1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* A template class for tagged unions. */
12 #include "mozilla/Assertions.h"
13 #include "mozilla/FunctionTypeTraits.h"
14 #include "mozilla/HashFunctions.h"
15 #include "mozilla/OperatorNewExtensions.h"
16 #include "mozilla/TemplateLib.h"
17 #include "mozilla/TypeTraits.h"
20 #ifndef mozilla_Variant_h
21 # define mozilla_Variant_h
30 template <typename
... Ts
>
35 // Nth<N, types...>::Type is the Nth type (0-based) in the list of types Ts.
36 template <size_t N
, typename
... Ts
>
39 template <typename T
, typename
... Ts
>
40 struct Nth
<0, T
, Ts
...> {
44 template <size_t N
, typename T
, typename
... Ts
>
45 struct Nth
<N
, T
, Ts
...> {
46 using Type
= typename Nth
<N
- 1, Ts
...>::Type
;
49 /// SelectVariantTypeHelper is used in the implementation of SelectVariantType.
50 template <typename T
, typename
... Variants
>
51 struct SelectVariantTypeHelper
;
54 struct SelectVariantTypeHelper
<T
> {
55 static constexpr size_t count
= 0;
58 template <typename T
, typename
... Variants
>
59 struct SelectVariantTypeHelper
<T
, T
, Variants
...> {
61 static constexpr size_t count
=
62 1 + SelectVariantTypeHelper
<T
, Variants
...>::count
;
65 template <typename T
, typename
... Variants
>
66 struct SelectVariantTypeHelper
<T
, const T
, Variants
...> {
68 static constexpr size_t count
=
69 1 + SelectVariantTypeHelper
<T
, Variants
...>::count
;
72 template <typename T
, typename
... Variants
>
73 struct SelectVariantTypeHelper
<T
, const T
&, Variants
...> {
74 typedef const T
& Type
;
75 static constexpr size_t count
=
76 1 + SelectVariantTypeHelper
<T
, Variants
...>::count
;
79 template <typename T
, typename
... Variants
>
80 struct SelectVariantTypeHelper
<T
, T
&&, Variants
...> {
82 static constexpr size_t count
=
83 1 + SelectVariantTypeHelper
<T
, Variants
...>::count
;
86 template <typename T
, typename Head
, typename
... Variants
>
87 struct SelectVariantTypeHelper
<T
, Head
, Variants
...>
88 : public SelectVariantTypeHelper
<T
, Variants
...> {};
91 * SelectVariantType takes a type T and a list of variant types Variants and
92 * yields a type Type, selected from Variants, that can store a value of type T
93 * or a reference to type T. If no such type was found, Type is not defined.
94 * SelectVariantType also has a `count` member that contains the total number of
95 * selectable types (which will be used to check that a requested type is not
96 * ambiguously present twice.)
98 template <typename T
, typename
... Variants
>
99 struct SelectVariantType
100 : public SelectVariantTypeHelper
<
101 typename RemoveConst
<typename RemoveReference
<T
>::Type
>::Type
,
104 // Compute a fast, compact type that can be used to hold integral values that
105 // distinctly map to every type in Ts.
106 template <typename
... Ts
>
109 static const size_t TypeCount
= sizeof...(Ts
);
112 using Type
= typename Conditional
< TypeCount
< 3, bool,
113 typename Conditional
<TypeCount
<(1 << 8), uint_fast8_t,
114 size_t // stop caring past a certain
119 // TagHelper gets the given sentinel tag value for the given type T. This has to
120 // be split out from VariantImplementation because you can't nest a partial
121 // template specialization within a template class.
123 template <typename Tag
, size_t N
, typename T
, typename U
, typename Next
,
127 // In the case where T != U, we continue recursion.
128 template <typename Tag
, size_t N
, typename T
, typename U
, typename Next
>
129 struct TagHelper
<Tag
, N
, T
, U
, Next
, false> {
130 static Tag
tag() { return Next::template tag
<U
>(); }
133 // In the case where T == U, return the tag number.
134 template <typename Tag
, size_t N
, typename T
, typename U
, typename Next
>
135 struct TagHelper
<Tag
, N
, T
, U
, Next
, true> {
136 static Tag
tag() { return Tag(N
); }
139 // The VariantImplementation template provides the guts of mozilla::Variant. We
140 // create a VariantImplementation for each T in Ts... which handles
141 // construction, destruction, etc for when the Variant's type is T. If the
142 // Variant's type isn't T, it punts the request on to the next
143 // VariantImplementation.
145 template <typename Tag
, size_t N
, typename
... Ts
>
146 struct VariantImplementation
;
148 // The singly typed Variant / recursion base case.
149 template <typename Tag
, size_t N
, typename T
>
150 struct VariantImplementation
<Tag
, N
, T
> {
151 template <typename U
>
153 static_assert(mozilla::IsSame
<T
, U
>::value
,
154 "mozilla::Variant: tag: bad type!");
158 template <typename Variant
>
159 static void copyConstruct(void* aLhs
, const Variant
& aRhs
) {
160 ::new (KnownNotNull
, aLhs
) T(aRhs
.template as
<N
>());
163 template <typename Variant
>
164 static void moveConstruct(void* aLhs
, Variant
&& aRhs
) {
165 ::new (KnownNotNull
, aLhs
) T(aRhs
.template extract
<N
>());
168 template <typename Variant
>
169 static void destroy(Variant
& aV
) {
170 aV
.template as
<N
>().~T();
173 template <typename Variant
>
174 static bool equal(const Variant
& aLhs
, const Variant
& aRhs
) {
175 return aLhs
.template as
<N
>() == aRhs
.template as
<N
>();
178 template <typename Matcher
, typename ConcreteVariant
>
179 static decltype(auto) match(Matcher
&& aMatcher
, ConcreteVariant
& aV
) {
180 return aMatcher(aV
.template as
<N
>());
183 template <typename ConcreteVariant
, typename Matcher
>
184 static decltype(auto) matchN(ConcreteVariant
& aV
, Matcher
&& aMatcher
) {
185 return aMatcher(aV
.template as
<N
>());
189 // VariantImplementation for some variant type T.
190 template <typename Tag
, size_t N
, typename T
, typename
... Ts
>
191 struct VariantImplementation
<Tag
, N
, T
, Ts
...> {
192 // The next recursive VariantImplementation.
193 using Next
= VariantImplementation
<Tag
, N
+ 1, Ts
...>;
195 template <typename U
>
197 return TagHelper
<Tag
, N
, T
, U
, Next
, IsSame
<T
, U
>::value
>::tag();
200 template <typename Variant
>
201 static void copyConstruct(void* aLhs
, const Variant
& aRhs
) {
202 if (aRhs
.template is
<N
>()) {
203 ::new (KnownNotNull
, aLhs
) T(aRhs
.template as
<N
>());
205 Next::copyConstruct(aLhs
, aRhs
);
209 template <typename Variant
>
210 static void moveConstruct(void* aLhs
, Variant
&& aRhs
) {
211 if (aRhs
.template is
<N
>()) {
212 ::new (KnownNotNull
, aLhs
) T(aRhs
.template extract
<N
>());
214 Next::moveConstruct(aLhs
, std::move(aRhs
));
218 template <typename Variant
>
219 static void destroy(Variant
& aV
) {
220 if (aV
.template is
<N
>()) {
221 aV
.template as
<N
>().~T();
227 template <typename Variant
>
228 static bool equal(const Variant
& aLhs
, const Variant
& aRhs
) {
229 if (aLhs
.template is
<N
>()) {
230 MOZ_ASSERT(aRhs
.template is
<N
>());
231 return aLhs
.template as
<N
>() == aRhs
.template as
<N
>();
233 return Next::equal(aLhs
, aRhs
);
237 template <typename Matcher
, typename ConcreteVariant
>
238 static decltype(auto) match(Matcher
&& aMatcher
, ConcreteVariant
& aV
) {
239 if (aV
.template is
<N
>()) {
240 return aMatcher(aV
.template as
<N
>());
242 // If you're seeing compilation errors here like "no matching
243 // function for call to 'match'" then that means that the
244 // Matcher doesn't exhaust all variant types. There must exist a
245 // Matcher::operator()(T&) for every variant type T.
247 // If you're seeing compilation errors here like "cannot initialize
248 // return object of type <...> with an rvalue of type <...>" then that
249 // means that the Matcher::operator()(T&) overloads are returning
250 // different types. They must all return the same type.
251 return Next::match(std::forward
<Matcher
>(aMatcher
), aV
);
255 template <typename ConcreteVariant
, typename Mi
, typename
... Ms
>
256 static decltype(auto) matchN(ConcreteVariant
& aV
, Mi
&& aMi
, Ms
&&... aMs
) {
257 if (aV
.template is
<N
>()) {
258 return aMi(aV
.template as
<N
>());
260 // If you're seeing compilation errors here like "no matching
261 // function for call to 'match'" then that means that the
262 // Matchers don't exhaust all variant types. There must exist a
263 // Matcher (with its operator()(T&)) for every variant type T, in the
265 return Next::matchN(aV
, std::forward
<Ms
>(aMs
)...);
271 * AsVariantTemporary stores a value of type T to allow construction of a
272 * Variant value via type inference. Because T is copied and there's no
273 * guarantee that the copy can be elided, AsVariantTemporary is best used with
274 * primitive or very small types.
276 template <typename T
>
277 struct AsVariantTemporary
{
278 explicit AsVariantTemporary(const T
& aValue
) : mValue(aValue
) {}
280 template <typename U
>
281 explicit AsVariantTemporary(U
&& aValue
) : mValue(std::forward
<U
>(aValue
)) {}
283 AsVariantTemporary(const AsVariantTemporary
& aOther
)
284 : mValue(aOther
.mValue
) {}
286 AsVariantTemporary(AsVariantTemporary
&& aOther
)
287 : mValue(std::move(aOther
.mValue
)) {}
289 AsVariantTemporary() = delete;
290 void operator=(const AsVariantTemporary
&) = delete;
291 void operator=(AsVariantTemporary
&&) = delete;
293 typename RemoveConst
<typename RemoveReference
<T
>::Type
>::Type mValue
;
296 } // namespace detail
298 // Used to unambiguously specify one of the Variant's type.
299 template <typename T
>
304 // Used to specify one of the Variant's type by index.
306 struct VariantIndex
{
307 static constexpr size_t index
= N
;
313 * A variant / tagged union / heterogenous disjoint union / sum-type template
314 * class. Similar in concept to (but not derived from) `boost::variant`.
316 * Sometimes, you may wish to use a C union with non-POD types. However, this is
317 * forbidden in C++ because it is not clear which type in the union should have
318 * its constructor and destructor run on creation and deletion
319 * respectively. This is the problem that `mozilla::Variant` solves.
323 * A `mozilla::Variant` instance is constructed (via move or copy) from one of
324 * its variant types (ignoring const and references). It does *not* support
325 * construction from subclasses of variant types or types that coerce to one of
328 * Variant<char, uint32_t> v1('a');
329 * Variant<UniquePtr<A>, B, C> v2(MakeUnique<A>());
330 * Variant<bool, char> v3(VariantType<char>, 0); // disambiguation needed
331 * Variant<int, int> v4(VariantIndex<1>, 0); // 2nd int
333 * Because specifying the full type of a Variant value is often verbose,
334 * there are two easier ways to construct values:
336 * A. AsVariant() can be used to construct a Variant value using type inference
337 * in contexts such as expressions or when returning values from functions.
338 * Because AsVariant() must copy or move the value into a temporary and this
339 * cannot necessarily be elided by the compiler, it's mostly appropriate only
340 * for use with primitive or very small types.
342 * Variant<char, uint32_t> Foo() { return AsVariant('x'); }
344 * Variant<char, uint32_t> v1 = Foo(); // v1 holds char('x').
346 * B. Brace-construction with VariantType or VariantIndex; this also allows
347 * in-place construction with any number of arguments.
349 * struct AB { AB(int, int){...} };
350 * static Variant<AB, bool> foo()
352 * return {VariantIndex<0>{}, 1, 2};
355 * Variant<AB, bool> v0 = Foo(); // v0 holds AB(1,2).
357 * All access to the contained value goes through type-safe accessors.
358 * Either the stored type, or the type index may be provided.
361 * Foo(Variant<A, B, C> v)
364 * A& ref = v.as<A>();
366 * } else (v.is<1>()) { // Instead of v.is<B>.
373 * In some situation, a Variant may be constructed from templated types, in
374 * which case it is possible that the same type could be given multiple times by
375 * an external developer. Or seemingly-different types could be aliases.
376 * In this case, repeated types can only be accessed through their index, to
377 * prevent ambiguous access by type.
380 * template <typename T>
381 * struct ResultOrError
384 * ResultOrError() : m(int(0)) {} // Error '0' by default
385 * ResultOrError(const T& r) : m(r) {}
386 * bool IsResult() const { return m.is<T>(); }
387 * bool IsError() const { return m.is<int>(); }
389 * // Now instantiante with the result being an int too:
390 * ResultOrError<int> myResult(123); // Fail!
391 * // In Variant<int, int>, which 'int' are we refering to, from inside
392 * // ResultOrError functions?
395 * template <typename T>
396 * struct ResultOrError
399 * ResultOrError() : m(VariantIndex<1>{}, 0) {} // Error '0' by default
400 * ResultOrError(const T& r) : m(VariantIndex<0>{}, r) {}
401 * bool IsResult() const { return m.is<0>(); } // 0 -> T
402 * bool IsError() const { return m.is<1>(); } // 1 -> int
404 * // Now instantiante with the result being an int too:
405 * ResultOrError<int> myResult(123); // It now works!
407 * Attempting to use the contained value as type `T1` when the `Variant`
408 * instance contains a value of type `T2` causes an assertion failure.
411 * Variant<A, B, C> v(a);
412 * v.as<B>(); // <--- Assertion failure!
414 * Trying to use a `Variant<Ts...>` instance as some type `U` that is not a
415 * member of the set of `Ts...` is a compiler error.
418 * Variant<A, B, C> v(a);
419 * v.as<SomeRandomType>(); // <--- Compiler error!
421 * Additionally, you can turn a `Variant` that `is<T>` into a `T` by moving it
422 * out of the containing `Variant` instance with the `extract<T>` method:
424 * Variant<UniquePtr<A>, B, C> v(MakeUnique<A>());
425 * auto ptr = v.extract<UniquePtr<A>>();
427 * Finally, you can exhaustively match on the contained variant and branch into
428 * different code paths depending on which type is contained. This is preferred
429 * to manually checking every variant type T with is<T>() because it provides
430 * compile-time checking that you handled every type, rather than runtime
431 * assertion failures.
434 * char* foo(Variant<A, B, C, D>& v) {
437 * } else if (v.is<B>()) {
440 * return doSomething(v.as<C>()); // Forgot about case D!
444 * // Instead, a single function object (that can deal with all possible
445 * // options) may be provided:
448 * // The return type of all matchers must be identical.
449 * char* operator()(A& a) { ... }
450 * char* operator()(B& b) { ... }
451 * char* operator()(C& c) { ... }
452 * char* operator()(D& d) { ... } // Compile-time error to forget D!
454 * char* foo(Variant<A, B, C, D>& v) {
455 * return v.match(FooMatcher());
458 * // In some situations, a single generic lambda may also be appropriate:
459 * char* foo(Variant<A, B, C, D>& v) {
460 * return v.match([](auto&){...});
463 * // Alternatively, multiple function objects may be provided, each one
464 * // corresponding to an option, in the same order:
465 * char* foo(Variant<A, B, C, D>& v) {
466 * return v.match([](A&) { ... },
474 * A tree is either an empty leaf, or a node with a value and two children:
478 * template<typename T>
486 * template<typename T>
487 * using Tree = Variant<Leaf, Node<T>>;
489 * A copy-on-write string is either a non-owning reference to some existing
490 * string, or an owning reference to our copy:
492 * class CopyOnWriteString
494 * Variant<const char*, UniquePtr<char[]>> string;
499 * Because Variant must be aligned suitable to hold any value stored within it,
500 * and because |alignas| requirements don't affect platform ABI with respect to
501 * how parameters are laid out in memory, Variant can't be used as the type of a
502 * function parameter. Pass Variant to functions by pointer or reference
505 template <typename
... Ts
>
506 class MOZ_INHERIT_TYPE_ANNOTATIONS_FROM_TEMPLATE_ARGS MOZ_NON_PARAM Variant
{
507 friend struct IPC::ParamTraits
<mozilla::Variant
<Ts
...>>;
509 using Tag
= typename
detail::VariantTag
<Ts
...>::Type
;
510 using Impl
= detail::VariantImplementation
<Tag
, 0, Ts
...>;
512 static constexpr size_t RawDataAlignment
= tl::Max
<alignof(Ts
)...>::value
;
513 static constexpr size_t RawDataSize
= tl::Max
<sizeof(Ts
)...>::value
;
515 // Raw storage for the contained variant value.
516 alignas(RawDataAlignment
) unsigned char rawData
[RawDataSize
];
518 // Each type is given a unique tag value that lets us keep track of the
519 // contained variant value's type.
522 // Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
523 // -Werror compile error) to reinterpret_cast<> |rawData| to |T*|, even
524 // through |void*|. Placing the latter cast in these separate functions
525 // breaks the chain such that affected GCC versions no longer warn/error.
526 void* ptr() { return rawData
; }
528 const void* ptr() const { return rawData
; }
531 /** Perfect forwarding construction for some variant type T. */
532 template <typename RefT
,
533 // RefT captures both const& as well as && (as intended, to support
534 // perfect forwarding), so we have to remove those qualifiers here
535 // when ensuring that T is a variant of this type, and getting T's
537 typename T
= typename
detail::SelectVariantType
<RefT
, Ts
...>::Type
>
538 explicit Variant(RefT
&& aT
) : tag(Impl::template tag
<T
>()) {
540 detail::SelectVariantType
<RefT
, Ts
...>::count
== 1,
541 "Variant can only be selected by type if that type is unique");
542 ::new (KnownNotNull
, ptr()) T(std::forward
<RefT
>(aT
));
546 * Perfect forwarding construction for some variant type T, by
547 * explicitly giving the type.
548 * This is necessary to construct from any number of arguments,
549 * or to convert from a type that is not in the Variant's type list.
551 template <typename T
, typename
... Args
>
552 MOZ_IMPLICIT
Variant(const VariantType
<T
>&, Args
&&... aTs
)
553 : tag(Impl::template tag
<T
>()) {
554 ::new (KnownNotNull
, ptr()) T(std::forward
<Args
>(aTs
)...);
558 * Perfect forwarding construction for some variant type T, by
559 * explicitly giving the type index.
560 * This is necessary to construct from any number of arguments,
561 * or to convert from a type that is not in the Variant's type list,
562 * or to construct a type that is present more than once in the Variant.
564 template <size_t N
, typename
... Args
>
565 MOZ_IMPLICIT
Variant(const VariantIndex
<N
>&, Args
&&... aTs
) : tag(N
) {
566 using T
= typename
detail::Nth
<N
, Ts
...>::Type
;
567 ::new (KnownNotNull
, ptr()) T(std::forward
<Args
>(aTs
)...);
571 * Constructs this Variant from an AsVariantTemporary<T> such that T can be
572 * stored in one of the types allowable in this Variant. This is used in the
573 * implementation of AsVariant().
575 template <typename RefT
>
576 MOZ_IMPLICIT
Variant(detail::AsVariantTemporary
<RefT
>&& aValue
)
577 : tag(Impl::template tag
<
578 typename
detail::SelectVariantType
<RefT
, Ts
...>::Type
>()) {
579 using T
= typename
detail::SelectVariantType
<RefT
, Ts
...>::Type
;
581 detail::SelectVariantType
<RefT
, Ts
...>::count
== 1,
582 "Variant can only be selected by type if that type is unique");
583 ::new (KnownNotNull
, ptr()) T(std::move(aValue
.mValue
));
586 /** Copy construction. */
587 Variant(const Variant
& aRhs
) : tag(aRhs
.tag
) {
588 Impl::copyConstruct(ptr(), aRhs
);
591 /** Move construction. */
592 Variant(Variant
&& aRhs
) : tag(aRhs
.tag
) {
593 Impl::moveConstruct(ptr(), std::move(aRhs
));
596 /** Copy assignment. */
597 Variant
& operator=(const Variant
& aRhs
) {
598 MOZ_ASSERT(&aRhs
!= this, "self-assign disallowed");
600 ::new (KnownNotNull
, this) Variant(aRhs
);
604 /** Move assignment. */
605 Variant
& operator=(Variant
&& aRhs
) {
606 MOZ_ASSERT(&aRhs
!= this, "self-assign disallowed");
608 ::new (KnownNotNull
, this) Variant(std::move(aRhs
));
612 /** Move assignment from AsVariant(). */
613 template <typename T
>
614 Variant
& operator=(detail::AsVariantTemporary
<T
>&& aValue
) {
616 detail::SelectVariantType
<T
, Ts
...>::count
== 1,
617 "Variant can only be selected by type if that type is unique");
619 ::new (KnownNotNull
, this) Variant(std::move(aValue
));
623 ~Variant() { Impl::destroy(*this); }
625 /** Check which variant type is currently contained. */
626 template <typename T
>
629 detail::SelectVariantType
<T
, Ts
...>::count
== 1,
630 "provided a type not uniquely found in this Variant's type list");
631 return Impl::template tag
<T
>() == tag
;
636 static_assert(N
< sizeof...(Ts
),
637 "provided an index outside of this Variant's type list");
638 return N
== size_t(tag
);
642 * Operator == overload that defers to the variant type's operator==
643 * implementation if the rhs is tagged as the same type as this one.
645 bool operator==(const Variant
& aRhs
) const {
646 return tag
== aRhs
.tag
&& Impl::equal(*this, aRhs
);
650 * Operator != overload that defers to the negation of the variant type's
651 * operator== implementation if the rhs is tagged as the same type as this
654 bool operator!=(const Variant
& aRhs
) const { return !(*this == aRhs
); }
656 // Accessors for working with the contained variant value.
658 /** Mutable reference. */
659 template <typename T
>
662 detail::SelectVariantType
<T
, Ts
...>::count
== 1,
663 "provided a type not uniquely found in this Variant's type list");
664 MOZ_RELEASE_ASSERT(is
<T
>());
665 return *static_cast<T
*>(ptr());
669 typename
detail::Nth
<N
, Ts
...>::Type
& as() {
670 static_assert(N
< sizeof...(Ts
),
671 "provided an index outside of this Variant's type list");
672 MOZ_RELEASE_ASSERT(is
<N
>());
673 return *static_cast<typename
detail::Nth
<N
, Ts
...>::Type
*>(ptr());
676 /** Immutable const reference. */
677 template <typename T
>
678 const T
& as() const {
679 static_assert(detail::SelectVariantType
<T
, Ts
...>::count
== 1,
680 "provided a type not found in this Variant's type list");
681 MOZ_RELEASE_ASSERT(is
<T
>());
682 return *static_cast<const T
*>(ptr());
686 const typename
detail::Nth
<N
, Ts
...>::Type
& as() const {
687 static_assert(N
< sizeof...(Ts
),
688 "provided an index outside of this Variant's type list");
689 MOZ_RELEASE_ASSERT(is
<N
>());
690 return *static_cast<const typename
detail::Nth
<N
, Ts
...>::Type
*>(ptr());
694 * Extract the contained variant value from this container into a temporary
695 * value. On completion, the value in the variant will be in a
696 * safely-destructible state, as determined by the behavior of T's move
697 * constructor when provided the variant's internal value.
699 template <typename T
>
702 detail::SelectVariantType
<T
, Ts
...>::count
== 1,
703 "provided a type not uniquely found in this Variant's type list");
705 return T(std::move(as
<T
>()));
709 typename
detail::Nth
<N
, Ts
...>::Type
extract() {
710 static_assert(N
< sizeof...(Ts
),
711 "provided an index outside of this Variant's type list");
712 MOZ_RELEASE_ASSERT(is
<N
>());
713 return typename
detail::Nth
<N
, Ts
...>::Type(std::move(as
<N
>()));
716 // Exhaustive matching of all variant types on the contained value.
718 /** Match on an immutable const reference. */
719 template <typename Matcher
>
720 decltype(auto) match(Matcher
&& aMatcher
) const {
721 return Impl::match(std::forward
<Matcher
>(aMatcher
), *this);
724 template <typename M0
, typename M1
, typename
... Ms
>
725 decltype(auto) match(M0
&& aM0
, M1
&& aM1
, Ms
&&... aMs
) const {
727 2 + sizeof...(Ms
) == sizeof...(Ts
),
728 "Variant<T...>::match() takes either one callable argument that "
729 "accepts every type T; or one for each type T, in order");
731 tl::And
<IsSame
<typename FunctionTypeTraits
<M0
>::ReturnType
,
732 typename FunctionTypeTraits
<M1
>::ReturnType
>::value
,
733 IsSame
<typename FunctionTypeTraits
<M1
>::ReturnType
,
734 typename FunctionTypeTraits
<Ms
>::ReturnType
>::value
...>::
736 "all matchers must have the same return type");
737 return Impl::matchN(*this, std::forward
<M0
>(aM0
), std::forward
<M1
>(aM1
),
738 std::forward
<Ms
>(aMs
)...);
741 /** Match on a mutable non-const reference. */
742 template <typename Matcher
>
743 decltype(auto) match(Matcher
&& aMatcher
) {
744 return Impl::match(std::forward
<Matcher
>(aMatcher
), *this);
747 template <typename M0
, typename M1
, typename
... Ms
>
748 decltype(auto) match(M0
&& aM0
, M1
&& aM1
, Ms
&&... aMs
) {
750 2 + sizeof...(Ms
) == sizeof...(Ts
),
751 "Variant<T...>::match() takes either one callable argument that "
752 "accepts every type T; or one for each type T, in order");
754 tl::And
<IsSame
<typename FunctionTypeTraits
<M0
>::ReturnType
,
755 typename FunctionTypeTraits
<M1
>::ReturnType
>::value
,
756 IsSame
<typename FunctionTypeTraits
<M0
>::ReturnType
,
757 typename FunctionTypeTraits
<Ms
>::ReturnType
>::value
...>::
759 "all matchers must have the same return type");
760 return Impl::matchN(*this, std::forward
<M0
>(aM0
), std::forward
<M1
>(aM1
),
761 std::forward
<Ms
>(aMs
)...);
765 * Incorporate the current variant's tag into hashValue.
766 * Note that this does not hash the actual contents; you must take
767 * care of that yourself, perhaps by using a match.
769 mozilla::HashNumber
addTagToHash(mozilla::HashNumber hashValue
) const {
770 return mozilla::AddToHash(hashValue
, tag
);
775 * AsVariant() is used to construct a Variant<T,...> value containing the
776 * provided T value using type inference. It can be used to construct Variant
777 * values in expressions or return them from functions without specifying the
778 * entire Variant type.
780 * Because AsVariant() must copy or move the value into a temporary and this
781 * cannot necessarily be elided by the compiler, it's mostly appropriate only
782 * for use with primitive or very small types.
784 * AsVariant() returns a AsVariantTemporary value which is implicitly
785 * convertible to any Variant that can hold a value of type T.
787 template <typename T
>
788 detail::AsVariantTemporary
<T
> AsVariant(T
&& aValue
) {
789 return detail::AsVariantTemporary
<T
>(std::forward
<T
>(aValue
));
792 } // namespace mozilla
794 #endif /* mozilla_Variant_h */