1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 // A simple segmented vector class.
9 // This class should be used in preference to mozilla::Vector or nsTArray when
10 // you are simply gathering items in order to later iterate over them.
12 // - In the case where you don't know the final size in advance, using
13 // SegmentedVector avoids the need to repeatedly allocate increasingly large
14 // buffers and copy the data into them.
16 // - In the case where you know the final size in advance and so can set the
17 // capacity appropriately, using SegmentedVector still avoids the need for
18 // large allocations (which can trigger OOMs).
20 #ifndef mozilla_SegmentedVector_h
21 #define mozilla_SegmentedVector_h
23 #include <new> // for placement new
26 #include "mozilla/AllocPolicy.h"
27 #include "mozilla/Array.h"
28 #include "mozilla/Attributes.h"
29 #include "mozilla/LinkedList.h"
30 #include "mozilla/MemoryReporting.h"
31 #include "mozilla/OperatorNewExtensions.h"
34 # include "mozilla/Likely.h"
35 # include "mozilla/mozalloc_oom.h"
40 // |IdealSegmentSize| specifies how big each segment will be in bytes (or as
41 // close as is possible). Use the following guidelines to choose a size.
43 // - It should be a power-of-two, to avoid slop.
45 // - It should not be too small, so that segment allocations are infrequent,
46 // and so that per-segment bookkeeping overhead is low. Typically each
47 // segment should be able to hold hundreds of elements, at least.
49 // - It should not be too large, so that OOMs are unlikely when allocating
50 // segments, and so that not too much space is wasted when the final segment
53 // The ideal size depends on how the SegmentedVector is used and the size of
54 // |T|, but reasonable sizes include 1024, 4096 (the default), 8192, and 16384.
56 template <typename T
, size_t IdealSegmentSize
= 4096,
57 typename AllocPolicy
= MallocAllocPolicy
>
58 class SegmentedVector
: private AllocPolicy
{
59 template <size_t SegmentCapacity
>
61 : public mozilla::LinkedListElement
<SegmentImpl
<SegmentCapacity
>> {
64 alignas(T
) MOZ_INIT_OUTSIDE_CTOR
65 unsigned char mData
[sizeof(T
) * SegmentCapacity
];
67 // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
68 // -Werror compile error) to reinterpret_cast<> |mData| to |T*|, even
69 // through |void*|. Placing the latter cast in these separate functions
70 // breaks the chain such that affected GCC versions no longer warn/error.
71 void* RawData() { return mData
; }
74 SegmentImpl() : mLength(0) {}
77 for (uint32_t i
= 0; i
< mLength
; i
++) {
82 uint32_t Length() const { return mLength
; }
84 T
* Elems() { return reinterpret_cast<T
*>(RawData()); }
86 T
& operator[](size_t aIndex
) {
87 MOZ_ASSERT(aIndex
< mLength
);
88 return Elems()[aIndex
];
91 const T
& operator[](size_t aIndex
) const {
92 MOZ_ASSERT(aIndex
< mLength
);
93 return Elems()[aIndex
];
98 MOZ_ASSERT(mLength
< SegmentCapacity
);
99 // Pre-increment mLength so that the bounds-check in operator[] passes.
101 T
* elem
= &(*this)[mLength
- 1];
102 new (KnownNotNull
, elem
) T(std::forward
<U
>(aU
));
106 MOZ_ASSERT(mLength
> 0);
107 (*this)[mLength
- 1].~T();
112 // See how many we elements we can fit in a segment of IdealSegmentSize. If
113 // IdealSegmentSize is too small, it'll be just one. The +1 is because
114 // kSingleElementSegmentSize already accounts for one element.
115 static const size_t kSingleElementSegmentSize
= sizeof(SegmentImpl
<1>);
116 static const size_t kSegmentCapacity
=
117 kSingleElementSegmentSize
<= IdealSegmentSize
118 ? (IdealSegmentSize
- kSingleElementSegmentSize
) / sizeof(T
) + 1
122 typedef SegmentImpl
<kSegmentCapacity
> Segment
;
124 // The |aIdealSegmentSize| is only for sanity checking. If it's specified, we
125 // check that the actual segment size is as close as possible to it. This
126 // serves as a sanity check for SegmentedVectorCapacity's capacity
128 explicit SegmentedVector(size_t aIdealSegmentSize
= 0) {
129 // The difference between the actual segment size and the ideal segment
130 // size should be less than the size of a single element... unless the
131 // ideal size was too small, in which case the capacity should be one.
133 aIdealSegmentSize
!= 0,
134 (sizeof(Segment
) > aIdealSegmentSize
&& kSegmentCapacity
== 1) ||
135 aIdealSegmentSize
- sizeof(Segment
) < sizeof(T
));
138 SegmentedVector(SegmentedVector
&& aOther
)
139 : mSegments(std::move(aOther
.mSegments
)) {}
141 ~SegmentedVector() { Clear(); }
143 bool IsEmpty() const { return !mSegments
.getFirst(); }
145 // Note that this is O(n) rather than O(1), but the constant factor is very
146 // small because it only has to do one addition per segment.
147 size_t Length() const {
149 for (auto segment
= mSegments
.getFirst(); segment
;
150 segment
= segment
->getNext()) {
151 n
+= segment
->Length();
156 // Returns false if the allocation failed. (If you are using an infallible
157 // allocation policy, use InfallibleAppend() instead.)
158 template <typename U
>
159 [[nodiscard
]] bool Append(U
&& aU
) {
160 Segment
* last
= mSegments
.getLast();
161 if (!last
|| last
->Length() == kSegmentCapacity
) {
162 last
= this->template pod_malloc
<Segment
>(1);
166 new (KnownNotNull
, last
) Segment();
167 mSegments
.insertBack(last
);
169 last
->Append(std::forward
<U
>(aU
));
173 // You should probably only use this instead of Append() if you are using an
174 // infallible allocation policy. It will crash if the allocation fails.
175 template <typename U
>
176 void InfallibleAppend(U
&& aU
) {
177 bool ok
= Append(std::forward
<U
>(aU
));
180 if (MOZ_UNLIKELY(!ok
)) {
181 mozalloc_handle_oom(sizeof(Segment
));
184 MOZ_RELEASE_ASSERT(ok
);
185 #endif // MOZ_INTERNAL_API
190 while ((segment
= mSegments
.popFirst())) {
192 this->free_(segment
, 1);
197 MOZ_ASSERT(!IsEmpty());
198 Segment
* last
= mSegments
.getLast();
199 return (*last
)[last
->Length() - 1];
202 const T
& GetLast() const {
203 MOZ_ASSERT(!IsEmpty());
204 Segment
* last
= mSegments
.getLast();
205 return (*last
)[last
->Length() - 1];
209 MOZ_ASSERT(!IsEmpty());
210 Segment
* last
= mSegments
.getLast();
212 if (!last
->Length()) {
215 this->free_(last
, 1);
219 // Equivalent to calling |PopLast| |aNumElements| times, but potentially
221 void PopLastN(uint32_t aNumElements
) {
222 MOZ_ASSERT(aNumElements
<= Length());
226 // Pop full segments for as long as we can. Note that this loop
227 // cleanly handles the case when the initial last segment is not
228 // full and we are popping more elements than said segment contains.
230 last
= mSegments
.getLast();
232 // The list is empty. We're all done.
237 // Check to see if the list contains too many elements. Handle
238 // that in the epilogue.
239 uint32_t segmentLen
= last
->Length();
240 if (segmentLen
> aNumElements
) {
244 // Destroying the segment destroys all elements contained therein.
247 this->free_(last
, 1);
249 MOZ_ASSERT(aNumElements
>= segmentLen
);
250 aNumElements
-= segmentLen
;
251 if (aNumElements
== 0) {
256 // Handle the case where the last segment contains more elements
257 // than we want to pop.
259 MOZ_ASSERT(last
== mSegments
.getLast());
260 MOZ_ASSERT(aNumElements
< last
->Length());
261 for (uint32_t i
= 0; i
< aNumElements
; ++i
) {
264 MOZ_ASSERT(last
->Length() != 0);
267 // Use this class to iterate over a SegmentedVector, like so:
269 // for (auto iter = v.Iter(); !iter.Done(); iter.Next()) {
270 // MyElem& elem = iter.Get();
274 // Note, adding new entries to the SegmentedVector while using iterators
275 // is supported, but removing is not!
276 // If an iterator has entered Done() state, adding more entries to the
277 // vector doesn't affect it.
279 friend class SegmentedVector
;
284 explicit IterImpl(SegmentedVector
* aVector
, bool aFromFirst
)
285 : mSegment(aFromFirst
? aVector
->mSegments
.getFirst()
286 : aVector
->mSegments
.getLast()),
287 mIndex(aFromFirst
? 0 : (mSegment
? mSegment
->Length() - 1 : 0)) {
288 MOZ_ASSERT_IF(mSegment
, mSegment
->Length() > 0);
293 MOZ_ASSERT_IF(mSegment
, mSegment
->isInList());
294 MOZ_ASSERT_IF(mSegment
, mIndex
< mSegment
->Length());
300 return (*mSegment
)[mIndex
];
303 const T
& Get() const {
305 return (*mSegment
)[mIndex
];
311 if (mIndex
== mSegment
->Length()) {
312 mSegment
= mSegment
->getNext();
320 mSegment
= mSegment
->getPrevious();
322 mIndex
= mSegment
->Length() - 1;
330 IterImpl
Iter() { return IterImpl(this, true); }
331 IterImpl
IterFromLast() { return IterImpl(this, false); }
333 // Measure the memory consumption of the vector excluding |this|. Note that
334 // it only measures the vector itself. If the vector elements contain
335 // pointers to other memory blocks, those blocks must be measured separately
336 // during a subsequent iteration over the vector.
337 size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf
) const {
338 return mSegments
.sizeOfExcludingThis(aMallocSizeOf
);
341 // Like sizeOfExcludingThis(), but measures |this| as well.
342 size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf
) const {
343 return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf
);
347 mozilla::LinkedList
<Segment
> mSegments
;
350 } // namespace mozilla
352 #endif /* mozilla_SegmentedVector_h */