1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* mfbt maths algorithms. */
9 #ifndef mozilla_MathAlgorithms_h
10 #define mozilla_MathAlgorithms_h
12 #include "mozilla/Assertions.h"
13 #include "mozilla/TypeTraits.h"
21 // Greatest Common Divisor
22 template<typename IntegerType
>
23 MOZ_ALWAYS_INLINE IntegerType
24 EuclidGCD(IntegerType aA
, IntegerType aB
)
26 // Euclid's algorithm; O(N) in the worst case. (There are better
27 // ways, but we don't need them for the current use of this algo.)
28 MOZ_ASSERT(aA
> IntegerType(0));
29 MOZ_ASSERT(aB
> IntegerType(0));
42 // Least Common Multiple
43 template<typename IntegerType
>
44 MOZ_ALWAYS_INLINE IntegerType
45 EuclidLCM(IntegerType aA
, IntegerType aB
)
47 // Divide first to reduce overflow risk.
48 return (aA
/ EuclidGCD(aA
, aB
)) * aB
;
54 struct AllowDeprecatedAbsFixed
: FalseType
{};
56 template<> struct AllowDeprecatedAbsFixed
<int32_t> : TrueType
{};
57 template<> struct AllowDeprecatedAbsFixed
<int64_t> : TrueType
{};
60 struct AllowDeprecatedAbs
: AllowDeprecatedAbsFixed
<T
> {};
62 template<> struct AllowDeprecatedAbs
<int> : TrueType
{};
63 template<> struct AllowDeprecatedAbs
<long> : TrueType
{};
67 // DO NOT USE DeprecatedAbs. It exists only until its callers can be converted
68 // to Abs below, and it will be removed when all callers have been changed.
70 inline typename
mozilla::EnableIf
<detail::AllowDeprecatedAbs
<T
>::value
, T
>::Type
71 DeprecatedAbs(const T aValue
)
73 // The absolute value of the smallest possible value of a signed-integer type
74 // won't fit in that type (on twos-complement systems -- and we're blithely
75 // assuming we're on such systems, for the non-<stdint.h> types listed above),
76 // so assert that the input isn't that value.
78 // This is the case if: the value is non-negative; or if adding one (giving a
79 // value in the range [-maxvalue, 0]), then negating (giving a value in the
80 // range [0, maxvalue]), doesn't produce maxvalue (because in twos-complement,
81 // (minvalue + 1) == -maxvalue).
82 MOZ_ASSERT(aValue
>= 0 ||
83 -(aValue
+ 1) != T((1ULL << (CHAR_BIT
* sizeof(T
) - 1)) - 1),
84 "You can't negate the smallest possible negative integer!");
85 return aValue
>= 0 ? aValue
: -aValue
;
90 // For now mozilla::Abs only takes intN_T, the signed natural types, and
91 // float/double/long double. Feel free to add overloads for other standard,
92 // signed types if you need them.
95 struct AbsReturnTypeFixed
;
97 template<> struct AbsReturnTypeFixed
<int8_t> { typedef uint8_t Type
; };
98 template<> struct AbsReturnTypeFixed
<int16_t> { typedef uint16_t Type
; };
99 template<> struct AbsReturnTypeFixed
<int32_t> { typedef uint32_t Type
; };
100 template<> struct AbsReturnTypeFixed
<int64_t> { typedef uint64_t Type
; };
103 struct AbsReturnType
: AbsReturnTypeFixed
<T
> {};
105 template<> struct AbsReturnType
<char> :
106 EnableIf
<char(-1) < char(0), unsigned char> {};
107 template<> struct AbsReturnType
<signed char> { typedef unsigned char Type
; };
108 template<> struct AbsReturnType
<short> { typedef unsigned short Type
; };
109 template<> struct AbsReturnType
<int> { typedef unsigned int Type
; };
110 template<> struct AbsReturnType
<long> { typedef unsigned long Type
; };
111 template<> struct AbsReturnType
<long long> { typedef unsigned long long Type
; };
112 template<> struct AbsReturnType
<float> { typedef float Type
; };
113 template<> struct AbsReturnType
<double> { typedef double Type
; };
114 template<> struct AbsReturnType
<long double> { typedef long double Type
; };
116 } // namespace detail
119 inline typename
detail::AbsReturnType
<T
>::Type
122 typedef typename
detail::AbsReturnType
<T
>::Type ReturnType
;
123 return aValue
>= 0 ? ReturnType(aValue
) : ~ReturnType(aValue
) + 1;
128 Abs
<float>(const float aFloat
)
130 return std::fabs(aFloat
);
135 Abs
<double>(const double aDouble
)
137 return std::fabs(aDouble
);
142 Abs
<long double>(const long double aLongDouble
)
144 return std::fabs(aLongDouble
);
147 } // namespace mozilla
149 #if defined(_MSC_VER) && \
150 (defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64))
151 # define MOZ_BITSCAN_WINDOWS
154 # pragma intrinsic(_BitScanForward, _BitScanReverse)
156 # if defined(_M_AMD64) || defined(_M_X64)
157 # define MOZ_BITSCAN_WINDOWS64
158 # pragma intrinsic(_BitScanForward64, _BitScanReverse64)
167 #if defined(MOZ_BITSCAN_WINDOWS)
170 CountLeadingZeroes32(uint32_t aValue
)
173 _BitScanReverse(&index
, static_cast<unsigned long>(aValue
));
174 return uint_fast8_t(31 - index
);
179 CountTrailingZeroes32(uint32_t aValue
)
182 _BitScanForward(&index
, static_cast<unsigned long>(aValue
));
183 return uint_fast8_t(index
);
187 CountPopulation32(uint32_t aValue
)
189 uint32_t x
= aValue
- ((aValue
>> 1) & 0x55555555);
190 x
= (x
& 0x33333333) + ((x
>> 2) & 0x33333333);
191 return (((x
+ (x
>> 4)) & 0xf0f0f0f) * 0x1010101) >> 24;
194 CountPopulation64(uint64_t aValue
)
196 return uint_fast8_t(CountPopulation32(aValue
& 0xffffffff) +
197 CountPopulation32(aValue
>> 32));
201 CountLeadingZeroes64(uint64_t aValue
)
203 #if defined(MOZ_BITSCAN_WINDOWS64)
205 _BitScanReverse64(&index
, static_cast<unsigned __int64
>(aValue
));
206 return uint_fast8_t(63 - index
);
208 uint32_t hi
= uint32_t(aValue
>> 32);
210 return CountLeadingZeroes32(hi
);
212 return 32u + CountLeadingZeroes32(uint32_t(aValue
));
217 CountTrailingZeroes64(uint64_t aValue
)
219 #if defined(MOZ_BITSCAN_WINDOWS64)
221 _BitScanForward64(&index
, static_cast<unsigned __int64
>(aValue
));
222 return uint_fast8_t(index
);
224 uint32_t lo
= uint32_t(aValue
);
226 return CountTrailingZeroes32(lo
);
228 return 32u + CountTrailingZeroes32(uint32_t(aValue
>> 32));
232 # ifdef MOZ_HAVE_BITSCAN64
233 # undef MOZ_HAVE_BITSCAN64
236 #elif defined(__clang__) || defined(__GNUC__)
238 # if defined(__clang__)
239 # if !__has_builtin(__builtin_ctz) || !__has_builtin(__builtin_clz)
240 # error "A clang providing __builtin_c[lt]z is required to build"
243 // gcc has had __builtin_clz and friends since 3.4: no need to check.
247 CountLeadingZeroes32(uint32_t aValue
)
249 return __builtin_clz(aValue
);
253 CountTrailingZeroes32(uint32_t aValue
)
255 return __builtin_ctz(aValue
);
259 CountPopulation32(uint32_t aValue
)
261 return __builtin_popcount(aValue
);
265 CountPopulation64(uint64_t aValue
)
267 return __builtin_popcountll(aValue
);
271 CountLeadingZeroes64(uint64_t aValue
)
273 return __builtin_clzll(aValue
);
277 CountTrailingZeroes64(uint64_t aValue
)
279 return __builtin_ctzll(aValue
);
283 # error "Implement these!"
284 inline uint_fast8_t CountLeadingZeroes32(uint32_t aValue
) = delete;
285 inline uint_fast8_t CountTrailingZeroes32(uint32_t aValue
) = delete;
286 inline uint_fast8_t CountPopulation32(uint32_t aValue
) = delete;
287 inline uint_fast8_t CountPopulation64(uint64_t aValue
) = delete;
288 inline uint_fast8_t CountLeadingZeroes64(uint64_t aValue
) = delete;
289 inline uint_fast8_t CountTrailingZeroes64(uint64_t aValue
) = delete;
292 } // namespace detail
295 * Compute the number of high-order zero bits in the NON-ZERO number |aValue|.
296 * That is, looking at the bitwise representation of the number, with the
297 * highest- valued bits at the start, return the number of zeroes before the
298 * first one is observed.
300 * CountLeadingZeroes32(0xF0FF1000) is 0;
301 * CountLeadingZeroes32(0x7F8F0001) is 1;
302 * CountLeadingZeroes32(0x3FFF0100) is 2;
303 * CountLeadingZeroes32(0x1FF50010) is 3; and so on.
306 CountLeadingZeroes32(uint32_t aValue
)
308 MOZ_ASSERT(aValue
!= 0);
309 return detail::CountLeadingZeroes32(aValue
);
313 * Compute the number of low-order zero bits in the NON-ZERO number |aValue|.
314 * That is, looking at the bitwise representation of the number, with the
315 * lowest- valued bits at the start, return the number of zeroes before the
316 * first one is observed.
318 * CountTrailingZeroes32(0x0100FFFF) is 0;
319 * CountTrailingZeroes32(0x7000FFFE) is 1;
320 * CountTrailingZeroes32(0x0080FFFC) is 2;
321 * CountTrailingZeroes32(0x0080FFF8) is 3; and so on.
324 CountTrailingZeroes32(uint32_t aValue
)
326 MOZ_ASSERT(aValue
!= 0);
327 return detail::CountTrailingZeroes32(aValue
);
331 * Compute the number of one bits in the number |aValue|,
334 CountPopulation32(uint32_t aValue
)
336 return detail::CountPopulation32(aValue
);
339 /** Analogous to CoutPopulation32, but for 64-bit numbers */
341 CountPopulation64(uint64_t aValue
)
343 return detail::CountPopulation64(aValue
);
346 /** Analogous to CountLeadingZeroes32, but for 64-bit numbers. */
348 CountLeadingZeroes64(uint64_t aValue
)
350 MOZ_ASSERT(aValue
!= 0);
351 return detail::CountLeadingZeroes64(aValue
);
354 /** Analogous to CountTrailingZeroes32, but for 64-bit numbers. */
356 CountTrailingZeroes64(uint64_t aValue
)
358 MOZ_ASSERT(aValue
!= 0);
359 return detail::CountTrailingZeroes64(aValue
);
364 template<typename T
, size_t Size
= sizeof(T
)>
368 class CeilingLog2
<T
, 4>
371 static uint_fast8_t compute(const T aValue
)
373 // Check for <= 1 to avoid the == 0 undefined case.
374 return aValue
<= 1 ? 0u : 32u - CountLeadingZeroes32(aValue
- 1);
379 class CeilingLog2
<T
, 8>
382 static uint_fast8_t compute(const T aValue
)
384 // Check for <= 1 to avoid the == 0 undefined case.
385 return aValue
<= 1 ? 0 : 64 - CountLeadingZeroes64(aValue
- 1);
389 } // namespace detail
392 * Compute the log of the least power of 2 greater than or equal to |aValue|.
394 * CeilingLog2(0..1) is 0;
395 * CeilingLog2(2) is 1;
396 * CeilingLog2(3..4) is 2;
397 * CeilingLog2(5..8) is 3;
398 * CeilingLog2(9..16) is 4; and so on.
402 CeilingLog2(const T aValue
)
404 return detail::CeilingLog2
<T
>::compute(aValue
);
407 /** A CeilingLog2 variant that accepts only size_t. */
409 CeilingLog2Size(size_t aValue
)
411 return CeilingLog2(aValue
);
416 template<typename T
, size_t Size
= sizeof(T
)>
420 class FloorLog2
<T
, 4>
423 static uint_fast8_t compute(const T aValue
)
425 return 31u - CountLeadingZeroes32(aValue
| 1);
430 class FloorLog2
<T
, 8>
433 static uint_fast8_t compute(const T aValue
)
435 return 63u - CountLeadingZeroes64(aValue
| 1);
439 } // namespace detail
442 * Compute the log of the greatest power of 2 less than or equal to |aValue|.
444 * FloorLog2(0..1) is 0;
445 * FloorLog2(2..3) is 1;
446 * FloorLog2(4..7) is 2;
447 * FloorLog2(8..15) is 3; and so on.
451 FloorLog2(const T aValue
)
453 return detail::FloorLog2
<T
>::compute(aValue
);
456 /** A FloorLog2 variant that accepts only size_t. */
458 FloorLog2Size(size_t aValue
)
460 return FloorLog2(aValue
);
464 * Compute the smallest power of 2 greater than or equal to |x|. |x| must not
465 * be so great that the computed value would overflow |size_t|.
468 RoundUpPow2(size_t aValue
)
470 MOZ_ASSERT(aValue
<= (size_t(1) << (sizeof(size_t) * CHAR_BIT
- 1)),
471 "can't round up -- will overflow!");
472 return size_t(1) << CeilingLog2(aValue
);
476 * Rotates the bits of the given value left by the amount of the shift width.
480 RotateLeft(const T aValue
, uint_fast8_t aShift
)
482 MOZ_ASSERT(aShift
< sizeof(T
) * CHAR_BIT
, "Shift value is too large!");
483 static_assert(IsUnsigned
<T
>::value
, "Rotates require unsigned values");
484 return (aValue
<< aShift
) | (aValue
>> (sizeof(T
) * CHAR_BIT
- aShift
));
488 * Rotates the bits of the given value right by the amount of the shift width.
492 RotateRight(const T aValue
, uint_fast8_t aShift
)
494 MOZ_ASSERT(aShift
< sizeof(T
) * CHAR_BIT
, "Shift value is too large!");
495 static_assert(IsUnsigned
<T
>::value
, "Rotates require unsigned values");
496 return (aValue
>> aShift
) | (aValue
<< (sizeof(T
) * CHAR_BIT
- aShift
));
499 } /* namespace mozilla */
501 #endif /* mozilla_MathAlgorithms_h */