1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* This Source Code Form is subject to the terms of the Mozilla Public
3 * License, v. 2.0. If a copy of the MPL was not distributed with this
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 * SourceBuffer is a single producer, multiple consumer data structure used for
8 * storing image source (compressed) data.
11 #ifndef mozilla_image_sourcebuffer_h
12 #define mozilla_image_sourcebuffer_h
17 #include "mozilla/Maybe.h"
18 #include "mozilla/MemoryReporting.h"
19 #include "mozilla/Mutex.h"
20 #include "mozilla/RefCounted.h"
21 #include "mozilla/RefPtr.h"
22 #include "mozilla/UniquePtr.h"
33 * IResumable is an interface for classes that can schedule themselves to resume
34 * their work later. An implementation of IResumable generally should post a
35 * runnable to some event target which continues the work of the task.
38 MOZ_DECLARE_REFCOUNTED_TYPENAME(IResumable
)
40 // Subclasses may or may not be XPCOM classes, so we just require that they
41 // implement AddRef and Release.
42 NS_INLINE_DECL_PURE_VIRTUAL_REFCOUNTING
44 virtual void Resume() = 0;
47 virtual ~IResumable() {}
51 * SourceBufferIterator is a class that allows consumers of image source data to
52 * read the contents of a SourceBuffer sequentially.
54 * Consumers can advance through the SourceBuffer by calling
55 * AdvanceOrScheduleResume() repeatedly. After every advance, they should call
56 * check the return value, which will tell them the iterator's new state.
58 * If WAITING is returned, AdvanceOrScheduleResume() has arranged
59 * to call the consumer's Resume() method later, so the consumer should save its
60 * state if needed and stop running.
62 * If the iterator's new state is READY, then the consumer can call Data() and
63 * Length() to read new data from the SourceBuffer.
65 * Finally, in the COMPLETE state the consumer can call CompletionStatus() to
66 * get the status passed to SourceBuffer::Complete().
68 class SourceBufferIterator final
{
71 START
, // The iterator is at the beginning of the buffer.
72 READY
, // The iterator is pointing to new data.
73 WAITING
, // The iterator is blocked and the caller must yield.
74 COMPLETE
// The iterator is pointing to the end of the buffer.
77 explicit SourceBufferIterator(SourceBuffer
* aOwner
, size_t aReadLimit
)
82 mRemainderToRead(aReadLimit
) {
84 mData
.mIterating
.mChunk
= 0;
85 mData
.mIterating
.mData
= nullptr;
86 mData
.mIterating
.mOffset
= 0;
87 mData
.mIterating
.mAvailableLength
= 0;
88 mData
.mIterating
.mNextReadLength
= 0;
91 SourceBufferIterator(SourceBufferIterator
&& aOther
)
92 : mOwner(std::move(aOther
.mOwner
)),
93 mState(aOther
.mState
),
95 mChunkCount(aOther
.mChunkCount
),
96 mByteCount(aOther
.mByteCount
),
97 mRemainderToRead(aOther
.mRemainderToRead
) {}
99 ~SourceBufferIterator();
101 SourceBufferIterator
& operator=(SourceBufferIterator
&& aOther
);
104 * Returns true if there are no more than @aBytes remaining in the
105 * SourceBuffer. If the SourceBuffer is not yet complete, returns false.
107 bool RemainingBytesIsNoMoreThan(size_t aBytes
) const;
110 * Advances the iterator through the SourceBuffer if possible. Advances no
111 * more than @aRequestedBytes bytes. (Use SIZE_MAX to advance as much as
114 * This is a wrapper around AdvanceOrScheduleResume() that makes it clearer at
115 * the callsite when the no resuming is intended.
117 * @return State::READY if the iterator was successfully advanced.
118 * State::WAITING if the iterator could not be advanced because it's
119 * at the end of the underlying SourceBuffer, but the SourceBuffer
120 * may still receive additional data.
121 * State::COMPLETE if the iterator could not be advanced because it's
122 * at the end of the underlying SourceBuffer and the SourceBuffer is
123 * marked complete (i.e., it will never receive any additional
126 State
Advance(size_t aRequestedBytes
) {
127 return AdvanceOrScheduleResume(aRequestedBytes
, nullptr);
131 * Advances the iterator through the SourceBuffer if possible. Advances no
132 * more than @aRequestedBytes bytes. (Use SIZE_MAX to advance as much as
133 * possible.) If advancing is not possible and @aConsumer is not null,
134 * arranges to call the @aConsumer's Resume() method when more data is
137 * @return State::READY if the iterator was successfully advanced.
138 * State::WAITING if the iterator could not be advanced because it's
139 * at the end of the underlying SourceBuffer, but the SourceBuffer
140 * may still receive additional data. @aConsumer's Resume() method
141 * will be called when additional data is available.
142 * State::COMPLETE if the iterator could not be advanced because it's
143 * at the end of the underlying SourceBuffer and the SourceBuffer is
144 * marked complete (i.e., it will never receive any additional
147 State
AdvanceOrScheduleResume(size_t aRequestedBytes
, IResumable
* aConsumer
);
149 /// If at the end, returns the status passed to SourceBuffer::Complete().
150 nsresult
CompletionStatus() const {
151 MOZ_ASSERT(mState
== COMPLETE
,
152 "Calling CompletionStatus() in the wrong state");
153 return mState
== COMPLETE
? mData
.mAtEnd
.mStatus
: NS_OK
;
156 /// If we're ready to read, returns a pointer to the new data.
157 const char* Data() const {
158 MOZ_ASSERT(mState
== READY
, "Calling Data() in the wrong state");
159 return mState
== READY
? mData
.mIterating
.mData
+ mData
.mIterating
.mOffset
163 /// If we're ready to read, returns the length of the new data.
164 size_t Length() const {
165 MOZ_ASSERT(mState
== READY
, "Calling Length() in the wrong state");
166 return mState
== READY
? mData
.mIterating
.mNextReadLength
: 0;
169 /// If we're ready to read, returns whether or not everything available thus
170 /// far has been in the same contiguous buffer.
171 bool IsContiguous() const {
172 MOZ_ASSERT(mState
== READY
, "Calling IsContiguous() in the wrong state");
173 return mState
== READY
? mData
.mIterating
.mChunk
== 0 : false;
176 /// @return a count of the chunks we've advanced through.
177 uint32_t ChunkCount() const { return mChunkCount
; }
179 /// @return a count of the bytes in all chunks we've advanced through.
180 size_t ByteCount() const { return mByteCount
; }
182 /// @return the source buffer which owns the iterator.
183 SourceBuffer
* Owner() const {
188 /// @return the current offset from the beginning of the buffer.
189 size_t Position() const {
190 return mByteCount
- mData
.mIterating
.mAvailableLength
;
194 friend class SourceBuffer
;
196 SourceBufferIterator(const SourceBufferIterator
&) = delete;
197 SourceBufferIterator
& operator=(const SourceBufferIterator
&) = delete;
199 bool HasMore() const { return mState
!= COMPLETE
; }
201 State
AdvanceFromLocalBuffer(size_t aRequestedBytes
) {
202 MOZ_ASSERT(mState
== READY
, "Advancing in the wrong state");
203 MOZ_ASSERT(mData
.mIterating
.mAvailableLength
> 0,
204 "The local buffer shouldn't be empty");
205 MOZ_ASSERT(mData
.mIterating
.mNextReadLength
== 0,
206 "Advancing without consuming previous data");
208 mData
.mIterating
.mNextReadLength
=
209 std::min(mData
.mIterating
.mAvailableLength
, aRequestedBytes
);
214 State
SetReady(uint32_t aChunk
, const char* aData
, size_t aOffset
,
215 size_t aAvailableLength
, size_t aRequestedBytes
) {
216 MOZ_ASSERT(mState
!= COMPLETE
);
219 // Prevent the iterator from reporting more data than it is allowed to read.
220 if (aAvailableLength
> mRemainderToRead
) {
221 aAvailableLength
= mRemainderToRead
;
225 mData
.mIterating
.mChunk
= aChunk
;
226 mData
.mIterating
.mData
= aData
;
227 mData
.mIterating
.mOffset
= aOffset
;
228 mData
.mIterating
.mAvailableLength
= aAvailableLength
;
232 mByteCount
+= aAvailableLength
;
234 // Attempt to advance by the requested number of bytes.
235 return AdvanceFromLocalBuffer(aRequestedBytes
);
238 State
SetWaiting(bool aHasConsumer
) {
239 MOZ_ASSERT(mState
!= COMPLETE
);
240 // Without a consumer, we won't know when to wake up precisely. Caller
241 // convention should mean that we don't try to advance unless we have
242 // written new data, but that doesn't mean we got enough.
243 MOZ_ASSERT(mState
!= WAITING
|| !aHasConsumer
,
244 "Did we get a spurious wakeup somehow?");
245 return mState
= WAITING
;
248 State
SetComplete(nsresult aStatus
) {
249 mData
.mAtEnd
.mStatus
= aStatus
;
250 return mState
= COMPLETE
;
253 RefPtr
<SourceBuffer
> mOwner
;
258 * This union contains our iteration state if we're still iterating (for
259 * states START, READY, and WAITING) and the status the SourceBuffer was
260 * completed with if we're in state COMPLETE.
264 uint32_t mChunk
; // Index of the chunk in SourceBuffer.
265 const char* mData
; // Pointer to the start of the chunk.
266 size_t mOffset
; // Current read position of the iterator relative to
268 size_t mAvailableLength
; // How many bytes remain unread in the chunk,
269 // relative to mOffset.
271 mNextReadLength
; // How many bytes the last iterator advance
272 // requested to be read, so that we know much
273 // to increase mOffset and reduce mAvailableLength
274 // by when the next advance is requested.
275 } mIterating
; // Cached info of the chunk currently iterating over.
277 nsresult mStatus
; // Status code indicating if we read all the data.
278 } mAtEnd
; // State info after iterator is complete.
281 uint32_t mChunkCount
; // Count of chunks observed, including current chunk.
282 size_t mByteCount
; // Count of readable bytes observed, including unread
283 // bytes from the current chunk.
284 size_t mRemainderToRead
; // Count of bytes left to read if there is a maximum
285 // imposed by the caller. SIZE_MAX if unlimited.
289 * SourceBuffer is a parallel data structure used for storing image source
292 * SourceBuffer is a single producer, multiple consumer data structure. The
293 * single producer calls Append() to append data to the buffer. In parallel,
294 * multiple consumers can call Iterator(), which returns a SourceBufferIterator
295 * that they can use to iterate through the buffer. The SourceBufferIterator
296 * returns a series of pointers which remain stable for lifetime of the
297 * SourceBuffer, and the data they point to is immutable, ensuring that the
298 * producer never interferes with the consumers.
300 * In order to avoid blocking, SourceBuffer works with SourceBufferIterator to
301 * keep a list of consumers which are waiting for new data, and to resume them
302 * when the producer appends more. All consumers must implement the IResumable
303 * interface to make this possible.
305 class SourceBuffer final
{
307 MOZ_DECLARE_REFCOUNTED_TYPENAME(image::SourceBuffer
)
308 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(image::SourceBuffer
)
312 //////////////////////////////////////////////////////////////////////////////
314 //////////////////////////////////////////////////////////////////////////////
317 * If the producer knows how long the source data will be, it should call
318 * ExpectLength, which enables SourceBuffer to preallocate its buffer.
320 nsresult
ExpectLength(size_t aExpectedLength
);
322 /// Append the provided data to the buffer.
323 nsresult
Append(const char* aData
, size_t aLength
);
325 /// Append the data available on the provided nsIInputStream to the buffer.
326 nsresult
AppendFromInputStream(nsIInputStream
* aInputStream
, uint32_t aCount
);
329 * Mark the buffer complete, with a status that will be available to
330 * consumers. Further calls to Append() are forbidden after Complete().
332 void Complete(nsresult aStatus
);
334 /// Returns true if the buffer is complete.
337 /// Memory reporting.
338 size_t SizeOfIncludingThisWithComputedFallback(MallocSizeOf
) const;
340 //////////////////////////////////////////////////////////////////////////////
342 //////////////////////////////////////////////////////////////////////////////
345 * Returns an iterator to this SourceBuffer, which cannot read more than the
348 SourceBufferIterator
Iterator(size_t aReadLength
= SIZE_MAX
);
350 //////////////////////////////////////////////////////////////////////////////
352 //////////////////////////////////////////////////////////////////////////////
355 * The minimum chunk capacity we'll allocate, if we don't know the correct
356 * capacity (which would happen because ExpectLength() wasn't called or gave
357 * us the wrong value). This is only exposed for use by tests; if normal code
358 * is using this, it's doing something wrong.
360 static const size_t MIN_CHUNK_CAPACITY
= 4096;
363 * The maximum chunk capacity we'll allocate. This was historically the
364 * maximum we would preallocate based on the network size. We may adjust it
365 * in the future based on the IMAGE_DECODE_CHUNKS telemetry to ensure most
366 * images remain in a single chunk.
368 static const size_t MAX_CHUNK_CAPACITY
= 20 * 1024 * 1024;
371 friend class SourceBufferIterator
;
375 //////////////////////////////////////////////////////////////////////////////
376 // Chunk type and chunk-related methods.
377 //////////////////////////////////////////////////////////////////////////////
381 explicit Chunk(size_t aCapacity
) : mCapacity(aCapacity
), mLength(0) {
382 MOZ_ASSERT(aCapacity
> 0, "Creating zero-capacity chunk");
383 mData
= static_cast<char*>(malloc(mCapacity
));
386 ~Chunk() { free(mData
); }
388 Chunk(Chunk
&& aOther
)
389 : mCapacity(aOther
.mCapacity
),
390 mLength(aOther
.mLength
),
391 mData(aOther
.mData
) {
392 aOther
.mCapacity
= aOther
.mLength
= 0;
393 aOther
.mData
= nullptr;
396 Chunk
& operator=(Chunk
&& aOther
) {
398 mCapacity
= aOther
.mCapacity
;
399 mLength
= aOther
.mLength
;
400 mData
= aOther
.mData
;
401 aOther
.mCapacity
= aOther
.mLength
= 0;
402 aOther
.mData
= nullptr;
406 bool AllocationFailed() const { return !mData
; }
407 size_t Capacity() const { return mCapacity
; }
408 size_t Length() const { return mLength
; }
411 MOZ_ASSERT(mData
, "Allocation failed but nobody checked for it");
415 void AddLength(size_t aAdditionalLength
) {
416 MOZ_ASSERT(mLength
+ aAdditionalLength
<= mCapacity
);
417 mLength
+= aAdditionalLength
;
420 bool SetCapacity(size_t aCapacity
) {
421 MOZ_ASSERT(mData
, "Allocation failed but nobody checked for it");
422 char* data
= static_cast<char*>(realloc(mData
, aCapacity
));
428 mCapacity
= aCapacity
;
433 Chunk(const Chunk
&) = delete;
434 Chunk
& operator=(const Chunk
&) = delete;
441 nsresult
AppendChunk(Maybe
<Chunk
>&& aChunk
);
442 Maybe
<Chunk
> CreateChunk(size_t aCapacity
, size_t aExistingCapacity
= 0,
443 bool aRoundUp
= true);
445 static size_t RoundedUpCapacity(size_t aCapacity
);
446 size_t FibonacciCapacityWithMinimum(size_t aMinCapacity
);
448 //////////////////////////////////////////////////////////////////////////////
449 // Iterator / consumer methods.
450 //////////////////////////////////////////////////////////////////////////////
452 void AddWaitingConsumer(IResumable
* aConsumer
);
453 void ResumeWaitingConsumers();
455 typedef SourceBufferIterator::State State
;
457 State
AdvanceIteratorOrScheduleResume(SourceBufferIterator
& aIterator
,
458 size_t aRequestedBytes
,
459 IResumable
* aConsumer
);
460 bool RemainingBytesIsNoMoreThan(const SourceBufferIterator
& aIterator
,
461 size_t aBytes
) const;
463 void OnIteratorRelease();
465 //////////////////////////////////////////////////////////////////////////////
467 //////////////////////////////////////////////////////////////////////////////
469 nsresult
HandleError(nsresult aError
);
471 bool IsLastChunk(uint32_t aChunk
);
473 //////////////////////////////////////////////////////////////////////////////
475 //////////////////////////////////////////////////////////////////////////////
477 /// All private members are protected by mMutex.
478 mutable Mutex mMutex
;
480 /// The data in this SourceBuffer, stored as a series of Chunks.
481 AutoTArray
<Chunk
, 1> mChunks
;
483 /// Consumers which are waiting to be notified when new data is available.
484 nsTArray
<RefPtr
<IResumable
>> mWaitingConsumers
;
486 /// If present, marks this SourceBuffer complete with the given final status.
487 Maybe
<nsresult
> mStatus
;
489 /// Count of active consumers.
490 uint32_t mConsumerCount
;
492 /// True if compacting has been performed.
497 } // namespace mozilla
499 #endif // mozilla_image_sourcebuffer_h