
1486 // Range is similar to Iterator, but uses different terminology.
1488 friend class HashTable
;
1493 explicit Range(const HashTable
& table
) : mIter(table
) {}
1496 bool empty() const { return mIter
.done(); }
1498 T
& front() const { return mIter
.get(); }
1500 void popFront() { return mIter
.next(); }
1503 // Enum is similar to ModIterator, but uses different terminology.
1507 // Enum is movable but not copyable.
1508 Enum(const Enum
&) = delete;
1509 void operator=(const Enum
&) = delete;
1512 template <class Map
>
1513 explicit Enum(Map
& map
) : mIter(map
.mImpl
) {}
1515 MOZ_IMPLICIT
Enum(Enum
&& other
) : mIter(std::move(other
.mIter
)) {}
1517 bool empty() const { return mIter
.done(); }
1519 T
& front() const { return mIter
.get(); }
1521 void popFront() { return mIter
.next(); }
1523 void removeFront() { mIter
.remove(); }
1525 NonConstT
& mutableFront() { return mIter
.getMutable(); }
1527 void rekeyFront(const Lookup
& aLookup
, const Key
& aKey
) {
1528 mIter
.rekey(aLookup
, aKey
);
1531 void rekeyFront(const Key
& aKey
) { mIter
.rekey(aKey
); }
1534 // HashTable is movable
1535 HashTable(HashTable
&& aRhs
) : AllocPolicy(std::move(aRhs
)) { moveFrom(aRhs
); }
1536 HashTable
& operator=(HashTable
&& aRhs
) {
1537 MOZ_ASSERT(this != &aRhs
, "self-move assignment is prohibited");
1539 destroyTable(*this, mTable
, capacity());
1541 AllocPolicy::operator=(std::move(aRhs
));
1547 void moveFrom(HashTable
& aRhs
) {
1549 mHashShift
= aRhs
.mHashShift
;
1550 mTable
= aRhs
.mTable
;
1551 mEntryCount
= aRhs
.mEntryCount
;
1552 mRemovedCount
= aRhs
.mRemovedCount
;
1554 mMutationCount
= aRhs
.mMutationCount
;
1555 mEntered
= aRhs
.mEntered
;
1557 aRhs
.mTable
= nullptr;
1558 aRhs
.clearAndCompact();
1561 // HashTable is not copyable or assignable
1562 HashTable(const HashTable
&) = delete;
1563 void operator=(const HashTable
&) = delete;
1565 static const uint32_t CAP_BITS
= 30;
1568 uint64_t mGen
: 56; // entry storage generation number
1569 uint64_t mHashShift
: 8; // multiplicative hash shift
1570 char* mTable
; // entry storage
1571 uint32_t mEntryCount
; // number of entries in mTable
1572 uint32_t mRemovedCount
; // removed entry sentinels in mTable
1575 uint64_t mMutationCount
;
1576 mutable bool mEntered
;
1579 // The default initial capacity is 32 (enough to hold 16 elements), but it
1580 // can be as low as 4.
1581 static const uint32_t sDefaultLen
= 16;
1582 static const uint32_t sMinCapacity
= 4;
1583 // See the comments in HashTableEntry about this value.
1584 static_assert(sMinCapacity
>= 4, "too-small sMinCapacity breaks assumptions");
1585 static const uint32_t sMaxInit
= 1u << (CAP_BITS
- 1);
1586 static const uint32_t sMaxCapacity
= 1u << CAP_BITS
;
1588 // Hash-table alpha is conceptually a fraction, but to avoid floating-point
1589 // math we implement it as a ratio of integers.
1590 static const uint8_t sAlphaDenominator
= 4;
1591 static const uint8_t sMinAlphaNumerator
= 1; // min alpha: 1/4
1592 static const uint8_t sMaxAlphaNumerator
= 3; // max alpha: 3/4
1594 static const HashNumber sFreeKey
= Entry::sFreeKey
;
1595 static const HashNumber sRemovedKey
= Entry::sRemovedKey
;
1596 static const HashNumber sCollisionBit
= Entry::sCollisionBit
;
1598 static uint32_t bestCapacity(uint32_t aLen
) {
1600 (sMaxInit
* sAlphaDenominator
) / sAlphaDenominator
== sMaxInit
,
1601 "multiplication in numerator below could overflow");
1603 sMaxInit
* sAlphaDenominator
<= UINT32_MAX
- sMaxAlphaNumerator
,
1604 "numerator calculation below could potentially overflow");
1606 // Callers should ensure this is true.
1607 MOZ_ASSERT(aLen
<= sMaxInit
);
1609 // Compute the smallest capacity allowing |aLen| elements to be
1610 // inserted without rehashing: ceil(aLen / max-alpha). (Ceiling
1611 // integral division: <http://stackoverflow.com/a/2745086>.)
1612 uint32_t capacity
= (aLen
* sAlphaDenominator
+ sMaxAlphaNumerator
- 1) /
1614 capacity
= (capacity
< sMinCapacity
) ? sMinCapacity
: RoundUpPow2(capacity
);
1616 MOZ_ASSERT(capacity
>= aLen
);
1617 MOZ_ASSERT(capacity
<= sMaxCapacity
);
1622 static uint32_t hashShift(uint32_t aLen
) {
1623 // Reject all lengths whose initial computed capacity would exceed
1624 // sMaxCapacity. Round that maximum aLen down to the nearest power of two
1625 // for speedier code.
1626 if (MOZ_UNLIKELY(aLen
> sMaxInit
)) {
1627 MOZ_CRASH("initial length is too large");
1630 return kHashNumberBits
- mozilla::CeilingLog2(bestCapacity(aLen
));
1633 static bool isLiveHash(HashNumber aHash
) { return Entry::isLiveHash(aHash
); }
1635 static HashNumber
prepareHash(const Lookup
& aLookup
) {
1636 HashNumber keyHash
= ScrambleHashCode(HashPolicy::hash(aLookup
));
1638 // Avoid reserved hash codes.
1639 if (!isLiveHash(keyHash
)) {
1640 keyHash
-= (sRemovedKey
+ 1);
1642 return keyHash
& ~sCollisionBit
;
1645 enum FailureBehavior
{ DontReportFailure
= false, ReportFailure
= true };
1647 // Fake a struct that we're going to alloc. See the comments in
1648 // HashTableEntry about how the table is laid out, and why it's safe.
1650 unsigned char c
[sizeof(HashNumber
) + sizeof(typename
Entry::NonConstT
)];
1653 static char* createTable(AllocPolicy
& aAllocPolicy
, uint32_t aCapacity
,
1654 FailureBehavior aReportFailure
= ReportFailure
) {
1657 ? aAllocPolicy
.template pod_malloc
<FakeSlot
>(aCapacity
)
1658 : aAllocPolicy
.template maybe_pod_malloc
<FakeSlot
>(aCapacity
);
1660 MOZ_ASSERT((reinterpret_cast<uintptr_t>(fake
) % Entry::kMinimumAlignment
) ==
1663 char* table
= reinterpret_cast<char*>(fake
);
1665 forEachSlot(table
, aCapacity
, [&](Slot
& slot
) {
1666 *slot
.mKeyHash
= sFreeKey
;
1667 new (KnownNotNull
, slot
.toEntry()) Entry();
1673 static void destroyTable(AllocPolicy
& aAllocPolicy
, char* aOldTable
,
1674 uint32_t aCapacity
) {
1675 forEachSlot(aOldTable
, aCapacity
, [&](const Slot
& slot
) {
1676 if (slot
.isLive()) {
1677 slot
.toEntry()->destroyStoredT();
1680 freeTable(aAllocPolicy
, aOldTable
, aCapacity
);
1683 static void freeTable(AllocPolicy
& aAllocPolicy
, char* aOldTable
,
1684 uint32_t aCapacity
) {
1685 FakeSlot
* fake
= reinterpret_cast<FakeSlot
*>(aOldTable
);
1686 aAllocPolicy
.free_(fake
, aCapacity
);
1690 HashTable(AllocPolicy aAllocPolicy
, uint32_t aLen
)
1691 : AllocPolicy(std::move(aAllocPolicy
)),
1693 mHashShift(hashShift(aLen
)),
1705 explicit HashTable(AllocPolicy aAllocPolicy
)
1706 : HashTable(aAllocPolicy
, sDefaultLen
) {}
1710 destroyTable(*this, mTable
, capacity());
1715 HashNumber
hash1(HashNumber aHash0
) const { return aHash0
>> mHashShift
; }
1719 HashNumber mSizeMask
;
1722 DoubleHash
hash2(HashNumber aCurKeyHash
) const {
1723 uint32_t sizeLog2
= kHashNumberBits
- mHashShift
;
1724 DoubleHash dh
= {((aCurKeyHash
<< sizeLog2
) >> mHashShift
) | 1,
1725 (HashNumber(1) << sizeLog2
) - 1};
1729 static HashNumber
applyDoubleHash(HashNumber aHash1
,
1730 const DoubleHash
& aDoubleHash
) {
1731 return WrappingSubtract(aHash1
, aDoubleHash
.mHash2
) & aDoubleHash
.mSizeMask
;
1734 static MOZ_ALWAYS_INLINE
bool match(T
& aEntry
, const Lookup
& aLookup
) {
1735 return HashPolicy::match(HashPolicy::getKey(aEntry
), aLookup
);
1738 enum LookupReason
{ ForNonAdd
, ForAdd
};
1740 Slot
slotForIndex(HashNumber aIndex
) const {
1741 auto hashes
= reinterpret_cast<HashNumber
*>(mTable
);
1742 auto entries
= reinterpret_cast<Entry
*>(&hashes
[capacity()]);
1743 return Slot(&entries
[aIndex
], &hashes
[aIndex
]);
1746 // Warning: in order for readonlyThreadsafeLookup() to be safe this
1747 // function must not modify the table in any way when Reason==ForNonAdd.
1748 template <LookupReason Reason
>
1749 MOZ_ALWAYS_INLINE Slot
lookup(const Lookup
& aLookup
,
1750 HashNumber aKeyHash
) const {
1751 MOZ_ASSERT(isLiveHash(aKeyHash
));
1752 MOZ_ASSERT(!(aKeyHash
& sCollisionBit
));
1755 // Compute the primary hash address.
1756 HashNumber h1
= hash1(aKeyHash
);
1757 Slot slot
= slotForIndex(h1
);
1759 // Miss: return space for a new entry.
1760 if (slot
.isFree()) {
1764 // Hit: return entry.
1765 if (slot
.matchHash(aKeyHash
) && match(slot
.get(), aLookup
)) {
1769 // Collision: double hash.
1770 DoubleHash dh
= hash2(aKeyHash
);
1772 // Save the first removed entry pointer so we can recycle later.
1773 Maybe
<Slot
> firstRemoved
;
1776 if (Reason
== ForAdd
&& !firstRemoved
) {
1777 if (MOZ_UNLIKELY(slot
.isRemoved())) {
1778 firstRemoved
.emplace(slot
);
1780 slot
.setCollision();
1784 h1
= applyDoubleHash(h1
, dh
);
1786 slot
= slotForIndex(h1
);
1787 if (slot
.isFree()) {
1788 return firstRemoved
.refOr(slot
);
1791 if (slot
.matchHash(aKeyHash
) && match(slot
.get(), aLookup
)) {
1797 // This is a copy of lookup() hardcoded to the assumptions:
1798 // 1. the lookup is for an add;
1799 // 2. the key, whose |keyHash| has been passed, is not in the table.
1800 Slot
findNonLiveSlot(HashNumber aKeyHash
) {
1801 MOZ_ASSERT(!(aKeyHash
& sCollisionBit
));
1804 // We assume 'aKeyHash' has already been distributed.
1806 // Compute the primary hash address.
1807 HashNumber h1
= hash1(aKeyHash
);
1808 Slot slot
= slotForIndex(h1
);
1810 // Miss: return space for a new entry.
1811 if (!slot
.isLive()) {
1815 // Collision: double hash.
1816 DoubleHash dh
= hash2(aKeyHash
);
1819 slot
.setCollision();
1821 h1
= applyDoubleHash(h1
, dh
);
1823 slot
= slotForIndex(h1
);
1824 if (!slot
.isLive()) {
1830 enum RebuildStatus
{ NotOverloaded
, Rehashed
, RehashFailed
};
1832 RebuildStatus
changeTableSize(
1833 uint32_t newCapacity
, FailureBehavior aReportFailure
= ReportFailure
) {
1834 MOZ_ASSERT(IsPowerOfTwo(newCapacity
));
1835 MOZ_ASSERT(!!mTable
== !!capacity());
1837 // Look, but don't touch, until we succeed in getting new entry store.
1838 char* oldTable
= mTable
;
1839 uint32_t oldCapacity
= capacity();
1840 uint32_t newLog2
= mozilla::CeilingLog2(newCapacity
);
1842 if (MOZ_UNLIKELY(newCapacity
> sMaxCapacity
)) {
1843 if (aReportFailure
) {
1844 this->reportAllocOverflow();
1846 return RehashFailed
;
1849 char* newTable
= createTable(*this, newCapacity
, aReportFailure
);
1851 return RehashFailed
;
1854 // We can't fail from here on, so update table parameters.
1855 mHashShift
= kHashNumberBits
- newLog2
;
1860 // Copy only live entries, leaving removed ones behind.
1861 forEachSlot(oldTable
, oldCapacity
, [&](Slot
& slot
) {
1862 if (slot
.isLive()) {
1863 HashNumber hn
= slot
.getKeyHash();
1864 findNonLiveSlot(hn
).setLive(
1865 hn
, std::move(const_cast<typename
Entry::NonConstT
&>(slot
.get())));
1871 // All entries have been destroyed, no need to destroyTable.
1872 freeTable(*this, oldTable
, oldCapacity
);
1876 RebuildStatus
rehashIfOverloaded(
1877 FailureBehavior aReportFailure
= ReportFailure
) {
1878 static_assert(sMaxCapacity
<= UINT32_MAX
/ sMaxAlphaNumerator
,
1879 "multiplication below could overflow");
1881 // Note: if capacity() is zero, this will always succeed, which is
1883 bool overloaded
= mEntryCount
+ mRemovedCount
>=
1884 capacity() * sMaxAlphaNumerator
/ sAlphaDenominator
;
1887 return NotOverloaded
;
1890 // Succeed if a quarter or more of all entries are removed. Note that this
1891 // always succeeds if capacity() == 0 (i.e. entry storage has not been
1892 // allocated), which is what we want, because it means changeTableSize()
1893 // will allocate the requested capacity rather than doubling it.
1894 bool manyRemoved
= mRemovedCount
>= (capacity() >> 2);
1895 uint32_t newCapacity
= manyRemoved
? rawCapacity() : rawCapacity() * 2;
1896 return changeTableSize(newCapacity
, aReportFailure
);
1899 void infallibleRehashIfOverloaded() {
1900 if (rehashIfOverloaded(DontReportFailure
) == RehashFailed
) {
1901 rehashTableInPlace();
1905 void remove(Slot
& aSlot
) {
1908 if (aSlot
.hasCollision()) {
1920 void shrinkIfUnderloaded() {
1921 static_assert(sMaxCapacity
<= UINT32_MAX
/ sMinAlphaNumerator
,
1922 "multiplication below could overflow");
1924 capacity() > sMinCapacity
&&
1925 mEntryCount
<= capacity() * sMinAlphaNumerator
/ sAlphaDenominator
;
1928 (void)changeTableSize(capacity() / 2, DontReportFailure
);
1932 // This is identical to changeTableSize(currentSize), but without requiring
1933 // a second table. We do this by recycling the collision bits to tell us if
1934 // the element is already inserted or still waiting to be inserted. Since
1935 // already-inserted elements win any conflicts, we get the same table as we
1936 // would have gotten through random insertion order.
1937 void rehashTableInPlace() {
1940 forEachSlot(mTable
, capacity(), [&](Slot
& slot
) { slot
.unsetCollision(); });
1941 for (uint32_t i
= 0; i
< capacity();) {
1942 Slot src
= slotForIndex(i
);
1944 if (!src
.isLive() || src
.hasCollision()) {
1949 HashNumber keyHash
= src
.getKeyHash();
1950 HashNumber h1
= hash1(keyHash
);
1951 DoubleHash dh
= hash2(keyHash
);
1952 Slot tgt
= slotForIndex(h1
);
1954 if (!tgt
.hasCollision()) {
1960 h1
= applyDoubleHash(h1
, dh
);
1961 tgt
= slotForIndex(h1
);
1965 // TODO: this algorithm leaves collision bits on *all* elements, even if
1966 // they are on no collision path. We have the option of setting the
1967 // collision bits correctly on a subsequent pass or skipping the rehash
1968 // unless we are totally filled with tombstones: benchmark to find out
1969 // which approach is best.
1972 // Note: |aLookup| may be a reference to a piece of |u|, so this function
1973 // must take care not to use |aLookup| after moving |u|.
1975 // Prefer to use putNewInfallible; this function does not check
1977 template <typename
... Args
>
1978 void putNewInfallibleInternal(const Lookup
& aLookup
, Args
&&... aArgs
) {
1981 HashNumber keyHash
= prepareHash(aLookup
);
1982 Slot slot
= findNonLiveSlot(keyHash
);
1984 if (slot
.isRemoved()) {
1986 keyHash
|= sCollisionBit
;
1989 slot
.setLive(keyHash
, std::forward
<Args
>(aArgs
)...);
1998 forEachSlot(mTable
, capacity(), [&](Slot
& slot
) { slot
.clear(); });
2006 // Resize the table down to the smallest capacity that doesn't overload the
2007 // table. Since we call shrinkIfUnderloaded() on every remove, you only need
2008 // to call this after a bulk removal of items done without calling remove().
2011 // Free the entry storage.
2012 freeTable(*this, mTable
, capacity());
2014 mHashShift
= hashShift(0); // gives minimum capacity on regrowth
2020 uint32_t bestCapacity
= this->bestCapacity(mEntryCount
);
2021 MOZ_ASSERT(bestCapacity
<= capacity());
2023 if (bestCapacity
< capacity()) {
2024 (void)changeTableSize(bestCapacity
, DontReportFailure
);
2028 void clearAndCompact() {
2033 [[nodiscard
]] bool reserve(uint32_t aLen
) {
2038 if (MOZ_UNLIKELY(aLen
> sMaxInit
)) {
2042 uint32_t bestCapacity
= this->bestCapacity(aLen
);
2043 if (bestCapacity
<= capacity()) {
2044 return true; // Capacity is already sufficient.
2047 RebuildStatus status
= changeTableSize(bestCapacity
, ReportFailure
);
2048 MOZ_ASSERT(status
!= NotOverloaded
);
2049 return status
!= RehashFailed
;
2052 Iterator
iter() const { return Iterator(*this); }
2054 ModIterator
modIter() { return ModIterator(*this); }
2056 Range
all() const { return Range(*this); }
2058 bool empty() const { return mEntryCount
== 0; }
2060 uint32_t count() const { return mEntryCount
; }
2062 uint32_t rawCapacity() const { return 1u << (kHashNumberBits
- mHashShift
); }
2064 uint32_t capacity() const { return mTable
? rawCapacity() : 0; }
2066 Generation
generation() const { return Generation(mGen
); }
2068 size_t shallowSizeOfExcludingThis(MallocSizeOf aMallocSizeOf
) const {
2069 return aMallocSizeOf(mTable
);
2072 size_t shallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
2073 return aMallocSizeOf(this) + shallowSizeOfExcludingThis(aMallocSizeOf
);
2076 MOZ_ALWAYS_INLINE Ptr
readonlyThreadsafeLookup(const Lookup
& aLookup
) const {
2077 if (empty() || !HasHash
<HashPolicy
>(aLookup
)) {
2080 HashNumber keyHash
= prepareHash(aLookup
);
2081 return Ptr(lookup
<ForNonAdd
>(aLookup
, keyHash
), *this);
2084 MOZ_ALWAYS_INLINE Ptr
lookup(const Lookup
& aLookup
) const {
2085 ReentrancyGuard
g(*this);
2086 return readonlyThreadsafeLookup(aLookup
);
2089 MOZ_ALWAYS_INLINE AddPtr
lookupForAdd(const Lookup
& aLookup
) {
2090 ReentrancyGuard
g(*this);
2091 if (!EnsureHash
<HashPolicy
>(aLookup
)) {
2095 HashNumber keyHash
= prepareHash(aLookup
);
2098 return AddPtr(*this, keyHash
);
2101 // Directly call the constructor in the return statement to avoid
2102 // excess copying when building with Visual Studio 2017.
2104 return AddPtr(lookup
<ForAdd
>(aLookup
, keyHash
), *this, keyHash
);
2107 template <typename
... Args
>
2108 [[nodiscard
]] bool add(AddPtr
& aPtr
, Args
&&... aArgs
) {
2109 ReentrancyGuard
g(*this);
2110 MOZ_ASSERT_IF(aPtr
.isValid(), mTable
);
2111 MOZ_ASSERT_IF(aPtr
.isValid(), aPtr
.mTable
== this);
2112 MOZ_ASSERT(!aPtr
.found());
2113 MOZ_ASSERT(!(aPtr
.mKeyHash
& sCollisionBit
));
2115 // Check for error from ensureHash() here.
2116 if (!aPtr
.isLive()) {
2120 MOZ_ASSERT(aPtr
.mGeneration
== generation());
2122 MOZ_ASSERT(aPtr
.mMutationCount
== mMutationCount
);
2125 if (!aPtr
.isValid()) {
2126 MOZ_ASSERT(!mTable
&& mEntryCount
== 0);
2127 uint32_t newCapacity
= rawCapacity();
2128 RebuildStatus status
= changeTableSize(newCapacity
, ReportFailure
);
2129 MOZ_ASSERT(status
!= NotOverloaded
);
2130 if (status
== RehashFailed
) {
2133 aPtr
.mSlot
= findNonLiveSlot(aPtr
.mKeyHash
);
2135 } else if (aPtr
.mSlot
.isRemoved()) {
2136 // Changing an entry from removed to live does not affect whether we are
2137 // overloaded and can be handled separately.
2138 if (!this->checkSimulatedOOM()) {
2142 aPtr
.mKeyHash
|= sCollisionBit
;
2145 // Preserve the validity of |aPtr.mSlot|.
2146 RebuildStatus status
= rehashIfOverloaded();
2147 if (status
== RehashFailed
) {
2150 if (status
== NotOverloaded
&& !this->checkSimulatedOOM()) {
2153 if (status
== Rehashed
) {
2154 aPtr
.mSlot
= findNonLiveSlot(aPtr
.mKeyHash
);
2158 aPtr
.mSlot
.setLive(aPtr
.mKeyHash
, std::forward
<Args
>(aArgs
)...);
2162 aPtr
.mGeneration
= generation();
2163 aPtr
.mMutationCount
= mMutationCount
;
2168 // Note: |aLookup| may be a reference to a piece of |u|, so this function
2169 // must take care not to use |aLookup| after moving |u|.
2170 template <typename
... Args
>
2171 void putNewInfallible(const Lookup
& aLookup
, Args
&&... aArgs
) {
2172 MOZ_ASSERT(!lookup(aLookup
).found());
2173 ReentrancyGuard
g(*this);
2174 putNewInfallibleInternal(aLookup
, std::forward
<Args
>(aArgs
)...);
2177 // Note: |aLookup| may be alias arguments in |aArgs|, so this function must
2178 // take care not to use |aLookup| after moving |aArgs|.
2179 template <typename
... Args
>
2180 [[nodiscard
]] bool putNew(const Lookup
& aLookup
, Args
&&... aArgs
) {
2181 if (!this->checkSimulatedOOM()) {
2184 if (!EnsureHash
<HashPolicy
>(aLookup
)) {
2187 if (rehashIfOverloaded() == RehashFailed
) {
2190 putNewInfallible(aLookup
, std::forward
<Args
>(aArgs
)...);
2194 // Note: |aLookup| may be a reference to a piece of |u|, so this function
2195 // must take care not to use |aLookup| after moving |u|.
2196 template <typename
... Args
>
2197 [[nodiscard
]] bool relookupOrAdd(AddPtr
& aPtr
, const Lookup
& aLookup
,
2199 // Check for error from ensureHash() here.
2200 if (!aPtr
.isLive()) {
2204 aPtr
.mGeneration
= generation();
2205 aPtr
.mMutationCount
= mMutationCount
;
2208 ReentrancyGuard
g(*this);
2209 // Check that aLookup has not been destroyed.
2210 MOZ_ASSERT(prepareHash(aLookup
) == aPtr
.mKeyHash
);
2211 aPtr
.mSlot
= lookup
<ForAdd
>(aLookup
, aPtr
.mKeyHash
);
2216 // Clear aPtr so it's invalid; add() will allocate storage and redo the
2218 aPtr
.mSlot
= Slot(nullptr, nullptr);
2220 return add(aPtr
, std::forward
<Args
>(aArgs
)...);
2223 void remove(Ptr aPtr
) {
2225 ReentrancyGuard
g(*this);
2226 MOZ_ASSERT(aPtr
.found());
2227 MOZ_ASSERT(aPtr
.mGeneration
== generation());
2229 shrinkIfUnderloaded();
2232 void rekeyWithoutRehash(Ptr aPtr
, const Lookup
& aLookup
, const Key
& aKey
) {
2234 ReentrancyGuard
g(*this);
2235 MOZ_ASSERT(aPtr
.found());
2236 MOZ_ASSERT(aPtr
.mGeneration
== generation());
2237 typename HashTableEntry
<T
>::NonConstT
t(std::move(*aPtr
));
2238 HashPolicy::setKey(t
, const_cast<Key
&>(aKey
));
2240 putNewInfallibleInternal(aLookup
, std::move(t
));
2243 void rekeyAndMaybeRehash(Ptr aPtr
, const Lookup
& aLookup
, const Key
& aKey
) {
2244 rekeyWithoutRehash(aPtr
, aLookup
, aKey
);
2245 infallibleRehashIfOverloaded();
2249 } // namespace detail
2250 } // namespace mozilla
2252 #endif /* mozilla_HashTable_h */