1 /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 * This Source Code Form is subject to the terms of the Mozilla Public
3 * License, v. 2.0. If a copy of the MPL was not distributed with this
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6 #include "mozilla/ArrayUtils.h"
7 #include "gfxCoreTextShaper.h"
8 #include "gfxMacFont.h"
9 #include "gfxFontUtils.h"
10 #include "gfxTextRun.h"
11 #include "mozilla/gfx/2D.h"
12 #include "mozilla/gfx/ScaledFontMac.h"
13 #include "mozilla/UniquePtrExtensions.h"
19 using namespace mozilla
;
20 using namespace mozilla::gfx
;
22 // standard font descriptors that we construct the first time they're needed
23 CTFontDescriptorRef
gfxCoreTextShaper::sFeaturesDescriptor
[kMaxFontInstances
];
25 // Helper to create a CFDictionary with the right attributes for shaping our
26 // text, including imposing the given directionality.
27 CFDictionaryRef
gfxCoreTextShaper::CreateAttrDict(bool aRightToLeft
) {
28 // Because we always shape unidirectional runs, and may have applied
29 // directional overrides, we want to force a direction rather than
30 // allowing CoreText to do its own unicode-based bidi processing.
31 SInt16 dirOverride
= kCTWritingDirectionOverride
|
32 (aRightToLeft
? kCTWritingDirectionRightToLeft
33 : kCTWritingDirectionLeftToRight
);
34 CFNumberRef dirNumber
=
35 ::CFNumberCreate(kCFAllocatorDefault
, kCFNumberSInt16Type
, &dirOverride
);
36 CFArrayRef dirArray
= ::CFArrayCreate(
37 kCFAllocatorDefault
, (const void**)&dirNumber
, 1, &kCFTypeArrayCallBacks
);
38 ::CFRelease(dirNumber
);
39 CFTypeRef attrs
[] = {kCTFontAttributeName
, kCTWritingDirectionAttributeName
};
40 CFTypeRef values
[] = {mCTFont
[0], dirArray
};
41 CFDictionaryRef attrDict
= ::CFDictionaryCreate(
42 kCFAllocatorDefault
, attrs
, values
, ArrayLength(attrs
),
43 &kCFTypeDictionaryKeyCallBacks
, &kCFTypeDictionaryValueCallBacks
);
44 ::CFRelease(dirArray
);
48 gfxCoreTextShaper::gfxCoreTextShaper(gfxMacFont
* aFont
)
49 : gfxFontShaper(aFont
),
50 mAttributesDictLTR(nullptr),
51 mAttributesDictRTL(nullptr) {
52 for (size_t i
= 0; i
< kMaxFontInstances
; i
++) {
55 // Create our default CTFontRef
56 mCTFont
[0] = CreateCTFontWithFeatures(
57 aFont
->GetAdjustedSize(), GetFeaturesDescriptor(kDefaultFeatures
));
60 gfxCoreTextShaper::~gfxCoreTextShaper() {
61 if (mAttributesDictLTR
) {
62 ::CFRelease(mAttributesDictLTR
);
64 if (mAttributesDictRTL
) {
65 ::CFRelease(mAttributesDictRTL
);
67 for (size_t i
= 0; i
< kMaxFontInstances
; i
++) {
69 ::CFRelease(mCTFont
[i
]);
74 static bool IsBuggyIndicScript(intl::Script aScript
) {
75 return aScript
== intl::Script::BENGALI
|| aScript
== intl::Script::KANNADA
||
76 aScript
== intl::Script::ORIYA
|| aScript
== intl::Script::KHMER
;
79 bool gfxCoreTextShaper::ShapeText(DrawTarget
* aDrawTarget
,
80 const char16_t
* aText
, uint32_t aOffset
,
81 uint32_t aLength
, Script aScript
,
82 nsAtom
* aLanguage
, bool aVertical
,
83 RoundingFlags aRounding
,
84 gfxShapedText
* aShapedText
) {
85 // Create a CFAttributedString with text and style info, so we can use
86 // CoreText to lay it out.
87 bool isRightToLeft
= aShapedText
->IsRightToLeft();
88 const UniChar
* text
= reinterpret_cast<const UniChar
*>(aText
);
90 CFStringRef stringObj
= ::CFStringCreateWithCharactersNoCopy(
91 kCFAllocatorDefault
, text
, aLength
, kCFAllocatorNull
);
93 // Figure out whether we should try to set the AAT small-caps feature:
94 // examine OpenType tags for the requested style, and see if 'smcp' is
96 const gfxFontStyle
* style
= mFont
->GetStyle();
97 gfxFontEntry
* entry
= mFont
->GetFontEntry();
98 auto handleFeatureTag
= [](uint32_t aTag
, uint32_t aValue
,
99 void* aUserArg
) -> void {
100 if (aTag
== HB_TAG('s', 'm', 'c', 'p') && aValue
) {
101 *static_cast<bool*>(aUserArg
) = true;
104 bool addSmallCaps
= false;
105 MergeFontFeatures(style
, entry
->mFeatureSettings
, false, entry
->FamilyName(),
106 false, handleFeatureTag
, &addSmallCaps
);
108 // Get an attributes dictionary suitable for shaping text in the
109 // current direction, creating it if necessary.
110 CFDictionaryRef attrObj
=
111 isRightToLeft
? mAttributesDictRTL
: mAttributesDictLTR
;
113 attrObj
= CreateAttrDict(isRightToLeft
);
114 (isRightToLeft
? mAttributesDictRTL
: mAttributesDictLTR
) = attrObj
;
117 FeatureFlags featureFlags
= kDefaultFeatures
;
118 if (IsBuggyIndicScript(aScript
)) {
119 // To work around buggy Indic AAT fonts shipped with OS X,
120 // we re-enable the Line Initial Smart Swashes feature that is needed
121 // for "split vowels" to work in at least Bengali and Kannada fonts.
122 // Affected fonts include Bangla MN, Bangla Sangam MN, Kannada MN,
123 // Kannada Sangam MN. See bugs 686225, 728557, 953231, 1145515.
124 // Also applies to Oriya and Khmer, see bug 1370927 and bug 1403166.
125 featureFlags
|= kIndicFeatures
;
127 if (aShapedText
->DisableLigatures()) {
128 // For letterspacing (or maybe other situations) we need to make
129 // a copy of the CTFont with the ligature feature disabled.
130 featureFlags
|= kDisableLigatures
;
133 featureFlags
|= kAddSmallCaps
;
136 // For the disabled-ligature, buggy-indic-font or small-caps case, replace
137 // the default CTFont in the attribute dictionary with a tweaked version.
138 CFMutableDictionaryRef mutableAttr
= nullptr;
139 if (featureFlags
!= 0) {
140 if (!mCTFont
[featureFlags
]) {
141 mCTFont
[featureFlags
] = CreateCTFontWithFeatures(
142 mFont
->GetAdjustedSize(), GetFeaturesDescriptor(featureFlags
));
145 ::CFDictionaryCreateMutableCopy(kCFAllocatorDefault
, 2, attrObj
);
146 ::CFDictionaryReplaceValue(mutableAttr
, kCTFontAttributeName
,
147 mCTFont
[featureFlags
]);
148 attrObj
= mutableAttr
;
151 // Now we can create an attributed string
152 CFAttributedStringRef attrStringObj
=
153 ::CFAttributedStringCreate(kCFAllocatorDefault
, stringObj
, attrObj
);
154 ::CFRelease(stringObj
);
156 // Create the CoreText line from our string, then we're done with it
157 CTLineRef line
= ::CTLineCreateWithAttributedString(attrStringObj
);
158 ::CFRelease(attrStringObj
);
160 // and finally retrieve the glyph data and store into the gfxTextRun
161 CFArrayRef glyphRuns
= ::CTLineGetGlyphRuns(line
);
162 uint32_t numRuns
= ::CFArrayGetCount(glyphRuns
);
164 // Iterate through the glyph runs.
166 for (uint32_t runIndex
= 0; runIndex
< numRuns
; runIndex
++) {
167 CTRunRef aCTRun
= (CTRunRef
)::CFArrayGetValueAtIndex(glyphRuns
, runIndex
);
168 CFRange range
= ::CTRunGetStringRange(aCTRun
);
169 CFDictionaryRef runAttr
= ::CTRunGetAttributes(aCTRun
);
170 if (runAttr
!= attrObj
) {
171 // If Core Text manufactured a new dictionary, this may indicate
172 // unexpected font substitution. In that case, we fail (and fall
173 // back to harfbuzz shaping)...
174 const void* font1
= ::CFDictionaryGetValue(attrObj
, kCTFontAttributeName
);
175 const void* font2
= ::CFDictionaryGetValue(runAttr
, kCTFontAttributeName
);
176 if (font1
!= font2
) {
177 // ...except that if the fallback was only for a variation
178 // selector or join control that is otherwise unsupported,
179 // we just ignore it.
180 if (range
.length
== 1) {
181 char16_t ch
= aText
[range
.location
];
182 if (gfxFontUtils::IsJoinControl(ch
) ||
183 gfxFontUtils::IsVarSelector(ch
)) {
187 NS_WARNING("unexpected font fallback in Core Text");
192 if (SetGlyphsFromRun(aShapedText
, aOffset
, aLength
, aCTRun
) != NS_OK
) {
199 ::CFRelease(mutableAttr
);
206 #define SMALL_GLYPH_RUN \
207 128 // preallocated size of our auto arrays for per-glyph data;
208 // some testing indicates that 90%+ of glyph runs will fit
209 // without requiring a separate allocation
211 nsresult
gfxCoreTextShaper::SetGlyphsFromRun(gfxShapedText
* aShapedText
,
212 uint32_t aOffset
, uint32_t aLength
,
214 typedef gfxShapedText::CompressedGlyph CompressedGlyph
;
216 int32_t direction
= aShapedText
->IsRightToLeft() ? -1 : 1;
218 int32_t numGlyphs
= ::CTRunGetGlyphCount(aCTRun
);
219 if (numGlyphs
== 0) {
223 int32_t wordLength
= aLength
;
225 // character offsets get really confusing here, as we have to keep track of
226 // (a) the text in the actual textRun we're constructing
227 // (c) the string that was handed to CoreText, which contains the text of
229 // (d) the CTRun currently being processed, which may be a sub-run of the
232 // get the source string range within the CTLine's text
233 CFRange stringRange
= ::CTRunGetStringRange(aCTRun
);
234 // skip the run if it is entirely outside the actual range of the font run
235 if (stringRange
.location
+ stringRange
.length
<= 0 ||
236 stringRange
.location
>= wordLength
) {
240 // retrieve the laid-out glyph data from the CTRun
241 UniquePtr
<CGGlyph
[]> glyphsArray
;
242 UniquePtr
<CGPoint
[]> positionsArray
;
243 UniquePtr
<CFIndex
[]> glyphToCharArray
;
244 const CGGlyph
* glyphs
= nullptr;
245 const CGPoint
* positions
= nullptr;
246 const CFIndex
* glyphToChar
= nullptr;
248 // Testing indicates that CTRunGetGlyphsPtr (almost?) always succeeds,
249 // and so allocating a new array and copying data with CTRunGetGlyphs
250 // will be extremely rare.
251 // If this were not the case, we could use an AutoTArray<> to
252 // try and avoid the heap allocation for small runs.
253 // It's possible that some future change to CoreText will mean that
254 // CTRunGetGlyphsPtr fails more often; if this happens, AutoTArray<>
255 // may become an attractive option.
256 glyphs
= ::CTRunGetGlyphsPtr(aCTRun
);
258 glyphsArray
= MakeUniqueFallible
<CGGlyph
[]>(numGlyphs
);
260 return NS_ERROR_OUT_OF_MEMORY
;
262 ::CTRunGetGlyphs(aCTRun
, ::CFRangeMake(0, 0), glyphsArray
.get());
263 glyphs
= glyphsArray
.get();
266 positions
= ::CTRunGetPositionsPtr(aCTRun
);
268 positionsArray
= MakeUniqueFallible
<CGPoint
[]>(numGlyphs
);
269 if (!positionsArray
) {
270 return NS_ERROR_OUT_OF_MEMORY
;
272 ::CTRunGetPositions(aCTRun
, ::CFRangeMake(0, 0), positionsArray
.get());
273 positions
= positionsArray
.get();
276 // Remember that the glyphToChar indices relate to the CoreText line,
277 // not to the beginning of the textRun, the font run,
278 // or the stringRange of the glyph run
279 glyphToChar
= ::CTRunGetStringIndicesPtr(aCTRun
);
281 glyphToCharArray
= MakeUniqueFallible
<CFIndex
[]>(numGlyphs
);
282 if (!glyphToCharArray
) {
283 return NS_ERROR_OUT_OF_MEMORY
;
285 ::CTRunGetStringIndices(aCTRun
, ::CFRangeMake(0, 0),
286 glyphToCharArray
.get());
287 glyphToChar
= glyphToCharArray
.get();
290 double runWidth
= ::CTRunGetTypographicBounds(aCTRun
, ::CFRangeMake(0, 0),
291 nullptr, nullptr, nullptr);
293 AutoTArray
<gfxShapedText::DetailedGlyph
, 1> detailedGlyphs
;
294 CompressedGlyph
* charGlyphs
= aShapedText
->GetCharacterGlyphs() + aOffset
;
296 // CoreText gives us the glyphindex-to-charindex mapping, which relates each
297 // glyph to a source text character; we also need the charindex-to-glyphindex
298 // mapping to find the glyph for a given char. Note that some chars may not
299 // map to any glyph (ligature continuations), and some may map to several
300 // glyphs (eg Indic split vowels). We set the glyph index to NO_GLYPH for
301 // chars that have no associated glyph, and we record the last glyph index for
302 // cases where the char maps to several glyphs, so that our clumping will
303 // include all the glyph fragments for the character.
305 // The charToGlyph array is indexed by char position within the stringRange of
308 static const int32_t NO_GLYPH
= -1;
309 AutoTArray
<int32_t, SMALL_GLYPH_RUN
> charToGlyphArray
;
310 if (!charToGlyphArray
.SetLength(stringRange
.length
, fallible
)) {
311 return NS_ERROR_OUT_OF_MEMORY
;
313 int32_t* charToGlyph
= charToGlyphArray
.Elements();
314 for (int32_t offset
= 0; offset
< stringRange
.length
; ++offset
) {
315 charToGlyph
[offset
] = NO_GLYPH
;
317 for (int32_t i
= 0; i
< numGlyphs
; ++i
) {
318 int32_t loc
= glyphToChar
[i
] - stringRange
.location
;
319 if (loc
>= 0 && loc
< stringRange
.length
) {
320 charToGlyph
[loc
] = i
;
324 // Find character and glyph clumps that correspond, allowing for ligatures,
325 // indic reordering, split glyphs, etc.
327 // The idea is that we'll find a character sequence starting at the first char
328 // of stringRange, and extend it until it includes the character associated
329 // with the first glyph; we also extend it as long as there are "holes" in the
330 // range of glyphs. So we will eventually have a contiguous sequence of
331 // characters, starting at the beginning of the range, that map to a
332 // contiguous sequence of glyphs, starting at the beginning of the glyph
333 // array. That's a clump; then we update the starting positions and repeat.
335 // NB: In the case of RTL layouts, we iterate over the stringRange in reverse.
338 // This may find characters that fall outside the range 0:wordLength,
339 // so we won't necessarily use everything we find here.
341 bool isRightToLeft
= aShapedText
->IsRightToLeft();
343 0; // looking for a clump that starts at this glyph index
346 ? stringRange
.length
- 1
347 : 0; // and this char index (in the stringRange of the glyph run)
350 numGlyphs
) { // keep finding groups until all glyphs are accounted for
352 int32_t charEnd
= glyphToChar
[glyphStart
] - stringRange
.location
;
353 NS_WARNING_ASSERTION(charEnd
>= 0 && charEnd
< stringRange
.length
,
354 "glyph-to-char mapping points outside string range");
355 // clamp charEnd to the valid range of the string
356 charEnd
= std::max(charEnd
, 0);
357 charEnd
= std::min(charEnd
, int32_t(stringRange
.length
));
359 int32_t glyphEnd
= glyphStart
;
360 int32_t charLimit
= isRightToLeft
? -1 : stringRange
.length
;
362 // This is normally executed once for each iteration of the outer loop,
363 // but in unusual cases where the character/glyph association is complex,
364 // the initial character range might correspond to a non-contiguous
365 // glyph range with "holes" in it. If so, we will repeat this loop to
366 // extend the character range until we have a contiguous glyph sequence.
367 NS_ASSERTION((direction
> 0 && charEnd
< charLimit
) ||
368 (direction
< 0 && charEnd
> charLimit
),
369 "no characters left in range?");
370 charEnd
+= direction
;
371 while (charEnd
!= charLimit
&& charToGlyph
[charEnd
] == NO_GLYPH
) {
372 charEnd
+= direction
;
375 // find the maximum glyph index covered by the clump so far
377 for (int32_t i
= charStart
; i
> charEnd
; --i
) {
378 if (charToGlyph
[i
] != NO_GLYPH
) {
379 // update extent of glyph range
380 glyphEnd
= std::max(glyphEnd
, charToGlyph
[i
] + 1);
384 for (int32_t i
= charStart
; i
< charEnd
; ++i
) {
385 if (charToGlyph
[i
] != NO_GLYPH
) {
386 // update extent of glyph range
387 glyphEnd
= std::max(glyphEnd
, charToGlyph
[i
] + 1);
392 if (glyphEnd
== glyphStart
+ 1) {
393 // for the common case of a single-glyph clump, we can skip the
398 if (glyphEnd
== glyphStart
) {
399 // no glyphs, try to extend the clump
403 // check whether all glyphs in the range are associated with the
404 // characters in our clump; if not, we have a discontinuous range, and
405 // should extend it unless we've reached the end of the text
406 bool allGlyphsAreWithinCluster
= true;
407 int32_t prevGlyphCharIndex
= charStart
;
408 for (int32_t i
= glyphStart
; i
< glyphEnd
; ++i
) {
409 int32_t glyphCharIndex
= glyphToChar
[i
] - stringRange
.location
;
411 if (glyphCharIndex
> charStart
|| glyphCharIndex
<= charEnd
) {
412 allGlyphsAreWithinCluster
= false;
415 if (glyphCharIndex
> prevGlyphCharIndex
) {
418 prevGlyphCharIndex
= glyphCharIndex
;
420 if (glyphCharIndex
< charStart
|| glyphCharIndex
>= charEnd
) {
421 allGlyphsAreWithinCluster
= false;
424 if (glyphCharIndex
< prevGlyphCharIndex
) {
427 prevGlyphCharIndex
= glyphCharIndex
;
430 if (allGlyphsAreWithinCluster
) {
433 } while (charEnd
!= charLimit
);
435 NS_WARNING_ASSERTION(glyphStart
< glyphEnd
,
436 "character/glyph clump contains no glyphs!");
437 if (glyphStart
== glyphEnd
) {
438 ++glyphStart
; // make progress - avoid potential infinite loop
443 NS_WARNING_ASSERTION(charStart
!= charEnd
,
444 "character/glyph clump contains no characters!");
445 if (charStart
== charEnd
) {
446 glyphStart
= glyphEnd
; // this is bad - we'll discard the glyph(s),
447 // as there's nowhere to attach them
451 // Now charStart..charEnd is a ligature clump, corresponding to
452 // glyphStart..glyphEnd; Set baseCharIndex to the char we'll actually attach
453 // the glyphs to (1st of ligature), and endCharIndex to the limit (position
454 // beyond the last char), adjusting for the offset of the stringRange
455 // relative to the textRun.
456 int32_t baseCharIndex
, endCharIndex
;
458 while (charEnd
>= 0 && charToGlyph
[charEnd
] == NO_GLYPH
) {
461 baseCharIndex
= charEnd
+ stringRange
.location
+ 1;
462 endCharIndex
= charStart
+ stringRange
.location
+ 1;
464 while (charEnd
< stringRange
.length
&& charToGlyph
[charEnd
] == NO_GLYPH
) {
467 baseCharIndex
= charStart
+ stringRange
.location
;
468 endCharIndex
= charEnd
+ stringRange
.location
;
471 // Then we check if the clump falls outside our actual string range; if so,
472 // just go to the next.
473 if (endCharIndex
<= 0 || baseCharIndex
>= wordLength
) {
474 glyphStart
= glyphEnd
;
478 // Ensure we won't try to go beyond the valid length of the word's text
479 baseCharIndex
= std::max(baseCharIndex
, 0);
480 endCharIndex
= std::min(endCharIndex
, wordLength
);
482 // Now we're ready to set the glyph info in the textRun; measure the glyph
483 // width of the first (perhaps only) glyph, to see if it is "Simple"
484 int32_t appUnitsPerDevUnit
= aShapedText
->GetAppUnitsPerDevUnit();
486 if (glyphStart
< numGlyphs
- 1) {
487 toNextGlyph
= positions
[glyphStart
+ 1].x
- positions
[glyphStart
].x
;
489 toNextGlyph
= positions
[0].x
+ runWidth
- positions
[glyphStart
].x
;
491 int32_t advance
= int32_t(toNextGlyph
* appUnitsPerDevUnit
);
493 // Check if it's a simple one-to-one mapping
494 int32_t glyphsInClump
= glyphEnd
- glyphStart
;
495 if (glyphsInClump
== 1 &&
496 gfxTextRun::CompressedGlyph::IsSimpleGlyphID(glyphs
[glyphStart
]) &&
497 gfxTextRun::CompressedGlyph::IsSimpleAdvance(advance
) &&
498 charGlyphs
[baseCharIndex
].IsClusterStart() &&
499 positions
[glyphStart
].y
== 0.0) {
500 charGlyphs
[baseCharIndex
].SetSimpleGlyph(advance
, glyphs
[glyphStart
]);
502 // collect all glyphs in a list to be assigned to the first char;
503 // there must be at least one in the clump, and we already measured its
504 // advance, hence the placement of the loop-exit test and the measurement
507 gfxTextRun::DetailedGlyph
* details
= detailedGlyphs
.AppendElement();
508 details
->mGlyphID
= glyphs
[glyphStart
];
509 details
->mOffset
.y
= -positions
[glyphStart
].y
* appUnitsPerDevUnit
;
510 details
->mAdvance
= advance
;
511 if (++glyphStart
>= glyphEnd
) {
514 if (glyphStart
< numGlyphs
- 1) {
515 toNextGlyph
= positions
[glyphStart
+ 1].x
- positions
[glyphStart
].x
;
517 toNextGlyph
= positions
[0].x
+ runWidth
- positions
[glyphStart
].x
;
519 advance
= int32_t(toNextGlyph
* appUnitsPerDevUnit
);
522 aShapedText
->SetDetailedGlyphs(aOffset
+ baseCharIndex
,
523 detailedGlyphs
.Length(),
524 detailedGlyphs
.Elements());
526 detailedGlyphs
.Clear();
529 // the rest of the chars in the group are ligature continuations, no
531 while (++baseCharIndex
!= endCharIndex
&& baseCharIndex
< wordLength
) {
532 CompressedGlyph
& shapedTextGlyph
= charGlyphs
[baseCharIndex
];
533 NS_ASSERTION(!shapedTextGlyph
.IsSimpleGlyph(),
534 "overwriting a simple glyph");
535 shapedTextGlyph
.SetComplex(inOrder
&& shapedTextGlyph
.IsClusterStart(),
539 glyphStart
= glyphEnd
;
546 #undef SMALL_GLYPH_RUN
548 // Construct the font attribute descriptor that we'll apply by default when
549 // creating a CTFontRef. This will turn off line-edge swashes by default,
550 // because we don't know the actual line breaks when doing glyph shaping.
552 // We also cache feature descriptors for shaping with disabled ligatures, and
553 // for buggy Indic AAT font workarounds, created on an as-needed basis.
555 #define MAX_FEATURES 5 // max used by any of our Get*Descriptor functions
557 CTFontDescriptorRef
gfxCoreTextShaper::CreateFontFeaturesDescriptor(
558 const std::pair
<SInt16
, SInt16
>* aFeatures
, size_t aCount
) {
559 MOZ_ASSERT(aCount
<= MAX_FEATURES
);
561 CFDictionaryRef featureSettings
[MAX_FEATURES
];
563 for (size_t i
= 0; i
< aCount
; i
++) {
564 CFNumberRef type
= ::CFNumberCreate(
565 kCFAllocatorDefault
, kCFNumberSInt16Type
, &aFeatures
[i
].first
);
566 CFNumberRef selector
= ::CFNumberCreate(
567 kCFAllocatorDefault
, kCFNumberSInt16Type
, &aFeatures
[i
].second
);
569 CFTypeRef keys
[] = {kCTFontFeatureTypeIdentifierKey
,
570 kCTFontFeatureSelectorIdentifierKey
};
571 CFTypeRef values
[] = {type
, selector
};
572 featureSettings
[i
] = ::CFDictionaryCreate(
573 kCFAllocatorDefault
, (const void**)keys
, (const void**)values
,
574 ArrayLength(keys
), &kCFTypeDictionaryKeyCallBacks
,
575 &kCFTypeDictionaryValueCallBacks
);
577 ::CFRelease(selector
);
581 CFArrayRef featuresArray
=
582 ::CFArrayCreate(kCFAllocatorDefault
, (const void**)featureSettings
,
583 aCount
, // not ArrayLength(featureSettings), as we
584 // may not have used all the allocated slots
585 &kCFTypeArrayCallBacks
);
587 for (size_t i
= 0; i
< aCount
; i
++) {
588 ::CFRelease(featureSettings
[i
]);
591 const CFTypeRef attrKeys
[] = {kCTFontFeatureSettingsAttribute
};
592 const CFTypeRef attrValues
[] = {featuresArray
};
593 CFDictionaryRef attributesDict
= ::CFDictionaryCreate(
594 kCFAllocatorDefault
, (const void**)attrKeys
, (const void**)attrValues
,
595 ArrayLength(attrKeys
), &kCFTypeDictionaryKeyCallBacks
,
596 &kCFTypeDictionaryValueCallBacks
);
597 ::CFRelease(featuresArray
);
599 CTFontDescriptorRef descriptor
=
600 ::CTFontDescriptorCreateWithAttributes(attributesDict
);
601 ::CFRelease(attributesDict
);
606 CTFontDescriptorRef
gfxCoreTextShaper::GetFeaturesDescriptor(
607 FeatureFlags aFeatureFlags
) {
608 MOZ_ASSERT(aFeatureFlags
< kMaxFontInstances
);
609 if (!sFeaturesDescriptor
[aFeatureFlags
]) {
610 typedef std::pair
<SInt16
, SInt16
> FeatT
;
611 AutoTArray
<FeatT
, MAX_FEATURES
> features
;
612 features
.AppendElement(
613 FeatT(kSmartSwashType
, kLineFinalSwashesOffSelector
));
614 if ((aFeatureFlags
& kIndicFeatures
) == 0) {
615 features
.AppendElement(
616 FeatT(kSmartSwashType
, kLineInitialSwashesOffSelector
));
618 if (aFeatureFlags
& kAddSmallCaps
) {
619 features
.AppendElement(FeatT(kLetterCaseType
, kSmallCapsSelector
));
620 features
.AppendElement(
621 FeatT(kLowerCaseType
, kLowerCaseSmallCapsSelector
));
623 if (aFeatureFlags
& kDisableLigatures
) {
624 features
.AppendElement(
625 FeatT(kLigaturesType
, kCommonLigaturesOffSelector
));
627 MOZ_ASSERT(features
.Length() <= MAX_FEATURES
);
628 sFeaturesDescriptor
[aFeatureFlags
] =
629 CreateFontFeaturesDescriptor(features
.Elements(), features
.Length());
631 return sFeaturesDescriptor
[aFeatureFlags
];
634 CTFontRef
gfxCoreTextShaper::CreateCTFontWithFeatures(
635 CGFloat aSize
, CTFontDescriptorRef aDescriptor
) {
636 const gfxFontEntry
* fe
= mFont
->GetFontEntry();
637 bool isInstalledFont
= !fe
->IsUserFont() || fe
->IsLocalUserFont();
638 CGFontRef cgFont
= static_cast<gfxMacFont
*>(mFont
)->GetCGFontRef();
639 return CreateCTFontFromCGFontWithVariations(cgFont
, aSize
, isInstalledFont
,
643 void gfxCoreTextShaper::Shutdown() // [static]
645 for (size_t i
= 0; i
< kMaxFontInstances
; i
++) {
646 if (sFeaturesDescriptor
[i
] != nullptr) {
647 ::CFRelease(sFeaturesDescriptor
[i
]);
648 sFeaturesDescriptor
[i
] = nullptr;