4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009-2011, 2014-2016, 2018-2019, D. R. Commander.
8 * Copyright (C) 2015, Matthieu Darbois.
9 * For conditions of distribution and use, see the accompanying README.ijg
12 * This file contains Huffman entropy encoding routines.
14 * Much of the complexity here has to do with supporting output suspension.
15 * If the data destination module demands suspension, we want to be able to
16 * back up to the start of the current MCU. To do this, we copy state
17 * variables into local working storage, and update them back to the
18 * permanent JPEG objects only upon successful completion of an MCU.
20 * NOTE: All referenced figures are from
21 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24 #define JPEG_INTERNALS
28 #include "jconfigint.h"
32 * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
33 * used for bit counting rather than the lookup table. This will reduce the
34 * memory footprint by 64k, which is important for some mobile applications
35 * that create many isolated instances of libjpeg-turbo (web browsers, for
36 * instance.) This may improve performance on some mobile platforms as well.
37 * This feature is enabled by default only on Arm processors, because some x86
38 * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
39 * shown to have a significant performance impact even on the x86 chips that
40 * have a fast implementation of it. When building for Armv6, you can
41 * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
42 * flags (this defines __thumb__).
45 /* NOTE: Both GCC and Clang define __GNUC__ */
46 #if defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__))
47 #if !defined(__thumb__) || defined(__thumb2__)
48 #define USE_CLZ_INTRINSIC
52 #ifdef USE_CLZ_INTRINSIC
53 #define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
54 #define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
56 #include "jpeg_nbits_table.h"
57 #define JPEG_NBITS(x) (jpeg_nbits_table[x])
58 #define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x)
62 /* Expanded entropy encoder object for Huffman encoding.
64 * The savable_state subrecord contains fields that change within an MCU,
65 * but must not be updated permanently until we complete the MCU.
69 size_t put_buffer
; /* current bit-accumulation buffer */
70 int put_bits
; /* # of bits now in it */
71 int last_dc_val
[MAX_COMPS_IN_SCAN
]; /* last DC coef for each component */
74 /* This macro is to work around compilers with missing or broken
75 * structure assignment. You'll need to fix this code if you have
76 * such a compiler and you change MAX_COMPS_IN_SCAN.
79 #ifndef NO_STRUCT_ASSIGN
80 #define ASSIGN_STATE(dest, src) ((dest) = (src))
82 #if MAX_COMPS_IN_SCAN == 4
83 #define ASSIGN_STATE(dest, src) \
84 ((dest).put_buffer = (src).put_buffer, \
85 (dest).put_bits = (src).put_bits, \
86 (dest).last_dc_val[0] = (src).last_dc_val[0], \
87 (dest).last_dc_val[1] = (src).last_dc_val[1], \
88 (dest).last_dc_val[2] = (src).last_dc_val[2], \
89 (dest).last_dc_val[3] = (src).last_dc_val[3])
95 struct jpeg_entropy_encoder pub
; /* public fields */
97 savable_state saved
; /* Bit buffer & DC state at start of MCU */
99 /* These fields are NOT loaded into local working state. */
100 unsigned int restarts_to_go
; /* MCUs left in this restart interval */
101 int next_restart_num
; /* next restart number to write (0-7) */
103 /* Pointers to derived tables (these workspaces have image lifespan) */
104 c_derived_tbl
*dc_derived_tbls
[NUM_HUFF_TBLS
];
105 c_derived_tbl
*ac_derived_tbls
[NUM_HUFF_TBLS
];
107 #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
108 long *dc_count_ptrs
[NUM_HUFF_TBLS
];
109 long *ac_count_ptrs
[NUM_HUFF_TBLS
];
113 } huff_entropy_encoder
;
115 typedef huff_entropy_encoder
*huff_entropy_ptr
;
117 /* Working state while writing an MCU.
118 * This struct contains all the fields that are needed by subroutines.
122 JOCTET
*next_output_byte
; /* => next byte to write in buffer */
123 size_t free_in_buffer
; /* # of byte spaces remaining in buffer */
124 savable_state cur
; /* Current bit buffer & DC state */
125 j_compress_ptr cinfo
; /* dump_buffer needs access to this */
129 /* Forward declarations */
130 METHODDEF(boolean
) encode_mcu_huff(j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
);
131 METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo
);
132 #ifdef ENTROPY_OPT_SUPPORTED
133 METHODDEF(boolean
) encode_mcu_gather(j_compress_ptr cinfo
,
134 JBLOCKROW
*MCU_data
);
135 METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo
);
140 * Initialize for a Huffman-compressed scan.
141 * If gather_statistics is TRUE, we do not output anything during the scan,
142 * just count the Huffman symbols used and generate Huffman code tables.
146 start_pass_huff(j_compress_ptr cinfo
, boolean gather_statistics
)
148 huff_entropy_ptr entropy
= (huff_entropy_ptr
)cinfo
->entropy
;
149 int ci
, dctbl
, actbl
;
150 jpeg_component_info
*compptr
;
152 if (gather_statistics
) {
153 #ifdef ENTROPY_OPT_SUPPORTED
154 entropy
->pub
.encode_mcu
= encode_mcu_gather
;
155 entropy
->pub
.finish_pass
= finish_pass_gather
;
157 ERREXIT(cinfo
, JERR_NOT_COMPILED
);
160 entropy
->pub
.encode_mcu
= encode_mcu_huff
;
161 entropy
->pub
.finish_pass
= finish_pass_huff
;
164 entropy
->simd
= jsimd_can_huff_encode_one_block();
166 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
167 compptr
= cinfo
->cur_comp_info
[ci
];
168 dctbl
= compptr
->dc_tbl_no
;
169 actbl
= compptr
->ac_tbl_no
;
170 if (gather_statistics
) {
171 #ifdef ENTROPY_OPT_SUPPORTED
172 /* Check for invalid table indexes */
173 /* (make_c_derived_tbl does this in the other path) */
174 if (dctbl
< 0 || dctbl
>= NUM_HUFF_TBLS
)
175 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, dctbl
);
176 if (actbl
< 0 || actbl
>= NUM_HUFF_TBLS
)
177 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, actbl
);
178 /* Allocate and zero the statistics tables */
179 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
180 if (entropy
->dc_count_ptrs
[dctbl
] == NULL
)
181 entropy
->dc_count_ptrs
[dctbl
] = (long *)
182 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
184 MEMZERO(entropy
->dc_count_ptrs
[dctbl
], 257 * sizeof(long));
185 if (entropy
->ac_count_ptrs
[actbl
] == NULL
)
186 entropy
->ac_count_ptrs
[actbl
] = (long *)
187 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
189 MEMZERO(entropy
->ac_count_ptrs
[actbl
], 257 * sizeof(long));
192 /* Compute derived values for Huffman tables */
193 /* We may do this more than once for a table, but it's not expensive */
194 jpeg_make_c_derived_tbl(cinfo
, TRUE
, dctbl
,
195 &entropy
->dc_derived_tbls
[dctbl
]);
196 jpeg_make_c_derived_tbl(cinfo
, FALSE
, actbl
,
197 &entropy
->ac_derived_tbls
[actbl
]);
199 /* Initialize DC predictions to 0 */
200 entropy
->saved
.last_dc_val
[ci
] = 0;
203 /* Initialize bit buffer to empty */
204 entropy
->saved
.put_buffer
= 0;
205 entropy
->saved
.put_bits
= 0;
207 /* Initialize restart stuff */
208 entropy
->restarts_to_go
= cinfo
->restart_interval
;
209 entropy
->next_restart_num
= 0;
214 * Compute the derived values for a Huffman table.
215 * This routine also performs some validation checks on the table.
217 * Note this is also used by jcphuff.c.
221 jpeg_make_c_derived_tbl(j_compress_ptr cinfo
, boolean isDC
, int tblno
,
222 c_derived_tbl
**pdtbl
)
226 int p
, i
, l
, lastp
, si
, maxsymbol
;
228 unsigned int huffcode
[257];
231 /* Note that huffsize[] and huffcode[] are filled in code-length order,
232 * paralleling the order of the symbols themselves in htbl->huffval[].
235 /* Find the input Huffman table */
236 if (tblno
< 0 || tblno
>= NUM_HUFF_TBLS
)
237 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
);
239 isDC
? cinfo
->dc_huff_tbl_ptrs
[tblno
] : cinfo
->ac_huff_tbl_ptrs
[tblno
];
241 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
);
243 /* Allocate a workspace if we haven't already done so. */
245 *pdtbl
= (c_derived_tbl
*)
246 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
247 sizeof(c_derived_tbl
));
250 /* Figure C.1: make table of Huffman code length for each symbol */
253 for (l
= 1; l
<= 16; l
++) {
254 i
= (int)htbl
->bits
[l
];
255 if (i
< 0 || p
+ i
> 256) /* protect against table overrun */
256 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
258 huffsize
[p
++] = (char)l
;
263 /* Figure C.2: generate the codes themselves */
264 /* We also validate that the counts represent a legal Huffman code tree. */
269 while (huffsize
[p
]) {
270 while (((int)huffsize
[p
]) == si
) {
271 huffcode
[p
++] = code
;
274 /* code is now 1 more than the last code used for codelength si; but
275 * it must still fit in si bits, since no code is allowed to be all ones.
277 if (((JLONG
)code
) >= (((JLONG
)1) << si
))
278 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
283 /* Figure C.3: generate encoding tables */
284 /* These are code and size indexed by symbol value */
286 /* Set all codeless symbols to have code length 0;
287 * this lets us detect duplicate VAL entries here, and later
288 * allows emit_bits to detect any attempt to emit such symbols.
290 MEMZERO(dtbl
->ehufsi
, sizeof(dtbl
->ehufsi
));
292 /* This is also a convenient place to check for out-of-range
293 * and duplicated VAL entries. We allow 0..255 for AC symbols
294 * but only 0..15 for DC. (We could constrain them further
295 * based on data depth and mode, but this seems enough.)
297 maxsymbol
= isDC
? 15 : 255;
299 for (p
= 0; p
< lastp
; p
++) {
300 i
= htbl
->huffval
[p
];
301 if (i
< 0 || i
> maxsymbol
|| dtbl
->ehufsi
[i
])
302 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
303 dtbl
->ehufco
[i
] = huffcode
[p
];
304 dtbl
->ehufsi
[i
] = huffsize
[p
];
309 /* Outputting bytes to the file */
311 /* Emit a byte, taking 'action' if must suspend. */
312 #define emit_byte(state, val, action) { \
313 *(state)->next_output_byte++ = (JOCTET)(val); \
314 if (--(state)->free_in_buffer == 0) \
315 if (!dump_buffer(state)) \
321 dump_buffer(working_state
*state
)
322 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
324 struct jpeg_destination_mgr
*dest
= state
->cinfo
->dest
;
326 if (!(*dest
->empty_output_buffer
) (state
->cinfo
))
328 /* After a successful buffer dump, must reset buffer pointers */
329 state
->next_output_byte
= dest
->next_output_byte
;
330 state
->free_in_buffer
= dest
->free_in_buffer
;
335 /* Outputting bits to the file */
337 /* These macros perform the same task as the emit_bits() function in the
338 * original libjpeg code. In addition to reducing overhead by explicitly
339 * inlining the code, additional performance is achieved by taking into
340 * account the size of the bit buffer and waiting until it is almost full
341 * before emptying it. This mostly benefits 64-bit platforms, since 6
342 * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
345 #define EMIT_BYTE() { \
348 c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
350 if (c == 0xFF) /* need to stuff a zero byte? */ \
354 #define PUT_BITS(code, size) { \
356 put_buffer = (put_buffer << size) | code; \
359 #if SIZEOF_SIZE_T != 8 && !defined(_WIN64)
361 #define CHECKBUF15() { \
362 if (put_bits > 15) { \
370 #define CHECKBUF31() { \
371 if (put_bits > 31) { \
379 #define CHECKBUF47() { \
380 if (put_bits > 47) { \
390 #if !defined(_WIN32) && !defined(SIZEOF_SIZE_T)
391 #error Cannot determine word size
394 #if SIZEOF_SIZE_T == 8 || defined(_WIN64)
396 #define EMIT_BITS(code, size) { \
398 PUT_BITS(code, size) \
401 #define EMIT_CODE(code, size) { \
402 temp2 &= (((JLONG)1) << nbits) - 1; \
404 PUT_BITS(code, size) \
405 PUT_BITS(temp2, nbits) \
410 #define EMIT_BITS(code, size) { \
411 PUT_BITS(code, size) \
415 #define EMIT_CODE(code, size) { \
416 temp2 &= (((JLONG)1) << nbits) - 1; \
417 PUT_BITS(code, size) \
419 PUT_BITS(temp2, nbits) \
426 /* Although it is exceedingly rare, it is possible for a Huffman-encoded
427 * coefficient block to be larger than the 128-byte unencoded block. For each
428 * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
429 * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
430 * encoded block.) If, for instance, one artificially sets the AC
431 * coefficients to alternating values of 32767 and -32768 (using the JPEG
432 * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
433 * larger than 200 bytes.
435 #define BUFSIZE (DCTSIZE2 * 8)
437 #define LOAD_BUFFER() { \
438 if (state->free_in_buffer < BUFSIZE) { \
442 buffer = state->next_output_byte; \
445 #define STORE_BUFFER() { \
447 bytes = buffer - _buffer; \
449 while (bytes > 0) { \
450 bytestocopy = MIN(bytes, state->free_in_buffer); \
451 MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
452 state->next_output_byte += bytestocopy; \
453 buffer += bytestocopy; \
454 state->free_in_buffer -= bytestocopy; \
455 if (state->free_in_buffer == 0) \
456 if (!dump_buffer(state)) return FALSE; \
457 bytes -= bytestocopy; \
460 state->free_in_buffer -= (buffer - state->next_output_byte); \
461 state->next_output_byte = buffer; \
467 flush_bits(working_state
*state
)
469 JOCTET _buffer
[BUFSIZE
], *buffer
;
470 size_t put_buffer
; int put_bits
;
471 size_t bytes
, bytestocopy
; int localbuf
= 0;
473 put_buffer
= state
->cur
.put_buffer
;
474 put_bits
= state
->cur
.put_bits
;
477 /* fill any partial byte with ones */
479 while (put_bits
>= 8) EMIT_BYTE()
481 state
->cur
.put_buffer
= 0; /* and reset bit-buffer to empty */
482 state
->cur
.put_bits
= 0;
489 /* Encode a single block's worth of coefficients */
492 encode_one_block_simd(working_state
*state
, JCOEFPTR block
, int last_dc_val
,
493 c_derived_tbl
*dctbl
, c_derived_tbl
*actbl
)
495 JOCTET _buffer
[BUFSIZE
], *buffer
;
496 size_t bytes
, bytestocopy
; int localbuf
= 0;
500 buffer
= jsimd_huff_encode_one_block(state
, buffer
, block
, last_dc_val
,
509 encode_one_block(working_state
*state
, JCOEFPTR block
, int last_dc_val
,
510 c_derived_tbl
*dctbl
, c_derived_tbl
*actbl
)
512 int temp
, temp2
, temp3
;
515 JOCTET _buffer
[BUFSIZE
], *buffer
;
516 size_t put_buffer
; int put_bits
;
517 int code_0xf0
= actbl
->ehufco
[0xf0], size_0xf0
= actbl
->ehufsi
[0xf0];
518 size_t bytes
, bytestocopy
; int localbuf
= 0;
520 put_buffer
= state
->cur
.put_buffer
;
521 put_bits
= state
->cur
.put_bits
;
524 /* Encode the DC coefficient difference per section F.1.2.1 */
526 temp
= temp2
= block
[0] - last_dc_val
;
528 /* This is a well-known technique for obtaining the absolute value without a
529 * branch. It is derived from an assembly language technique presented in
530 * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
533 temp3
= temp
>> (CHAR_BIT
* sizeof(int) - 1);
537 /* For a negative input, want temp2 = bitwise complement of abs(input) */
538 /* This code assumes we are on a two's complement machine */
541 /* Find the number of bits needed for the magnitude of the coefficient */
542 nbits
= JPEG_NBITS(temp
);
544 /* Emit the Huffman-coded symbol for the number of bits */
545 code
= dctbl
->ehufco
[nbits
];
546 size
= dctbl
->ehufsi
[nbits
];
547 EMIT_BITS(code
, size
)
549 /* Mask off any extra bits in code */
550 temp2
&= (((JLONG
)1) << nbits
) - 1;
552 /* Emit that number of bits of the value, if positive, */
553 /* or the complement of its magnitude, if negative. */
554 EMIT_BITS(temp2
, nbits
)
556 /* Encode the AC coefficients per section F.1.2.2 */
558 r
= 0; /* r = run length of zeros */
560 /* Manually unroll the k loop to eliminate the counter variable. This
561 * improves performance greatly on systems with a limited number of
562 * registers (such as x86.)
564 #define kloop(jpeg_natural_order_of_k) { \
565 if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
569 /* Branch-less absolute value, bitwise complement, etc., same as above */ \
570 temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
574 nbits = JPEG_NBITS_NONZERO(temp); \
575 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
577 EMIT_BITS(code_0xf0, size_0xf0) \
580 /* Emit Huffman symbol for run length / number of bits */ \
581 temp3 = (r << 4) + nbits; \
582 code = actbl->ehufco[temp3]; \
583 size = actbl->ehufsi[temp3]; \
584 EMIT_CODE(code, size) \
589 /* One iteration for each value in jpeg_natural_order[] */
590 kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3);
591 kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18);
592 kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26);
593 kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27);
594 kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21);
595 kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57);
596 kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15);
597 kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58);
598 kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39);
599 kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47);
600 kloop(55); kloop(62); kloop(63);
602 /* If the last coef(s) were zero, emit an end-of-block code */
604 code
= actbl
->ehufco
[0];
605 size
= actbl
->ehufsi
[0];
606 EMIT_BITS(code
, size
)
609 state
->cur
.put_buffer
= put_buffer
;
610 state
->cur
.put_bits
= put_bits
;
618 * Emit a restart marker & resynchronize predictions.
622 emit_restart(working_state
*state
, int restart_num
)
626 if (!flush_bits(state
))
629 emit_byte(state
, 0xFF, return FALSE
);
630 emit_byte(state
, JPEG_RST0
+ restart_num
, return FALSE
);
632 /* Re-initialize DC predictions to 0 */
633 for (ci
= 0; ci
< state
->cinfo
->comps_in_scan
; ci
++)
634 state
->cur
.last_dc_val
[ci
] = 0;
636 /* The restart counter is not updated until we successfully write the MCU. */
643 * Encode and output one MCU's worth of Huffman-compressed coefficients.
647 encode_mcu_huff(j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
649 huff_entropy_ptr entropy
= (huff_entropy_ptr
)cinfo
->entropy
;
652 jpeg_component_info
*compptr
;
654 /* Load up working state */
655 state
.next_output_byte
= cinfo
->dest
->next_output_byte
;
656 state
.free_in_buffer
= cinfo
->dest
->free_in_buffer
;
657 ASSIGN_STATE(state
.cur
, entropy
->saved
);
660 /* Emit restart marker if needed */
661 if (cinfo
->restart_interval
) {
662 if (entropy
->restarts_to_go
== 0)
663 if (!emit_restart(&state
, entropy
->next_restart_num
))
667 /* Encode the MCU data blocks */
669 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
670 ci
= cinfo
->MCU_membership
[blkn
];
671 compptr
= cinfo
->cur_comp_info
[ci
];
672 if (!encode_one_block_simd(&state
,
673 MCU_data
[blkn
][0], state
.cur
.last_dc_val
[ci
],
674 entropy
->dc_derived_tbls
[compptr
->dc_tbl_no
],
675 entropy
->ac_derived_tbls
[compptr
->ac_tbl_no
]))
677 /* Update last_dc_val */
678 state
.cur
.last_dc_val
[ci
] = MCU_data
[blkn
][0][0];
681 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
682 ci
= cinfo
->MCU_membership
[blkn
];
683 compptr
= cinfo
->cur_comp_info
[ci
];
684 if (!encode_one_block(&state
,
685 MCU_data
[blkn
][0], state
.cur
.last_dc_val
[ci
],
686 entropy
->dc_derived_tbls
[compptr
->dc_tbl_no
],
687 entropy
->ac_derived_tbls
[compptr
->ac_tbl_no
]))
689 /* Update last_dc_val */
690 state
.cur
.last_dc_val
[ci
] = MCU_data
[blkn
][0][0];
694 /* Completed MCU, so update state */
695 cinfo
->dest
->next_output_byte
= state
.next_output_byte
;
696 cinfo
->dest
->free_in_buffer
= state
.free_in_buffer
;
697 ASSIGN_STATE(entropy
->saved
, state
.cur
);
699 /* Update restart-interval state too */
700 if (cinfo
->restart_interval
) {
701 if (entropy
->restarts_to_go
== 0) {
702 entropy
->restarts_to_go
= cinfo
->restart_interval
;
703 entropy
->next_restart_num
++;
704 entropy
->next_restart_num
&= 7;
706 entropy
->restarts_to_go
--;
714 * Finish up at the end of a Huffman-compressed scan.
718 finish_pass_huff(j_compress_ptr cinfo
)
720 huff_entropy_ptr entropy
= (huff_entropy_ptr
)cinfo
->entropy
;
723 /* Load up working state ... flush_bits needs it */
724 state
.next_output_byte
= cinfo
->dest
->next_output_byte
;
725 state
.free_in_buffer
= cinfo
->dest
->free_in_buffer
;
726 ASSIGN_STATE(state
.cur
, entropy
->saved
);
729 /* Flush out the last data */
730 if (!flush_bits(&state
))
731 ERREXIT(cinfo
, JERR_CANT_SUSPEND
);
734 cinfo
->dest
->next_output_byte
= state
.next_output_byte
;
735 cinfo
->dest
->free_in_buffer
= state
.free_in_buffer
;
736 ASSIGN_STATE(entropy
->saved
, state
.cur
);
741 * Huffman coding optimization.
743 * We first scan the supplied data and count the number of uses of each symbol
744 * that is to be Huffman-coded. (This process MUST agree with the code above.)
745 * Then we build a Huffman coding tree for the observed counts.
746 * Symbols which are not needed at all for the particular image are not
747 * assigned any code, which saves space in the DHT marker as well as in
748 * the compressed data.
751 #ifdef ENTROPY_OPT_SUPPORTED
754 /* Process a single block's worth of coefficients */
757 htest_one_block(j_compress_ptr cinfo
, JCOEFPTR block
, int last_dc_val
,
758 long dc_counts
[], long ac_counts
[])
764 /* Encode the DC coefficient difference per section F.1.2.1 */
766 temp
= block
[0] - last_dc_val
;
770 /* Find the number of bits needed for the magnitude of the coefficient */
776 /* Check for out-of-range coefficient values.
777 * Since we're encoding a difference, the range limit is twice as much.
779 if (nbits
> MAX_COEF_BITS
+ 1)
780 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
782 /* Count the Huffman symbol for the number of bits */
785 /* Encode the AC coefficients per section F.1.2.2 */
787 r
= 0; /* r = run length of zeros */
789 for (k
= 1; k
< DCTSIZE2
; k
++) {
790 if ((temp
= block
[jpeg_natural_order
[k
]]) == 0) {
793 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
799 /* Find the number of bits needed for the magnitude of the coefficient */
803 /* Find the number of bits needed for the magnitude of the coefficient */
804 nbits
= 1; /* there must be at least one 1 bit */
807 /* Check for out-of-range coefficient values */
808 if (nbits
> MAX_COEF_BITS
)
809 ERREXIT(cinfo
, JERR_BAD_DCT_COEF
);
811 /* Count Huffman symbol for run length / number of bits */
812 ac_counts
[(r
<< 4) + nbits
]++;
818 /* If the last coef(s) were zero, emit an end-of-block code */
825 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
826 * No data is actually output, so no suspension return is possible.
830 encode_mcu_gather(j_compress_ptr cinfo
, JBLOCKROW
*MCU_data
)
832 huff_entropy_ptr entropy
= (huff_entropy_ptr
)cinfo
->entropy
;
834 jpeg_component_info
*compptr
;
836 /* Take care of restart intervals if needed */
837 if (cinfo
->restart_interval
) {
838 if (entropy
->restarts_to_go
== 0) {
839 /* Re-initialize DC predictions to 0 */
840 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++)
841 entropy
->saved
.last_dc_val
[ci
] = 0;
842 /* Update restart state */
843 entropy
->restarts_to_go
= cinfo
->restart_interval
;
845 entropy
->restarts_to_go
--;
848 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
849 ci
= cinfo
->MCU_membership
[blkn
];
850 compptr
= cinfo
->cur_comp_info
[ci
];
851 htest_one_block(cinfo
, MCU_data
[blkn
][0], entropy
->saved
.last_dc_val
[ci
],
852 entropy
->dc_count_ptrs
[compptr
->dc_tbl_no
],
853 entropy
->ac_count_ptrs
[compptr
->ac_tbl_no
]);
854 entropy
->saved
.last_dc_val
[ci
] = MCU_data
[blkn
][0][0];
862 * Generate the best Huffman code table for the given counts, fill htbl.
863 * Note this is also used by jcphuff.c.
865 * The JPEG standard requires that no symbol be assigned a codeword of all
866 * one bits (so that padding bits added at the end of a compressed segment
867 * can't look like a valid code). Because of the canonical ordering of
868 * codewords, this just means that there must be an unused slot in the
869 * longest codeword length category. Annex K (Clause K.2) of
870 * Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 suggests reserving such a slot
871 * by pretending that symbol 256 is a valid symbol with count 1. In theory
872 * that's not optimal; giving it count zero but including it in the symbol set
873 * anyway should give a better Huffman code. But the theoretically better code
874 * actually seems to come out worse in practice, because it produces more
875 * all-ones bytes (which incur stuffed zero bytes in the final file). In any
876 * case the difference is tiny.
878 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
879 * If some symbols have a very small but nonzero probability, the Huffman tree
880 * must be adjusted to meet the code length restriction. We currently use
881 * the adjustment method suggested in JPEG section K.2. This method is *not*
882 * optimal; it may not choose the best possible limited-length code. But
883 * typically only very-low-frequency symbols will be given less-than-optimal
884 * lengths, so the code is almost optimal. Experimental comparisons against
885 * an optimal limited-length-code algorithm indicate that the difference is
886 * microscopic --- usually less than a hundredth of a percent of total size.
887 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
891 jpeg_gen_optimal_table(j_compress_ptr cinfo
, JHUFF_TBL
*htbl
, long freq
[])
893 #define MAX_CLEN 32 /* assumed maximum initial code length */
894 UINT8 bits
[MAX_CLEN
+ 1]; /* bits[k] = # of symbols with code length k */
895 int codesize
[257]; /* codesize[k] = code length of symbol k */
896 int others
[257]; /* next symbol in current branch of tree */
901 /* This algorithm is explained in section K.2 of the JPEG standard */
903 MEMZERO(bits
, sizeof(bits
));
904 MEMZERO(codesize
, sizeof(codesize
));
905 for (i
= 0; i
< 257; i
++)
906 others
[i
] = -1; /* init links to empty */
908 freq
[256] = 1; /* make sure 256 has a nonzero count */
909 /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
910 * that no real symbol is given code-value of all ones, because 256
911 * will be placed last in the largest codeword category.
914 /* Huffman's basic algorithm to assign optimal code lengths to symbols */
917 /* Find the smallest nonzero frequency, set c1 = its symbol */
918 /* In case of ties, take the larger symbol number */
921 for (i
= 0; i
<= 256; i
++) {
922 if (freq
[i
] && freq
[i
] <= v
) {
928 /* Find the next smallest nonzero frequency, set c2 = its symbol */
929 /* In case of ties, take the larger symbol number */
932 for (i
= 0; i
<= 256; i
++) {
933 if (freq
[i
] && freq
[i
] <= v
&& i
!= c1
) {
939 /* Done if we've merged everything into one frequency */
943 /* Else merge the two counts/trees */
944 freq
[c1
] += freq
[c2
];
947 /* Increment the codesize of everything in c1's tree branch */
949 while (others
[c1
] >= 0) {
954 others
[c1
] = c2
; /* chain c2 onto c1's tree branch */
956 /* Increment the codesize of everything in c2's tree branch */
958 while (others
[c2
] >= 0) {
964 /* Now count the number of symbols of each code length */
965 for (i
= 0; i
<= 256; i
++) {
967 /* The JPEG standard seems to think that this can't happen, */
968 /* but I'm paranoid... */
969 if (codesize
[i
] > MAX_CLEN
)
970 ERREXIT(cinfo
, JERR_HUFF_CLEN_OVERFLOW
);
976 /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
977 * Huffman procedure assigned any such lengths, we must adjust the coding.
978 * Here is what Rec. ITU-T T.81 | ISO/IEC 10918-1 says about how this next
979 * bit works: Since symbols are paired for the longest Huffman code, the
980 * symbols are removed from this length category two at a time. The prefix
981 * for the pair (which is one bit shorter) is allocated to one of the pair;
982 * then, skipping the BITS entry for that prefix length, a code word from the
983 * next shortest nonzero BITS entry is converted into a prefix for two code
984 * words one bit longer.
987 for (i
= MAX_CLEN
; i
> 16; i
--) {
988 while (bits
[i
] > 0) {
989 j
= i
- 2; /* find length of new prefix to be used */
993 bits
[i
] -= 2; /* remove two symbols */
994 bits
[i
- 1]++; /* one goes in this length */
995 bits
[j
+ 1] += 2; /* two new symbols in this length */
996 bits
[j
]--; /* symbol of this length is now a prefix */
1000 /* Remove the count for the pseudo-symbol 256 from the largest codelength */
1001 while (bits
[i
] == 0) /* find largest codelength still in use */
1005 /* Return final symbol counts (only for lengths 0..16) */
1006 MEMCOPY(htbl
->bits
, bits
, sizeof(htbl
->bits
));
1008 /* Return a list of the symbols sorted by code length */
1009 /* It's not real clear to me why we don't need to consider the codelength
1010 * changes made above, but Rec. ITU-T T.81 | ISO/IEC 10918-1 seems to think
1014 for (i
= 1; i
<= MAX_CLEN
; i
++) {
1015 for (j
= 0; j
<= 255; j
++) {
1016 if (codesize
[j
] == i
) {
1017 htbl
->huffval
[p
] = (UINT8
)j
;
1023 /* Set sent_table FALSE so updated table will be written to JPEG file. */
1024 htbl
->sent_table
= FALSE
;
1029 * Finish up a statistics-gathering pass and create the new Huffman tables.
1033 finish_pass_gather(j_compress_ptr cinfo
)
1035 huff_entropy_ptr entropy
= (huff_entropy_ptr
)cinfo
->entropy
;
1036 int ci
, dctbl
, actbl
;
1037 jpeg_component_info
*compptr
;
1038 JHUFF_TBL
**htblptr
;
1039 boolean did_dc
[NUM_HUFF_TBLS
];
1040 boolean did_ac
[NUM_HUFF_TBLS
];
1042 /* It's important not to apply jpeg_gen_optimal_table more than once
1043 * per table, because it clobbers the input frequency counts!
1045 MEMZERO(did_dc
, sizeof(did_dc
));
1046 MEMZERO(did_ac
, sizeof(did_ac
));
1048 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
1049 compptr
= cinfo
->cur_comp_info
[ci
];
1050 dctbl
= compptr
->dc_tbl_no
;
1051 actbl
= compptr
->ac_tbl_no
;
1052 if (!did_dc
[dctbl
]) {
1053 htblptr
= &cinfo
->dc_huff_tbl_ptrs
[dctbl
];
1054 if (*htblptr
== NULL
)
1055 *htblptr
= jpeg_alloc_huff_table((j_common_ptr
)cinfo
);
1056 jpeg_gen_optimal_table(cinfo
, *htblptr
, entropy
->dc_count_ptrs
[dctbl
]);
1057 did_dc
[dctbl
] = TRUE
;
1059 if (!did_ac
[actbl
]) {
1060 htblptr
= &cinfo
->ac_huff_tbl_ptrs
[actbl
];
1061 if (*htblptr
== NULL
)
1062 *htblptr
= jpeg_alloc_huff_table((j_common_ptr
)cinfo
);
1063 jpeg_gen_optimal_table(cinfo
, *htblptr
, entropy
->ac_count_ptrs
[actbl
]);
1064 did_ac
[actbl
] = TRUE
;
1070 #endif /* ENTROPY_OPT_SUPPORTED */
1074 * Module initialization routine for Huffman entropy encoding.
1078 jinit_huff_encoder(j_compress_ptr cinfo
)
1080 huff_entropy_ptr entropy
;
1083 entropy
= (huff_entropy_ptr
)
1084 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
)cinfo
, JPOOL_IMAGE
,
1085 sizeof(huff_entropy_encoder
));
1086 cinfo
->entropy
= (struct jpeg_entropy_encoder
*)entropy
;
1087 entropy
->pub
.start_pass
= start_pass_huff
;
1089 /* Mark tables unallocated */
1090 for (i
= 0; i
< NUM_HUFF_TBLS
; i
++) {
1091 entropy
->dc_derived_tbls
[i
] = entropy
->ac_derived_tbls
[i
] = NULL
;
1092 #ifdef ENTROPY_OPT_SUPPORTED
1093 entropy
->dc_count_ptrs
[i
] = entropy
->ac_count_ptrs
[i
] = NULL
;