Bumping manifests a=b2g-bump
[gecko.git] / gfx / ycbcr / yuv_convert.cpp
blob8b35e989082a456ac731dcefa014e3e25c23780d
1 // Copyright (c) 2010 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This webpage shows layout of YV12 and other YUV formats
6 // http://www.fourcc.org/yuv.php
7 // The actual conversion is best described here
8 // http://en.wikipedia.org/wiki/YUV
9 // An article on optimizing YUV conversion using tables instead of multiplies
10 // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
12 // YV12 is a full plane of Y and a half height, half width chroma planes
13 // YV16 is a full plane of Y and a full height, half width chroma planes
14 // YV24 is a full plane of Y and a full height, full width chroma planes
16 // ARGB pixel format is output, which on little endian is stored as BGRA.
17 // The alpha is set to 255, allowing the application to use RGBA or RGB32.
19 #include "yuv_convert.h"
21 // Header for low level row functions.
22 #include "yuv_row.h"
23 #include "mozilla/SSE.h"
25 namespace mozilla {
27 namespace gfx {
29 // 16.16 fixed point arithmetic
30 const int kFractionBits = 16;
31 const int kFractionMax = 1 << kFractionBits;
32 const int kFractionMask = ((1 << kFractionBits) - 1);
34 NS_GFX_(YUVType) TypeFromSize(int ywidth,
35 int yheight,
36 int cbcrwidth,
37 int cbcrheight)
39 if (ywidth == cbcrwidth && yheight == cbcrheight) {
40 return YV24;
42 else if (ywidth / 2 == cbcrwidth && yheight == cbcrheight) {
43 return YV16;
45 else {
46 return YV12;
50 // Convert a frame of YUV to 32 bit ARGB.
51 NS_GFX_(void) ConvertYCbCrToRGB32(const uint8* y_buf,
52 const uint8* u_buf,
53 const uint8* v_buf,
54 uint8* rgb_buf,
55 int pic_x,
56 int pic_y,
57 int pic_width,
58 int pic_height,
59 int y_pitch,
60 int uv_pitch,
61 int rgb_pitch,
62 YUVType yuv_type) {
63 unsigned int y_shift = yuv_type == YV12 ? 1 : 0;
64 unsigned int x_shift = yuv_type == YV24 ? 0 : 1;
65 // Test for SSE because the optimized code uses movntq, which is not part of MMX.
66 bool has_sse = supports_mmx() && supports_sse();
67 // There is no optimized YV24 SSE routine so we check for this and
68 // fall back to the C code.
69 has_sse &= yuv_type != YV24;
70 bool odd_pic_x = yuv_type != YV24 && pic_x % 2 != 0;
71 int x_width = odd_pic_x ? pic_width - 1 : pic_width;
73 for (int y = pic_y; y < pic_height + pic_y; ++y) {
74 uint8* rgb_row = rgb_buf + (y - pic_y) * rgb_pitch;
75 const uint8* y_ptr = y_buf + y * y_pitch + pic_x;
76 const uint8* u_ptr = u_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift);
77 const uint8* v_ptr = v_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift);
79 if (odd_pic_x) {
80 // Handle the single odd pixel manually and use the
81 // fast routines for the remaining.
82 FastConvertYUVToRGB32Row_C(y_ptr++,
83 u_ptr++,
84 v_ptr++,
85 rgb_row,
87 x_shift);
88 rgb_row += 4;
91 if (has_sse) {
92 FastConvertYUVToRGB32Row(y_ptr,
93 u_ptr,
94 v_ptr,
95 rgb_row,
96 x_width);
98 else {
99 FastConvertYUVToRGB32Row_C(y_ptr,
100 u_ptr,
101 v_ptr,
102 rgb_row,
103 x_width,
104 x_shift);
108 // MMX used for FastConvertYUVToRGB32Row requires emms instruction.
109 if (has_sse)
110 EMMS();
113 // C version does 8 at a time to mimic MMX code
114 static void FilterRows_C(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr,
115 int source_width, int source_y_fraction) {
116 int y1_fraction = source_y_fraction;
117 int y0_fraction = 256 - y1_fraction;
118 uint8* end = ybuf + source_width;
119 do {
120 ybuf[0] = (y0_ptr[0] * y0_fraction + y1_ptr[0] * y1_fraction) >> 8;
121 ybuf[1] = (y0_ptr[1] * y0_fraction + y1_ptr[1] * y1_fraction) >> 8;
122 ybuf[2] = (y0_ptr[2] * y0_fraction + y1_ptr[2] * y1_fraction) >> 8;
123 ybuf[3] = (y0_ptr[3] * y0_fraction + y1_ptr[3] * y1_fraction) >> 8;
124 ybuf[4] = (y0_ptr[4] * y0_fraction + y1_ptr[4] * y1_fraction) >> 8;
125 ybuf[5] = (y0_ptr[5] * y0_fraction + y1_ptr[5] * y1_fraction) >> 8;
126 ybuf[6] = (y0_ptr[6] * y0_fraction + y1_ptr[6] * y1_fraction) >> 8;
127 ybuf[7] = (y0_ptr[7] * y0_fraction + y1_ptr[7] * y1_fraction) >> 8;
128 y0_ptr += 8;
129 y1_ptr += 8;
130 ybuf += 8;
131 } while (ybuf < end);
134 #ifdef MOZILLA_MAY_SUPPORT_MMX
135 void FilterRows_MMX(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr,
136 int source_width, int source_y_fraction);
137 #endif
139 #ifdef MOZILLA_MAY_SUPPORT_SSE2
140 void FilterRows_SSE2(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr,
141 int source_width, int source_y_fraction);
142 #endif
144 static inline void FilterRows(uint8* ybuf, const uint8* y0_ptr,
145 const uint8* y1_ptr, int source_width,
146 int source_y_fraction) {
147 #ifdef MOZILLA_MAY_SUPPORT_SSE2
148 if (mozilla::supports_sse2()) {
149 FilterRows_SSE2(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
150 return;
152 #endif
154 #ifdef MOZILLA_MAY_SUPPORT_MMX
155 if (mozilla::supports_mmx()) {
156 FilterRows_MMX(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
157 return;
159 #endif
161 FilterRows_C(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
165 // Scale a frame of YUV to 32 bit ARGB.
166 NS_GFX_(void) ScaleYCbCrToRGB32(const uint8* y_buf,
167 const uint8* u_buf,
168 const uint8* v_buf,
169 uint8* rgb_buf,
170 int source_width,
171 int source_height,
172 int width,
173 int height,
174 int y_pitch,
175 int uv_pitch,
176 int rgb_pitch,
177 YUVType yuv_type,
178 Rotate view_rotate,
179 ScaleFilter filter) {
180 bool has_mmx = supports_mmx();
182 // 4096 allows 3 buffers to fit in 12k.
183 // Helps performance on CPU with 16K L1 cache.
184 // Large enough for 3830x2160 and 30" displays which are 2560x1600.
185 const int kFilterBufferSize = 4096;
186 // Disable filtering if the screen is too big (to avoid buffer overflows).
187 // This should never happen to regular users: they don't have monitors
188 // wider than 4096 pixels.
189 // TODO(fbarchard): Allow rotated videos to filter.
190 if (source_width > kFilterBufferSize || view_rotate)
191 filter = FILTER_NONE;
193 unsigned int y_shift = yuv_type == YV12 ? 1 : 0;
194 // Diagram showing origin and direction of source sampling.
195 // ->0 4<-
196 // 7 3
198 // 6 5
199 // ->1 2<-
200 // Rotations that start at right side of image.
201 if ((view_rotate == ROTATE_180) ||
202 (view_rotate == ROTATE_270) ||
203 (view_rotate == MIRROR_ROTATE_0) ||
204 (view_rotate == MIRROR_ROTATE_90)) {
205 y_buf += source_width - 1;
206 u_buf += source_width / 2 - 1;
207 v_buf += source_width / 2 - 1;
208 source_width = -source_width;
210 // Rotations that start at bottom of image.
211 if ((view_rotate == ROTATE_90) ||
212 (view_rotate == ROTATE_180) ||
213 (view_rotate == MIRROR_ROTATE_90) ||
214 (view_rotate == MIRROR_ROTATE_180)) {
215 y_buf += (source_height - 1) * y_pitch;
216 u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
217 v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
218 source_height = -source_height;
221 // Handle zero sized destination.
222 if (width == 0 || height == 0)
223 return;
224 int source_dx = source_width * kFractionMax / width;
225 int source_dy = source_height * kFractionMax / height;
226 int source_dx_uv = source_dx;
228 if ((view_rotate == ROTATE_90) ||
229 (view_rotate == ROTATE_270)) {
230 int tmp = height;
231 height = width;
232 width = tmp;
233 tmp = source_height;
234 source_height = source_width;
235 source_width = tmp;
236 int original_dx = source_dx;
237 int original_dy = source_dy;
238 source_dx = ((original_dy >> kFractionBits) * y_pitch) << kFractionBits;
239 source_dx_uv = ((original_dy >> kFractionBits) * uv_pitch) << kFractionBits;
240 source_dy = original_dx;
241 if (view_rotate == ROTATE_90) {
242 y_pitch = -1;
243 uv_pitch = -1;
244 source_height = -source_height;
245 } else {
246 y_pitch = 1;
247 uv_pitch = 1;
251 // Need padding because FilterRows() will write 1 to 16 extra pixels
252 // after the end for SSE2 version.
253 uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
254 uint8* ybuf =
255 reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
256 uint8* ubuf = ybuf + kFilterBufferSize;
257 uint8* vbuf = ubuf + kFilterBufferSize;
258 // TODO(fbarchard): Fixed point math is off by 1 on negatives.
259 int yscale_fixed = (source_height << kFractionBits) / height;
261 // TODO(fbarchard): Split this into separate function for better efficiency.
262 for (int y = 0; y < height; ++y) {
263 uint8* dest_pixel = rgb_buf + y * rgb_pitch;
264 int source_y_subpixel = (y * yscale_fixed);
265 if (yscale_fixed >= (kFractionMax * 2)) {
266 source_y_subpixel += kFractionMax / 2; // For 1/2 or less, center filter.
268 int source_y = source_y_subpixel >> kFractionBits;
270 const uint8* y0_ptr = y_buf + source_y * y_pitch;
271 const uint8* y1_ptr = y0_ptr + y_pitch;
273 const uint8* u0_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
274 const uint8* u1_ptr = u0_ptr + uv_pitch;
275 const uint8* v0_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
276 const uint8* v1_ptr = v0_ptr + uv_pitch;
278 // vertical scaler uses 16.8 fixed point
279 int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
280 int source_uv_fraction =
281 ((source_y_subpixel >> y_shift) & kFractionMask) >> 8;
283 const uint8* y_ptr = y0_ptr;
284 const uint8* u_ptr = u0_ptr;
285 const uint8* v_ptr = v0_ptr;
286 // Apply vertical filtering if necessary.
287 // TODO(fbarchard): Remove memcpy when not necessary.
288 if (filter & mozilla::gfx::FILTER_BILINEAR_V) {
289 if (yscale_fixed != kFractionMax &&
290 source_y_fraction && ((source_y + 1) < source_height)) {
291 FilterRows(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction);
292 } else {
293 memcpy(ybuf, y0_ptr, source_width);
295 y_ptr = ybuf;
296 ybuf[source_width] = ybuf[source_width-1];
297 int uv_source_width = (source_width + 1) / 2;
298 if (yscale_fixed != kFractionMax &&
299 source_uv_fraction &&
300 (((source_y >> y_shift) + 1) < (source_height >> y_shift))) {
301 FilterRows(ubuf, u0_ptr, u1_ptr, uv_source_width, source_uv_fraction);
302 FilterRows(vbuf, v0_ptr, v1_ptr, uv_source_width, source_uv_fraction);
303 } else {
304 memcpy(ubuf, u0_ptr, uv_source_width);
305 memcpy(vbuf, v0_ptr, uv_source_width);
307 u_ptr = ubuf;
308 v_ptr = vbuf;
309 ubuf[uv_source_width] = ubuf[uv_source_width - 1];
310 vbuf[uv_source_width] = vbuf[uv_source_width - 1];
312 if (source_dx == kFractionMax) { // Not scaled
313 FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
314 dest_pixel, width);
315 } else if (filter & FILTER_BILINEAR_H) {
316 LinearScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
317 dest_pixel, width, source_dx);
318 } else {
319 // Specialized scalers and rotation.
320 #if defined(MOZILLA_MAY_SUPPORT_SSE) && defined(_MSC_VER) && defined(_M_IX86)
321 if(mozilla::supports_sse()) {
322 if (width == (source_width * 2)) {
323 DoubleYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr,
324 dest_pixel, width);
325 } else if ((source_dx & kFractionMask) == 0) {
326 // Scaling by integer scale factor. ie half.
327 ConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr,
328 dest_pixel, width,
329 source_dx >> kFractionBits);
330 } else if (source_dx_uv == source_dx) { // Not rotated.
331 ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
332 dest_pixel, width, source_dx);
333 } else {
334 RotateConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr,
335 dest_pixel, width,
336 source_dx >> kFractionBits,
337 source_dx_uv >> kFractionBits);
340 else {
341 ScaleYUVToRGB32Row_C(y_ptr, u_ptr, v_ptr,
342 dest_pixel, width, source_dx);
344 #else
345 (void)source_dx_uv;
346 ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr,
347 dest_pixel, width, source_dx);
348 #endif
351 // MMX used for FastConvertYUVToRGB32Row and FilterRows requires emms.
352 if (has_mmx)
353 EMMS();
356 } // namespace gfx
357 } // namespace mozilla