1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* Smart pointer managing sole ownership of a resource. */
9 #ifndef mozilla_UniquePtr_h
10 #define mozilla_UniquePtr_h
13 #include <type_traits>
16 #include "mozilla/Assertions.h"
17 #include "mozilla/Attributes.h"
18 #include "mozilla/CompactPair.h"
19 #include "mozilla/Compiler.h"
25 template <typename T
, class D
= DefaultDelete
<T
>>
28 } // namespace mozilla
34 struct HasPointerTypeHelper
{
36 static double Test(...);
38 static char Test(typename
U::pointer
* = 0);
43 : public std::integral_constant
<bool, sizeof(HasPointerTypeHelper::Test
<T
>(
46 template <class T
, class D
, bool = HasPointerType
<D
>::value
>
47 struct PointerTypeImpl
{
48 typedef typename
D::pointer Type
;
51 template <class T
, class D
>
52 struct PointerTypeImpl
<T
, D
, false> {
56 template <class T
, class D
>
58 typedef typename PointerTypeImpl
<T
, std::remove_reference_t
<D
>>::Type Type
;
64 * UniquePtr is a smart pointer that wholly owns a resource. Ownership may be
65 * transferred out of a UniquePtr through explicit action, but otherwise the
66 * resource is destroyed when the UniquePtr is destroyed.
68 * UniquePtr is similar to C++98's std::auto_ptr, but it improves upon auto_ptr
69 * in one crucial way: it's impossible to copy a UniquePtr. Copying an auto_ptr
70 * obviously *can't* copy ownership of its singly-owned resource. So what
71 * happens if you try to copy one? Bizarrely, ownership is implicitly
72 * *transferred*, preserving single ownership but breaking code that assumes a
73 * copy of an object is identical to the original. (This is why auto_ptr is
74 * prohibited in STL containers.)
76 * UniquePtr solves this problem by being *movable* rather than copyable.
77 * Instead of passing a |UniquePtr u| directly to the constructor or assignment
78 * operator, you pass |Move(u)|. In doing so you indicate that you're *moving*
79 * ownership out of |u|, into the target of the construction/assignment. After
80 * the transfer completes, |u| contains |nullptr| and may be safely destroyed.
81 * This preserves single ownership but also allows UniquePtr to be moved by
82 * algorithms that have been made move-safe. (Note: if |u| is instead a
83 * temporary expression, don't use |Move()|: just pass the expression, because
84 * it's already move-ready. For more information see Move.h.)
86 * UniquePtr is also better than std::auto_ptr in that the deletion operation is
87 * customizable. An optional second template parameter specifies a class that
88 * (through its operator()(T*)) implements the desired deletion policy. If no
89 * policy is specified, mozilla::DefaultDelete<T> is used -- which will either
90 * |delete| or |delete[]| the resource, depending whether the resource is an
91 * array. Custom deletion policies ideally should be empty classes (no member
92 * fields, no member fields in base classes, no virtual methods/inheritance),
93 * because then UniquePtr can be just as efficient as a raw pointer.
95 * Use of UniquePtr proceeds like so:
97 * UniquePtr<int> g1; // initializes to nullptr
98 * g1.reset(new int); // switch resources using reset()
99 * g1 = nullptr; // clears g1, deletes the int
101 * UniquePtr<int> g2(new int); // owns that int
102 * int* p = g2.release(); // g2 leaks its int -- still requires deletion
103 * delete p; // now freed
105 * struct S { int x; S(int x) : x(x) {} };
106 * UniquePtr<S> g3, g4(new S(5));
107 * g3 = std::move(g4); // g3 owns the S, g4 cleared
108 * S* p = g3.get(); // g3 still owns |p|
109 * assert(g3->x == 5); // operator-> works (if .get() != nullptr)
110 * assert((*g3).x == 5); // also operator* (again, if not cleared)
111 * std::swap(g3, g4); // g4 now owns the S, g3 cleared
112 * g3.swap(g4); // g3 now owns the S, g4 cleared
113 * UniquePtr<S> g5(std::move(g3)); // g5 owns the S, g3 cleared
114 * g5.reset(); // deletes the S, g5 cleared
116 * struct FreePolicy { void operator()(void* p) { free(p); } };
117 * UniquePtr<int, FreePolicy> g6(static_cast<int*>(malloc(sizeof(int))));
118 * int* ptr = g6.get();
119 * g6 = nullptr; // calls free(ptr)
121 * Now, carefully note a few things you *can't* do:
124 * b1 = new int; // BAD: can only assign another UniquePtr
125 * int* ptr = b1; // BAD: no auto-conversion to pointer, use get()
127 * UniquePtr<int> b2(b1); // BAD: can't copy a UniquePtr
128 * UniquePtr<int> b3 = b1; // BAD: can't copy-assign a UniquePtr
130 * (Note that changing a UniquePtr to store a direct |new| expression is
131 * permitted, but usually you should use MakeUnique, defined at the end of this
134 * A few miscellaneous notes:
136 * UniquePtr, when not instantiated for an array type, can be move-constructed
137 * and move-assigned, not only from itself but from "derived" UniquePtr<U, E>
138 * instantiations where U converts to T and E converts to D. If you want to use
139 * this, you're going to have to specify a deletion policy for both UniquePtr
140 * instantations, and T pretty much has to have a virtual destructor. In other
141 * words, this doesn't work:
143 * struct Base { virtual ~Base() {} };
144 * struct Derived : Base {};
146 * UniquePtr<Base> b1;
147 * // BAD: DefaultDelete<Base> and DefaultDelete<Derived> don't interconvert
148 * UniquePtr<Derived> d1(std::move(b));
150 * UniquePtr<Base> b2;
151 * UniquePtr<Derived, DefaultDelete<Base>> d2(std::move(b2)); // okay
153 * UniquePtr is specialized for array types. Specializing with an array type
154 * creates a smart-pointer version of that array -- not a pointer to such an
157 * UniquePtr<int[]> arr(new int[5]);
160 * What else is different? Deletion of course uses |delete[]|. An operator[]
161 * is provided. Functionality that doesn't make sense for arrays is removed.
162 * The constructors and mutating methods only accept array pointers (not T*, U*
163 * that converts to T*, or UniquePtr<U[]> or UniquePtr<U>) or |nullptr|.
165 * It's perfectly okay for a function to return a UniquePtr. This transfers
166 * the UniquePtr's sole ownership of the data, to the fresh UniquePtr created
167 * in the calling function, that will then solely own that data. Such functions
168 * can return a local variable UniquePtr, |nullptr|, |UniquePtr(ptr)| where
169 * |ptr| is a |T*|, or a UniquePtr |Move()|'d from elsewhere.
171 * UniquePtr will commonly be a member of a class, with lifetime equivalent to
172 * that of that class. If you want to expose the related resource, you could
173 * expose a raw pointer via |get()|, but ownership of a raw pointer is
174 * inherently unclear. So it's better to expose a |const UniquePtr&| instead.
175 * This prohibits mutation but still allows use of |get()| when needed (but
176 * operator-> is preferred). Of course, you can only use this smart pointer as
177 * long as the enclosing class instance remains live -- no different than if you
178 * exposed the |get()| raw pointer.
180 * To pass a UniquePtr-managed resource as a pointer, use a |const UniquePtr&|
181 * argument. To specify an inout parameter (where the method may or may not
182 * take ownership of the resource, or reset it), or to specify an out parameter
183 * (where simply returning a |UniquePtr| isn't possible), use a |UniquePtr&|
184 * argument. To unconditionally transfer ownership of a UniquePtr
185 * into a method, use a |UniquePtr| argument. To conditionally transfer
186 * ownership of a resource into a method, should the method want it, use a
187 * |UniquePtr&&| argument.
189 template <typename T
, class D
>
192 typedef T ElementType
;
193 typedef D DeleterType
;
194 typedef typename
detail::PointerType
<T
, DeleterType
>::Type Pointer
;
197 mozilla::CompactPair
<Pointer
, DeleterType
> mTuple
;
199 Pointer
& ptr() { return mTuple
.first(); }
200 const Pointer
& ptr() const { return mTuple
.first(); }
202 DeleterType
& del() { return mTuple
.second(); }
203 const DeleterType
& del() const { return mTuple
.second(); }
207 * Construct a UniquePtr containing |nullptr|.
209 constexpr UniquePtr() : mTuple(static_cast<Pointer
>(nullptr), DeleterType()) {
210 static_assert(!std::is_pointer_v
<D
>, "must provide a deleter instance");
211 static_assert(!std::is_reference_v
<D
>, "must provide a deleter instance");
215 * Construct a UniquePtr containing |aPtr|.
217 explicit UniquePtr(Pointer aPtr
) : mTuple(aPtr
, DeleterType()) {
218 static_assert(!std::is_pointer_v
<D
>, "must provide a deleter instance");
219 static_assert(!std::is_reference_v
<D
>, "must provide a deleter instance");
222 UniquePtr(Pointer aPtr
,
223 std::conditional_t
<std::is_reference_v
<D
>, D
, const D
&> aD1
)
224 : mTuple(aPtr
, aD1
) {}
226 UniquePtr(Pointer aPtr
, std::remove_reference_t
<D
>&& aD2
)
227 : mTuple(aPtr
, std::move(aD2
)) {
228 static_assert(!std::is_reference_v
<D
>,
229 "rvalue deleter can't be stored by reference");
232 UniquePtr(UniquePtr
&& aOther
)
233 : mTuple(aOther
.release(),
234 std::forward
<DeleterType
>(aOther
.get_deleter())) {}
236 MOZ_IMPLICIT
constexpr UniquePtr(decltype(nullptr)) : UniquePtr() {}
238 template <typename U
, class E
>
239 MOZ_IMPLICIT
UniquePtr(
240 UniquePtr
<U
, E
>&& aOther
,
242 std::is_convertible_v
<typename UniquePtr
<U
, E
>::Pointer
, Pointer
> &&
243 !std::is_array_v
<U
> &&
244 (std::is_reference_v
<D
> ? std::is_same_v
<D
, E
>
245 : std::is_convertible_v
<E
, D
>),
248 : mTuple(aOther
.release(), std::forward
<E
>(aOther
.get_deleter())) {}
250 ~UniquePtr() { reset(nullptr); }
252 UniquePtr
& operator=(UniquePtr
&& aOther
) {
253 reset(aOther
.release());
254 get_deleter() = std::forward
<DeleterType
>(aOther
.get_deleter());
258 template <typename U
, typename E
>
259 UniquePtr
& operator=(UniquePtr
<U
, E
>&& aOther
) {
261 std::is_convertible_v
<typename UniquePtr
<U
, E
>::Pointer
, Pointer
>,
262 "incompatible UniquePtr pointees");
263 static_assert(!std::is_array_v
<U
>,
264 "can't assign from UniquePtr holding an array");
266 reset(aOther
.release());
267 get_deleter() = std::forward
<E
>(aOther
.get_deleter());
271 UniquePtr
& operator=(decltype(nullptr)) {
276 std::add_lvalue_reference_t
<T
> operator*() const {
277 MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr with *");
280 Pointer
operator->() const {
281 MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr with ->");
285 explicit operator bool() const { return get() != nullptr; }
287 Pointer
get() const { return ptr(); }
289 DeleterType
& get_deleter() { return del(); }
290 const DeleterType
& get_deleter() const { return del(); }
292 [[nodiscard
]] Pointer
release() {
298 void reset(Pointer aPtr
= Pointer()) {
301 if (old
!= nullptr) {
306 void swap(UniquePtr
& aOther
) { mTuple
.swap(aOther
.mTuple
); }
308 UniquePtr(const UniquePtr
& aOther
) = delete; // construct using std::move()!
309 void operator=(const UniquePtr
& aOther
) =
310 delete; // assign using std::move()!
313 // In case you didn't read the comment by the main definition (you should!): the
314 // UniquePtr<T[]> specialization exists to manage array pointers. It deletes
315 // such pointers using delete[], it will reject construction and modification
316 // attempts using U* or U[]. Otherwise it works like the normal UniquePtr.
317 template <typename T
, class D
>
318 class UniquePtr
<T
[], D
> {
321 typedef T ElementType
;
322 typedef D DeleterType
;
325 mozilla::CompactPair
<Pointer
, DeleterType
> mTuple
;
329 * Construct a UniquePtr containing nullptr.
331 constexpr UniquePtr() : mTuple(static_cast<Pointer
>(nullptr), DeleterType()) {
332 static_assert(!std::is_pointer_v
<D
>, "must provide a deleter instance");
333 static_assert(!std::is_reference_v
<D
>, "must provide a deleter instance");
337 * Construct a UniquePtr containing |aPtr|.
339 explicit UniquePtr(Pointer aPtr
) : mTuple(aPtr
, DeleterType()) {
340 static_assert(!std::is_pointer_v
<D
>, "must provide a deleter instance");
341 static_assert(!std::is_reference_v
<D
>, "must provide a deleter instance");
344 // delete[] knows how to handle *only* an array of a single class type. For
345 // delete[] to work correctly, it must know the size of each element, the
346 // fields and base classes of each element requiring destruction, and so on.
347 // So forbid all overloads which would end up invoking delete[] on a pointer
348 // of the wrong type.
349 template <typename U
>
352 std::is_pointer_v
<U
> && std::is_convertible_v
<U
, Pointer
>, int>
353 aDummy
= 0) = delete;
355 UniquePtr(Pointer aPtr
,
356 std::conditional_t
<std::is_reference_v
<D
>, D
, const D
&> aD1
)
357 : mTuple(aPtr
, aD1
) {}
359 UniquePtr(Pointer aPtr
, std::remove_reference_t
<D
>&& aD2
)
360 : mTuple(aPtr
, std::move(aD2
)) {
361 static_assert(!std::is_reference_v
<D
>,
362 "rvalue deleter can't be stored by reference");
365 // Forbidden for the same reasons as stated above.
366 template <typename U
, typename V
>
367 UniquePtr(U
&& aU
, V
&& aV
,
369 std::is_pointer_v
<U
> && std::is_convertible_v
<U
, Pointer
>, int>
370 aDummy
= 0) = delete;
372 UniquePtr(UniquePtr
&& aOther
)
373 : mTuple(aOther
.release(),
374 std::forward
<DeleterType
>(aOther
.get_deleter())) {}
377 UniquePtr(decltype(nullptr)) : mTuple(nullptr, DeleterType()) {
378 static_assert(!std::is_pointer_v
<D
>, "must provide a deleter instance");
379 static_assert(!std::is_reference_v
<D
>, "must provide a deleter instance");
382 ~UniquePtr() { reset(nullptr); }
384 UniquePtr
& operator=(UniquePtr
&& aOther
) {
385 reset(aOther
.release());
386 get_deleter() = std::forward
<DeleterType
>(aOther
.get_deleter());
390 UniquePtr
& operator=(decltype(nullptr)) {
395 explicit operator bool() const { return get() != nullptr; }
397 T
& operator[](decltype(sizeof(int)) aIndex
) const { return get()[aIndex
]; }
398 Pointer
get() const { return mTuple
.first(); }
400 DeleterType
& get_deleter() { return mTuple
.second(); }
401 const DeleterType
& get_deleter() const { return mTuple
.second(); }
403 [[nodiscard
]] Pointer
release() {
404 Pointer p
= mTuple
.first();
405 mTuple
.first() = nullptr;
409 void reset(Pointer aPtr
= Pointer()) {
410 Pointer old
= mTuple
.first();
411 mTuple
.first() = aPtr
;
412 if (old
!= nullptr) {
413 mTuple
.second()(old
);
417 void reset(decltype(nullptr)) {
418 Pointer old
= mTuple
.first();
419 mTuple
.first() = nullptr;
420 if (old
!= nullptr) {
421 mTuple
.second()(old
);
425 template <typename U
>
426 void reset(U
) = delete;
428 void swap(UniquePtr
& aOther
) { mTuple
.swap(aOther
.mTuple
); }
430 UniquePtr(const UniquePtr
& aOther
) = delete; // construct using std::move()!
431 void operator=(const UniquePtr
& aOther
) =
432 delete; // assign using std::move()!
436 * A default deletion policy using plain old operator delete.
438 * Note that this type can be specialized, but authors should beware of the risk
439 * that the specialization may at some point cease to match (either because it
440 * gets moved to a different compilation unit or the signature changes). If the
441 * non-specialized (|delete|-based) version compiles for that type but does the
442 * wrong thing, bad things could happen.
444 * This is a non-issue for types which are always incomplete (i.e. opaque handle
445 * types), since |delete|-ing such a type will always trigger a compilation
448 template <typename T
>
449 class DefaultDelete
{
451 constexpr DefaultDelete() = default;
453 template <typename U
>
454 MOZ_IMPLICIT
DefaultDelete(
455 const DefaultDelete
<U
>& aOther
,
456 std::enable_if_t
<std::is_convertible_v
<U
*, T
*>, int> aDummy
= 0) {}
458 void operator()(T
* aPtr
) const {
459 static_assert(sizeof(T
) > 0, "T must be complete");
464 /** A default deletion policy using operator delete[]. */
465 template <typename T
>
466 class DefaultDelete
<T
[]> {
468 constexpr DefaultDelete() = default;
470 void operator()(T
* aPtr
) const {
471 static_assert(sizeof(T
) > 0, "T must be complete");
475 template <typename U
>
476 void operator()(U
* aPtr
) const = delete;
479 template <typename T
, class D
, typename U
, class E
>
480 bool operator==(const UniquePtr
<T
, D
>& aX
, const UniquePtr
<U
, E
>& aY
) {
481 return aX
.get() == aY
.get();
484 template <typename T
, class D
, typename U
, class E
>
485 bool operator!=(const UniquePtr
<T
, D
>& aX
, const UniquePtr
<U
, E
>& aY
) {
486 return aX
.get() != aY
.get();
489 template <typename T
, class D
>
490 bool operator==(const UniquePtr
<T
, D
>& aX
, const T
* aY
) {
491 return aX
.get() == aY
;
494 template <typename T
, class D
>
495 bool operator==(const T
* aY
, const UniquePtr
<T
, D
>& aX
) {
496 return aY
== aX
.get();
499 template <typename T
, class D
>
500 bool operator!=(const UniquePtr
<T
, D
>& aX
, const T
* aY
) {
501 return aX
.get() != aY
;
504 template <typename T
, class D
>
505 bool operator!=(const T
* aY
, const UniquePtr
<T
, D
>& aX
) {
506 return aY
!= aX
.get();
509 template <typename T
, class D
>
510 bool operator==(const UniquePtr
<T
, D
>& aX
, decltype(nullptr)) {
514 template <typename T
, class D
>
515 bool operator==(decltype(nullptr), const UniquePtr
<T
, D
>& aX
) {
519 template <typename T
, class D
>
520 bool operator!=(const UniquePtr
<T
, D
>& aX
, decltype(nullptr)) {
524 template <typename T
, class D
>
525 bool operator!=(decltype(nullptr), const UniquePtr
<T
, D
>& aX
) {
529 // No operator<, operator>, operator<=, operator>= for now because simplicity.
533 template <typename T
>
534 struct UniqueSelector
{
535 typedef UniquePtr
<T
> SingleObject
;
538 template <typename T
>
539 struct UniqueSelector
<T
[]> {
540 typedef UniquePtr
<T
[]> UnknownBound
;
543 template <typename T
, decltype(sizeof(int)) N
>
544 struct UniqueSelector
<T
[N
]> {
545 typedef UniquePtr
<T
[N
]> KnownBound
;
548 } // namespace detail
551 * MakeUnique is a helper function for allocating new'd objects and arrays,
552 * returning a UniquePtr containing the resulting pointer. The semantics of
553 * MakeUnique<Type>(...) are as follows.
555 * If Type is an array T[n]:
556 * Disallowed, deleted, no overload for you!
557 * If Type is an array T[]:
558 * MakeUnique<T[]>(size_t) is the only valid overload. The pointer returned
559 * is as if by |new T[n]()|, which value-initializes each element. (If T
560 * isn't a class type, this will zero each element. If T is a class type,
561 * then roughly speaking, each element will be constructed using its default
562 * constructor. See C++11 [dcl.init]p7 for the full gory details.)
563 * If Type is non-array T:
564 * The arguments passed to MakeUnique<T>(...) are forwarded into a
565 * |new T(...)| call, initializing the T as would happen if executing
568 * There are various benefits to using MakeUnique instead of |new| expressions.
570 * First, MakeUnique eliminates use of |new| from code entirely. If objects are
571 * only created through UniquePtr, then (assuming all explicit release() calls
572 * are safe, including transitively, and no type-safety casting funniness)
573 * correctly maintained ownership of the UniquePtr guarantees no leaks are
574 * possible. (This pays off best if a class is only ever created through a
575 * factory method on the class, using a private constructor.)
577 * Second, initializing a UniquePtr using a |new| expression requires repeating
578 * the name of the new'd type, whereas MakeUnique in concert with the |auto|
579 * keyword names it only once:
581 * UniquePtr<char> ptr1(new char()); // repetitive
582 * auto ptr2 = MakeUnique<char>(); // shorter
584 * Of course this assumes the reader understands the operation MakeUnique
585 * performs. In the long run this is probably a reasonable assumption. In the
586 * short run you'll have to use your judgment about what readers can be expected
587 * to know, or to quickly look up.
589 * Third, a call to MakeUnique can be assigned directly to a UniquePtr. In
590 * contrast you can't assign a pointer into a UniquePtr without using the
591 * cumbersome reset().
594 * p = new char; // ERROR
595 * p.reset(new char); // works, but fugly
596 * p = MakeUnique<char>(); // preferred
598 * (And third, although not relevant to Mozilla: MakeUnique is exception-safe.
599 * An exception thrown after |new T| succeeds will leak that memory, unless the
600 * pointer is assigned to an object that will manage its ownership. UniquePtr
601 * ably serves this function.)
604 template <typename T
, typename
... Args
>
605 typename
detail::UniqueSelector
<T
>::SingleObject
MakeUnique(Args
&&... aArgs
) {
606 return UniquePtr
<T
>(new T(std::forward
<Args
>(aArgs
)...));
609 template <typename T
>
610 typename
detail::UniqueSelector
<T
>::UnknownBound
MakeUnique(
611 decltype(sizeof(int)) aN
) {
612 using ArrayType
= std::remove_extent_t
<T
>;
613 return UniquePtr
<T
>(new ArrayType
[aN
]());
616 template <typename T
, typename
... Args
>
617 typename
detail::UniqueSelector
<T
>::KnownBound
MakeUnique(Args
&&... aArgs
) =
621 * WrapUnique is a helper function to transfer ownership from a raw pointer
622 * into a UniquePtr<T>. It can only be used with a single non-array type.
624 * It is generally used this way:
626 * auto p = WrapUnique(new char);
628 * It can be used when MakeUnique is not usable, for example, when the
629 * constructor you are using is private, or you want to use aggregate
633 template <typename T
>
634 typename
detail::UniqueSelector
<T
>::SingleObject
WrapUnique(T
* aPtr
) {
635 return UniquePtr
<T
>(aPtr
);
638 } // namespace mozilla
642 template <typename T
, class D
>
643 void swap(mozilla::UniquePtr
<T
, D
>& aX
, mozilla::UniquePtr
<T
, D
>& aY
) {
650 TempPtrToSetter(UniquePtr<T>*) -> T**-ish
651 TempPtrToSetter(std::unique_ptr<T>*) -> T**-ish
653 Make a temporary class to support assigning to UniquePtr/unique_ptr via passing
654 a pointer to the callee.
656 Often, APIs will be shaped like this trivial example:
658 nsresult Foo::NewChildBar(Bar** out) {
659 if (!IsOk()) return NS_ERROR_FAILURE;
660 *out = new Bar(this);
665 In order to make this work with unique ptrs, it's often either risky or
669 const auto cleanup = MakeScopeExit([&]() {
674 if (FAILED(foo->NewChildBar(&bar)) {
683 const auto res = foo->NewChildBar(&bar);
690 TempPtrToSettable is a shorthand for the latter approach, allowing something
691 cleaner but also safe:
695 if (FAILED(foo->NewChildBar(TempPtrToSetter(&bar))) {
704 template <class T
, class UniquePtrT
>
705 class MOZ_TEMPORARY_CLASS TempPtrToSetterT final
{
707 UniquePtrT
* const mDest
;
711 explicit TempPtrToSetterT(UniquePtrT
* dest
)
712 : mDest(dest
), mNewVal(mDest
->get()) {}
714 operator T
**() { return &mNewVal
; }
716 ~TempPtrToSetterT() {
717 if (mDest
->get() != mNewVal
) {
718 mDest
->reset(mNewVal
);
723 } // namespace detail
725 template <class T
, class Deleter
>
726 auto TempPtrToSetter(UniquePtr
<T
, Deleter
>* const p
) {
727 return detail::TempPtrToSetterT
<T
, UniquePtr
<T
, Deleter
>>{p
};
730 template <class T
, class Deleter
>
731 auto TempPtrToSetter(std::unique_ptr
<T
, Deleter
>* const p
) {
732 return detail::TempPtrToSetterT
<T
, std::unique_ptr
<T
, Deleter
>>{p
};
735 } // namespace mozilla
737 #endif /* mozilla_UniquePtr_h */