no bug - Bumping Firefox l10n changesets r=release a=l10n-bump DONTBUILD CLOSED TREE
[gecko.git] / dom / media / MediaCache.cpp
blob41d51a49cc0f973770a9e418577dc8d81daf9763
1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim:set ts=2 sw=2 sts=2 et cindent: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 #include "MediaCache.h"
9 #include "ChannelMediaResource.h"
10 #include "FileBlockCache.h"
11 #include "MediaBlockCacheBase.h"
12 #include "MediaResource.h"
13 #include "MemoryBlockCache.h"
14 #include "mozilla/Attributes.h"
15 #include "mozilla/ClearOnShutdown.h"
16 #include "mozilla/ErrorNames.h"
17 #include "mozilla/Logging.h"
18 #include "mozilla/Monitor.h"
19 #include "mozilla/Preferences.h"
20 #include "mozilla/Services.h"
21 #include "mozilla/StaticPtr.h"
22 #include "mozilla/StaticPrefs_browser.h"
23 #include "mozilla/StaticPrefs_media.h"
24 #include "mozilla/Telemetry.h"
25 #include "nsContentUtils.h"
26 #include "nsINetworkLinkService.h"
27 #include "nsIObserverService.h"
28 #include "nsPrintfCString.h"
29 #include "nsProxyRelease.h"
30 #include "nsTHashSet.h"
31 #include "nsThreadUtils.h"
32 #include "prio.h"
33 #include "VideoUtils.h"
34 #include <algorithm>
36 namespace mozilla {
38 #undef LOG
39 #undef LOGI
40 #undef LOGE
41 LazyLogModule gMediaCacheLog("MediaCache");
42 #define LOG(...) MOZ_LOG(gMediaCacheLog, LogLevel::Debug, (__VA_ARGS__))
43 #define LOGI(...) MOZ_LOG(gMediaCacheLog, LogLevel::Info, (__VA_ARGS__))
44 #define LOGE(...) \
45 NS_DebugBreak(NS_DEBUG_WARNING, nsPrintfCString(__VA_ARGS__).get(), nullptr, \
46 __FILE__, __LINE__)
48 // For HTTP seeking, if number of bytes needing to be
49 // seeked forward is less than this value then a read is
50 // done rather than a byte range request.
52 // If we assume a 100Mbit connection, and assume reissuing an HTTP seek causes
53 // a delay of 200ms, then in that 200ms we could have simply read ahead 2MB. So
54 // setting SEEK_VS_READ_THRESHOLD to 1MB sounds reasonable.
55 static const int64_t SEEK_VS_READ_THRESHOLD = 1 * 1024 * 1024;
57 // Readahead blocks for non-seekable streams will be limited to this
58 // fraction of the cache space. We don't normally evict such blocks
59 // because replacing them requires a seek, but we need to make sure
60 // they don't monopolize the cache.
61 static const double NONSEEKABLE_READAHEAD_MAX = 0.5;
63 // Data N seconds before the current playback position is given the same
64 // priority as data REPLAY_PENALTY_FACTOR*N seconds ahead of the current
65 // playback position. REPLAY_PENALTY_FACTOR is greater than 1 to reflect that
66 // data in the past is less likely to be played again than data in the future.
67 // We want to give data just behind the current playback position reasonably
68 // high priority in case codecs need to retrieve that data (e.g. because
69 // tracks haven't been muxed well or are being decoded at uneven rates).
70 // 1/REPLAY_PENALTY_FACTOR as much data will be kept behind the
71 // current playback position as will be kept ahead of the current playback
72 // position.
73 static const uint32_t REPLAY_PENALTY_FACTOR = 3;
75 // When looking for a reusable block, scan forward this many blocks
76 // from the desired "best" block location to look for free blocks,
77 // before we resort to scanning the whole cache. The idea is to try to
78 // store runs of stream blocks close-to-consecutively in the cache if we
79 // can.
80 static const uint32_t FREE_BLOCK_SCAN_LIMIT = 16;
82 #ifdef DEBUG
83 // Turn this on to do very expensive cache state validation
84 // #define DEBUG_VERIFY_CACHE
85 #endif
87 class MediaCacheFlusher final : public nsIObserver,
88 public nsSupportsWeakReference {
89 public:
90 NS_DECL_ISUPPORTS
91 NS_DECL_NSIOBSERVER
93 static void RegisterMediaCache(MediaCache* aMediaCache);
94 static void UnregisterMediaCache(MediaCache* aMediaCache);
96 private:
97 MediaCacheFlusher() = default;
98 ~MediaCacheFlusher() = default;
100 // Singleton instance created when a first MediaCache is registered, and
101 // released when the last MediaCache is unregistered.
102 // The observer service will keep a weak reference to it, for notifications.
103 static StaticRefPtr<MediaCacheFlusher> gMediaCacheFlusher;
105 nsTArray<MediaCache*> mMediaCaches;
108 /* static */
109 StaticRefPtr<MediaCacheFlusher> MediaCacheFlusher::gMediaCacheFlusher;
111 NS_IMPL_ISUPPORTS(MediaCacheFlusher, nsIObserver, nsISupportsWeakReference)
113 /* static */
114 void MediaCacheFlusher::RegisterMediaCache(MediaCache* aMediaCache) {
115 NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
117 if (!gMediaCacheFlusher) {
118 gMediaCacheFlusher = new MediaCacheFlusher();
119 nsCOMPtr<nsIObserverService> observerService =
120 mozilla::services::GetObserverService();
121 if (observerService) {
122 observerService->AddObserver(gMediaCacheFlusher, "last-pb-context-exited",
123 true);
124 observerService->AddObserver(gMediaCacheFlusher,
125 "cacheservice:empty-cache", true);
126 observerService->AddObserver(
127 gMediaCacheFlusher, "contentchild:network-link-type-changed", true);
128 observerService->AddObserver(gMediaCacheFlusher,
129 NS_NETWORK_LINK_TYPE_TOPIC, true);
133 gMediaCacheFlusher->mMediaCaches.AppendElement(aMediaCache);
136 /* static */
137 void MediaCacheFlusher::UnregisterMediaCache(MediaCache* aMediaCache) {
138 NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
140 gMediaCacheFlusher->mMediaCaches.RemoveElement(aMediaCache);
142 if (gMediaCacheFlusher->mMediaCaches.Length() == 0) {
143 gMediaCacheFlusher = nullptr;
147 class MediaCache {
148 using AutoLock = MonitorAutoLock;
150 public:
151 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MediaCache)
153 friend class MediaCacheStream::BlockList;
154 typedef MediaCacheStream::BlockList BlockList;
155 static const int64_t BLOCK_SIZE = MediaCacheStream::BLOCK_SIZE;
157 // Get an instance of a MediaCache (or nullptr if initialization failed).
158 // aContentLength is the content length if known already, otherwise -1.
159 // If the length is known and considered small enough, a discrete MediaCache
160 // with memory backing will be given. Otherwise the one MediaCache with
161 // file backing will be provided.
162 // If aIsPrivateBrowsing is true, only initialization of a memory backed
163 // MediaCache will be attempted, returning nullptr if that fails.
164 static RefPtr<MediaCache> GetMediaCache(int64_t aContentLength,
165 bool aIsPrivateBrowsing);
167 nsISerialEventTarget* OwnerThread() const { return sThread; }
169 // Brutally flush the cache contents. Main thread only.
170 void Flush();
172 // Close all streams associated with private browsing windows. This will
173 // also remove the blocks from the cache since we don't want to leave any
174 // traces when PB is done.
175 void CloseStreamsForPrivateBrowsing();
177 // Cache-file access methods. These are the lowest-level cache methods.
178 // mMonitor must be held; these can be called on any thread.
179 // This can return partial reads.
180 // Note mMonitor will be dropped while doing IO. The caller need
181 // to handle changes happening when the monitor is not held.
182 nsresult ReadCacheFile(AutoLock&, int64_t aOffset, void* aData,
183 int32_t aLength, int32_t* aBytes);
185 // The generated IDs are always positive.
186 int64_t AllocateResourceID(AutoLock&) { return ++mNextResourceID; }
188 // mMonitor must be held, called on main thread.
189 // These methods are used by the stream to set up and tear down streams,
190 // and to handle reads and writes.
191 // Add aStream to the list of streams.
192 void OpenStream(AutoLock&, MediaCacheStream* aStream, bool aIsClone = false);
193 // Remove aStream from the list of streams.
194 void ReleaseStream(AutoLock&, MediaCacheStream* aStream);
195 // Free all blocks belonging to aStream.
196 void ReleaseStreamBlocks(AutoLock&, MediaCacheStream* aStream);
197 // Find a cache entry for this data, and write the data into it
198 void AllocateAndWriteBlock(
199 AutoLock&, MediaCacheStream* aStream, int32_t aStreamBlockIndex,
200 Span<const uint8_t> aData1,
201 Span<const uint8_t> aData2 = Span<const uint8_t>());
203 // mMonitor must be held; can be called on any thread
204 // Notify the cache that a seek has been requested. Some blocks may
205 // need to change their class between PLAYED_BLOCK and READAHEAD_BLOCK.
206 // This does not trigger channel seeks directly, the next Update()
207 // will do that if necessary. The caller will call QueueUpdate().
208 void NoteSeek(AutoLock&, MediaCacheStream* aStream, int64_t aOldOffset);
209 // Notify the cache that a block has been read from. This is used
210 // to update last-use times. The block may not actually have a
211 // cache entry yet since Read can read data from a stream's
212 // in-memory mPartialBlockBuffer while the block is only partly full,
213 // and thus hasn't yet been committed to the cache. The caller will
214 // call QueueUpdate().
215 void NoteBlockUsage(AutoLock&, MediaCacheStream* aStream, int32_t aBlockIndex,
216 int64_t aStreamOffset, MediaCacheStream::ReadMode aMode,
217 TimeStamp aNow);
218 // Mark aStream as having the block, adding it as an owner.
219 void AddBlockOwnerAsReadahead(AutoLock&, int32_t aBlockIndex,
220 MediaCacheStream* aStream,
221 int32_t aStreamBlockIndex);
223 // This queues a call to Update() on the media cache thread.
224 void QueueUpdate(AutoLock&);
226 // Notify all streams for the resource ID that the suspended status changed
227 // at the end of MediaCache::Update.
228 void QueueSuspendedStatusUpdate(AutoLock&, int64_t aResourceID);
230 // Updates the cache state asynchronously on the media cache thread:
231 // -- try to trim the cache back to its desired size, if necessary
232 // -- suspend channels that are going to read data that's lower priority
233 // than anything currently cached
234 // -- resume channels that are going to read data that's higher priority
235 // than something currently cached
236 // -- seek channels that need to seek to a new location
237 void Update();
239 #ifdef DEBUG_VERIFY_CACHE
240 // Verify invariants, especially block list invariants
241 void Verify(AutoLock&);
242 #else
243 void Verify(AutoLock&) {}
244 #endif
246 mozilla::Monitor& Monitor() {
247 // This method should only be called outside the main thread.
248 // The MOZ_DIAGNOSTIC_ASSERT(!NS_IsMainThread()) assertion should be
249 // re-added as part of bug 1464045
250 return mMonitor;
253 // Polls whether we're on a cellular network connection, and posts a task
254 // to the MediaCache thread to set the value of MediaCache::sOnCellular.
255 // Call on main thread only.
256 static void UpdateOnCellular();
259 * An iterator that makes it easy to iterate through all streams that
260 * have a given resource ID and are not closed.
261 * Must be used while holding the media cache lock.
263 class ResourceStreamIterator {
264 public:
265 ResourceStreamIterator(MediaCache* aMediaCache, int64_t aResourceID)
266 : mMediaCache(aMediaCache), mResourceID(aResourceID), mNext(0) {
267 aMediaCache->mMonitor.AssertCurrentThreadOwns();
269 MediaCacheStream* Next(AutoLock& aLock) {
270 while (mNext < mMediaCache->mStreams.Length()) {
271 MediaCacheStream* stream = mMediaCache->mStreams[mNext];
272 ++mNext;
273 if (stream->GetResourceID() == mResourceID && !stream->IsClosed(aLock))
274 return stream;
276 return nullptr;
279 private:
280 MediaCache* mMediaCache;
281 int64_t mResourceID;
282 uint32_t mNext;
285 protected:
286 explicit MediaCache(MediaBlockCacheBase* aCache)
287 : mMonitor("MediaCache.mMonitor"),
288 mBlockCache(aCache),
289 mUpdateQueued(false)
290 #ifdef DEBUG
292 mInUpdate(false)
293 #endif
295 NS_ASSERTION(NS_IsMainThread(), "Only construct MediaCache on main thread");
296 MOZ_COUNT_CTOR(MediaCache);
297 MediaCacheFlusher::RegisterMediaCache(this);
298 UpdateOnCellular();
301 ~MediaCache() {
302 NS_ASSERTION(NS_IsMainThread(), "Only destroy MediaCache on main thread");
303 if (this == gMediaCache) {
304 LOG("~MediaCache(Global file-backed MediaCache)");
305 // This is the file-backed MediaCache, reset the global pointer.
306 gMediaCache = nullptr;
307 } else {
308 LOG("~MediaCache(Memory-backed MediaCache %p)", this);
310 MediaCacheFlusher::UnregisterMediaCache(this);
311 NS_ASSERTION(mStreams.IsEmpty(), "Stream(s) still open!");
312 Truncate();
313 NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?");
315 MOZ_COUNT_DTOR(MediaCache);
318 static size_t CacheSize() {
319 MOZ_ASSERT(sThread->IsOnCurrentThread());
320 return sOnCellular ? StaticPrefs::media_cache_size_cellular()
321 : StaticPrefs::media_cache_size();
324 static size_t ReadaheadLimit() {
325 MOZ_ASSERT(sThread->IsOnCurrentThread());
326 return sOnCellular ? StaticPrefs::media_cache_readahead_limit_cellular()
327 : StaticPrefs::media_cache_readahead_limit();
330 static size_t ResumeThreshold() {
331 return sOnCellular ? StaticPrefs::media_cache_resume_threshold_cellular()
332 : StaticPrefs::media_cache_resume_threshold();
335 // Find a free or reusable block and return its index. If there are no
336 // free blocks and no reusable blocks, add a new block to the cache
337 // and return it. Can return -1 on OOM.
338 int32_t FindBlockForIncomingData(AutoLock&, TimeStamp aNow,
339 MediaCacheStream* aStream,
340 int32_t aStreamBlockIndex);
341 // Find a reusable block --- a free block, if there is one, otherwise
342 // the reusable block with the latest predicted-next-use, or -1 if
343 // there aren't any freeable blocks. Only block indices less than
344 // aMaxSearchBlockIndex are considered. If aForStream is non-null,
345 // then aForStream and aForStreamBlock indicate what media data will
346 // be placed; FindReusableBlock will favour returning free blocks
347 // near other blocks for that point in the stream.
348 int32_t FindReusableBlock(AutoLock&, TimeStamp aNow,
349 MediaCacheStream* aForStream,
350 int32_t aForStreamBlock,
351 int32_t aMaxSearchBlockIndex);
352 bool BlockIsReusable(AutoLock&, int32_t aBlockIndex);
353 // Given a list of blocks sorted with the most reusable blocks at the
354 // end, find the last block whose stream is not pinned (if any)
355 // and whose cache entry index is less than aBlockIndexLimit
356 // and append it to aResult.
357 void AppendMostReusableBlock(AutoLock&, BlockList* aBlockList,
358 nsTArray<uint32_t>* aResult,
359 int32_t aBlockIndexLimit);
361 enum BlockClass {
362 // block belongs to mMetadataBlockList because data has been consumed
363 // from it in "metadata mode" --- in particular blocks read during
364 // Ogg seeks go into this class. These blocks may have played data
365 // in them too.
366 METADATA_BLOCK,
367 // block belongs to mPlayedBlockList because its offset is
368 // less than the stream's current reader position
369 PLAYED_BLOCK,
370 // block belongs to the stream's mReadaheadBlockList because its
371 // offset is greater than or equal to the stream's current
372 // reader position
373 READAHEAD_BLOCK
376 struct BlockOwner {
377 constexpr BlockOwner() = default;
379 // The stream that owns this block, or null if the block is free.
380 MediaCacheStream* mStream = nullptr;
381 // The block index in the stream. Valid only if mStream is non-null.
382 // Initialized to an insane value to highlight misuse.
383 uint32_t mStreamBlock = UINT32_MAX;
384 // Time at which this block was last used. Valid only if
385 // mClass is METADATA_BLOCK or PLAYED_BLOCK.
386 TimeStamp mLastUseTime;
387 BlockClass mClass = READAHEAD_BLOCK;
390 struct Block {
391 // Free blocks have an empty mOwners array
392 nsTArray<BlockOwner> mOwners;
395 // Get the BlockList that the block should belong to given its
396 // current owner
397 BlockList* GetListForBlock(AutoLock&, BlockOwner* aBlock);
398 // Get the BlockOwner for the given block index and owning stream
399 // (returns null if the stream does not own the block)
400 BlockOwner* GetBlockOwner(AutoLock&, int32_t aBlockIndex,
401 MediaCacheStream* aStream);
402 // Returns true iff the block is free
403 bool IsBlockFree(int32_t aBlockIndex) {
404 return mIndex[aBlockIndex].mOwners.IsEmpty();
406 // Add the block to the free list and mark its streams as not having
407 // the block in cache
408 void FreeBlock(AutoLock&, int32_t aBlock);
409 // Mark aStream as not having the block, removing it as an owner. If
410 // the block has no more owners it's added to the free list.
411 void RemoveBlockOwner(AutoLock&, int32_t aBlockIndex,
412 MediaCacheStream* aStream);
413 // Swap all metadata associated with the two blocks. The caller
414 // is responsible for swapping up any cache file state.
415 void SwapBlocks(AutoLock&, int32_t aBlockIndex1, int32_t aBlockIndex2);
416 // Insert the block into the readahead block list for the stream
417 // at the right point in the list.
418 void InsertReadaheadBlock(AutoLock&, BlockOwner* aBlockOwner,
419 int32_t aBlockIndex);
421 // Guess the duration until block aBlock will be next used
422 TimeDuration PredictNextUse(AutoLock&, TimeStamp aNow, int32_t aBlock);
423 // Guess the duration until the next incoming data on aStream will be used
424 TimeDuration PredictNextUseForIncomingData(AutoLock&,
425 MediaCacheStream* aStream);
427 // Truncate the file and index array if there are free blocks at the
428 // end
429 void Truncate();
431 void FlushInternal(AutoLock&);
433 // There is at most one file-backed media cache.
434 // It is owned by all MediaCacheStreams that use it.
435 // This is a raw pointer set by GetMediaCache(), and reset by ~MediaCache(),
436 // both on the main thread; and is not accessed anywhere else.
437 static inline MediaCache* gMediaCache = nullptr;
439 // This member is main-thread only. It's used to allocate unique
440 // resource IDs to streams.
441 int64_t mNextResourceID = 0;
443 // The monitor protects all the data members here. Also, off-main-thread
444 // readers that need to block will Wait() on this monitor. When new
445 // data becomes available in the cache, we NotifyAll() on this monitor.
446 mozilla::Monitor mMonitor MOZ_UNANNOTATED;
447 // This must always be accessed when the monitor is held.
448 nsTArray<MediaCacheStream*> mStreams;
449 // The Blocks describing the cache entries.
450 nsTArray<Block> mIndex;
452 RefPtr<MediaBlockCacheBase> mBlockCache;
453 // The list of free blocks; they are not ordered.
454 BlockList mFreeBlocks;
455 // True if an event to run Update() has been queued but not processed
456 bool mUpdateQueued;
457 #ifdef DEBUG
458 bool mInUpdate;
459 #endif
460 // A list of resource IDs to notify about the change in suspended status.
461 nsTArray<int64_t> mSuspendedStatusToNotify;
462 // The thread on which we will run data callbacks from the channels.
463 // Note this thread is shared among all MediaCache instances.
464 static inline StaticRefPtr<nsIThread> sThread;
465 // True if we've tried to init sThread. Note we try once only so it is safe
466 // to access sThread on all threads.
467 static inline bool sThreadInit = false;
469 private:
470 // MediaCache thread only. True if we're on a cellular network connection.
471 static inline bool sOnCellular = false;
473 // Try to trim the cache back to its desired size, if necessary. Return the
474 // amount of free block counts after trimming.
475 int32_t TrimCacheIfNeeded(AutoLock& aLock, const TimeStamp& aNow);
477 struct StreamAction {
478 enum { NONE, SEEK, RESUME, SUSPEND } mTag = NONE;
479 // Members for 'SEEK' only.
480 bool mResume = false;
481 int64_t mSeekTarget = -1;
483 // In each update, media cache would determine an action for each stream,
484 // possible actions are: keeping the stream unchanged, seeking to the new
485 // position, resuming its channel or suspending its channel. The action would
486 // be determined by considering a lot of different factors, eg. stream's data
487 // offset and length, how many free or reusable blocks are avaliable, the
488 // predicted time for the next block...e.t.c. This function will write the
489 // corresponding action for each stream in `mStreams` into `aActions`.
490 void DetermineActionsForStreams(AutoLock& aLock, const TimeStamp& aNow,
491 nsTArray<StreamAction>& aActions,
492 int32_t aFreeBlockCount);
494 // Used by MediaCacheStream::GetDebugInfo() only for debugging.
495 // Don't add new callers to this function.
496 friend void MediaCacheStream::GetDebugInfo(
497 dom::MediaCacheStreamDebugInfo& aInfo);
498 mozilla::Monitor& GetMonitorOnTheMainThread() {
499 MOZ_DIAGNOSTIC_ASSERT(NS_IsMainThread());
500 return mMonitor;
504 void MediaCache::UpdateOnCellular() {
505 NS_ASSERTION(NS_IsMainThread(),
506 "Only call on main thread"); // JNI required on Android...
507 bool onCellular = OnCellularConnection();
508 LOG("MediaCache::UpdateOnCellular() onCellular=%d", onCellular);
509 nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
510 "MediaCache::UpdateOnCellular", [=]() { sOnCellular = onCellular; });
511 sThread->Dispatch(r.forget());
514 NS_IMETHODIMP
515 MediaCacheFlusher::Observe(nsISupports* aSubject, char const* aTopic,
516 char16_t const* aData) {
517 NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
519 if (strcmp(aTopic, "last-pb-context-exited") == 0) {
520 for (MediaCache* mc : mMediaCaches) {
521 mc->CloseStreamsForPrivateBrowsing();
523 return NS_OK;
525 if (strcmp(aTopic, "cacheservice:empty-cache") == 0) {
526 for (MediaCache* mc : mMediaCaches) {
527 mc->Flush();
529 return NS_OK;
531 if (strcmp(aTopic, "contentchild:network-link-type-changed") == 0 ||
532 strcmp(aTopic, NS_NETWORK_LINK_TYPE_TOPIC) == 0) {
533 MediaCache::UpdateOnCellular();
535 return NS_OK;
538 MediaCacheStream::MediaCacheStream(ChannelMediaResource* aClient,
539 bool aIsPrivateBrowsing)
540 : mMediaCache(nullptr),
541 mClient(aClient),
542 mIsTransportSeekable(false),
543 mCacheSuspended(false),
544 mChannelEnded(false),
545 mStreamOffset(0),
546 mPlaybackBytesPerSecond(10000),
547 mPinCount(0),
548 mNotifyDataEndedStatus(NS_ERROR_NOT_INITIALIZED),
549 mIsPrivateBrowsing(aIsPrivateBrowsing) {}
551 size_t MediaCacheStream::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
552 AutoLock lock(mMediaCache->Monitor());
554 // Looks like these are not owned:
555 // - mClient
556 size_t size = mBlocks.ShallowSizeOfExcludingThis(aMallocSizeOf);
557 size += mReadaheadBlocks.SizeOfExcludingThis(aMallocSizeOf);
558 size += mMetadataBlocks.SizeOfExcludingThis(aMallocSizeOf);
559 size += mPlayedBlocks.SizeOfExcludingThis(aMallocSizeOf);
560 size += aMallocSizeOf(mPartialBlockBuffer.get());
562 return size;
565 size_t MediaCacheStream::BlockList::SizeOfExcludingThis(
566 MallocSizeOf aMallocSizeOf) const {
567 return mEntries.ShallowSizeOfExcludingThis(aMallocSizeOf);
570 void MediaCacheStream::BlockList::AddFirstBlock(int32_t aBlock) {
571 NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list");
572 Entry* entry = mEntries.PutEntry(aBlock);
574 if (mFirstBlock < 0) {
575 entry->mNextBlock = entry->mPrevBlock = aBlock;
576 } else {
577 entry->mNextBlock = mFirstBlock;
578 entry->mPrevBlock = mEntries.GetEntry(mFirstBlock)->mPrevBlock;
579 mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock;
580 mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock;
582 mFirstBlock = aBlock;
583 ++mCount;
586 void MediaCacheStream::BlockList::AddAfter(int32_t aBlock, int32_t aBefore) {
587 NS_ASSERTION(!mEntries.GetEntry(aBlock), "Block already in list");
588 Entry* entry = mEntries.PutEntry(aBlock);
590 Entry* addAfter = mEntries.GetEntry(aBefore);
591 NS_ASSERTION(addAfter, "aBefore not in list");
593 entry->mNextBlock = addAfter->mNextBlock;
594 entry->mPrevBlock = aBefore;
595 mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = aBlock;
596 mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = aBlock;
597 ++mCount;
600 void MediaCacheStream::BlockList::RemoveBlock(int32_t aBlock) {
601 Entry* entry = mEntries.GetEntry(aBlock);
602 MOZ_DIAGNOSTIC_ASSERT(entry, "Block not in list");
604 if (entry->mNextBlock == aBlock) {
605 MOZ_DIAGNOSTIC_ASSERT(entry->mPrevBlock == aBlock,
606 "Linked list inconsistency");
607 MOZ_DIAGNOSTIC_ASSERT(mFirstBlock == aBlock, "Linked list inconsistency");
608 mFirstBlock = -1;
609 } else {
610 if (mFirstBlock == aBlock) {
611 mFirstBlock = entry->mNextBlock;
613 mEntries.GetEntry(entry->mNextBlock)->mPrevBlock = entry->mPrevBlock;
614 mEntries.GetEntry(entry->mPrevBlock)->mNextBlock = entry->mNextBlock;
616 mEntries.RemoveEntry(entry);
617 --mCount;
620 int32_t MediaCacheStream::BlockList::GetLastBlock() const {
621 if (mFirstBlock < 0) return -1;
622 return mEntries.GetEntry(mFirstBlock)->mPrevBlock;
625 int32_t MediaCacheStream::BlockList::GetNextBlock(int32_t aBlock) const {
626 int32_t block = mEntries.GetEntry(aBlock)->mNextBlock;
627 if (block == mFirstBlock) return -1;
628 return block;
631 int32_t MediaCacheStream::BlockList::GetPrevBlock(int32_t aBlock) const {
632 if (aBlock == mFirstBlock) return -1;
633 return mEntries.GetEntry(aBlock)->mPrevBlock;
636 #ifdef DEBUG
637 void MediaCacheStream::BlockList::Verify() {
638 int32_t count = 0;
639 if (mFirstBlock >= 0) {
640 int32_t block = mFirstBlock;
641 do {
642 Entry* entry = mEntries.GetEntry(block);
643 NS_ASSERTION(mEntries.GetEntry(entry->mNextBlock)->mPrevBlock == block,
644 "Bad prev link");
645 NS_ASSERTION(mEntries.GetEntry(entry->mPrevBlock)->mNextBlock == block,
646 "Bad next link");
647 block = entry->mNextBlock;
648 ++count;
649 } while (block != mFirstBlock);
651 NS_ASSERTION(count == mCount, "Bad count");
653 #endif
655 static void UpdateSwappedBlockIndex(int32_t* aBlockIndex, int32_t aBlock1Index,
656 int32_t aBlock2Index) {
657 int32_t index = *aBlockIndex;
658 if (index == aBlock1Index) {
659 *aBlockIndex = aBlock2Index;
660 } else if (index == aBlock2Index) {
661 *aBlockIndex = aBlock1Index;
665 void MediaCacheStream::BlockList::NotifyBlockSwapped(int32_t aBlockIndex1,
666 int32_t aBlockIndex2) {
667 Entry* e1 = mEntries.GetEntry(aBlockIndex1);
668 Entry* e2 = mEntries.GetEntry(aBlockIndex2);
669 int32_t e1Prev = -1, e1Next = -1, e2Prev = -1, e2Next = -1;
671 // Fix mFirstBlock
672 UpdateSwappedBlockIndex(&mFirstBlock, aBlockIndex1, aBlockIndex2);
674 // Fix mNextBlock/mPrevBlock links. First capture previous/next links
675 // so we don't get confused due to aliasing.
676 if (e1) {
677 e1Prev = e1->mPrevBlock;
678 e1Next = e1->mNextBlock;
680 if (e2) {
681 e2Prev = e2->mPrevBlock;
682 e2Next = e2->mNextBlock;
684 // Update the entries.
685 if (e1) {
686 mEntries.GetEntry(e1Prev)->mNextBlock = aBlockIndex2;
687 mEntries.GetEntry(e1Next)->mPrevBlock = aBlockIndex2;
689 if (e2) {
690 mEntries.GetEntry(e2Prev)->mNextBlock = aBlockIndex1;
691 mEntries.GetEntry(e2Next)->mPrevBlock = aBlockIndex1;
694 // Fix hashtable keys. First remove stale entries.
695 if (e1) {
696 e1Prev = e1->mPrevBlock;
697 e1Next = e1->mNextBlock;
698 mEntries.RemoveEntry(e1);
699 // Refresh pointer after hashtable mutation.
700 e2 = mEntries.GetEntry(aBlockIndex2);
702 if (e2) {
703 e2Prev = e2->mPrevBlock;
704 e2Next = e2->mNextBlock;
705 mEntries.RemoveEntry(e2);
707 // Put new entries back.
708 if (e1) {
709 e1 = mEntries.PutEntry(aBlockIndex2);
710 e1->mNextBlock = e1Next;
711 e1->mPrevBlock = e1Prev;
713 if (e2) {
714 e2 = mEntries.PutEntry(aBlockIndex1);
715 e2->mNextBlock = e2Next;
716 e2->mPrevBlock = e2Prev;
720 void MediaCache::FlushInternal(AutoLock& aLock) {
721 for (uint32_t blockIndex = 0; blockIndex < mIndex.Length(); ++blockIndex) {
722 FreeBlock(aLock, blockIndex);
725 // Truncate index array.
726 Truncate();
727 NS_ASSERTION(mIndex.Length() == 0, "Blocks leaked?");
728 // Reset block cache to its pristine state.
729 mBlockCache->Flush();
732 void MediaCache::Flush() {
733 MOZ_ASSERT(NS_IsMainThread());
734 nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
735 "MediaCache::Flush", [self = RefPtr<MediaCache>(this)]() mutable {
736 AutoLock lock(self->mMonitor);
737 self->FlushInternal(lock);
738 // Ensure MediaCache is deleted on the main thread.
739 NS_ReleaseOnMainThread("MediaCache::Flush", self.forget());
741 sThread->Dispatch(r.forget());
744 void MediaCache::CloseStreamsForPrivateBrowsing() {
745 MOZ_ASSERT(NS_IsMainThread());
746 sThread->Dispatch(NS_NewRunnableFunction(
747 "MediaCache::CloseStreamsForPrivateBrowsing",
748 [self = RefPtr<MediaCache>(this)]() mutable {
749 AutoLock lock(self->mMonitor);
750 // Copy mStreams since CloseInternal() will change the array.
751 for (MediaCacheStream* s : self->mStreams.Clone()) {
752 if (s->mIsPrivateBrowsing) {
753 s->CloseInternal(lock);
756 // Ensure MediaCache is deleted on the main thread.
757 NS_ReleaseOnMainThread("MediaCache::CloseStreamsForPrivateBrowsing",
758 self.forget());
759 }));
762 /* static */
763 RefPtr<MediaCache> MediaCache::GetMediaCache(int64_t aContentLength,
764 bool aIsPrivateBrowsing) {
765 NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
767 if (!sThreadInit) {
768 sThreadInit = true;
769 nsCOMPtr<nsIThread> thread;
770 nsresult rv = NS_NewNamedThread("MediaCache", getter_AddRefs(thread));
771 if (NS_FAILED(rv)) {
772 NS_WARNING("Failed to create a thread for MediaCache.");
773 return nullptr;
775 sThread = ToRefPtr(std::move(thread));
777 static struct ClearThread {
778 // Called during shutdown to clear sThread.
779 void operator=(std::nullptr_t) {
780 MOZ_ASSERT(sThread, "We should only clear sThread once.");
781 sThread->Shutdown();
782 sThread = nullptr;
784 } sClearThread;
785 ClearOnShutdown(&sClearThread, ShutdownPhase::XPCOMShutdownThreads);
788 if (!sThread) {
789 return nullptr;
792 const int64_t mediaMemoryCacheMaxSize =
793 static_cast<int64_t>(StaticPrefs::media_memory_cache_max_size()) * 1024;
795 // Force usage of in-memory cache if we are in private browsing mode
796 // and the forceMediaMemoryCache pref is set
797 // We will not attempt to create an on-disk cache if this is the case
798 const bool forceMediaMemoryCache =
799 aIsPrivateBrowsing &&
800 StaticPrefs::browser_privatebrowsing_forceMediaMemoryCache();
802 // Alternatively, use an in-memory cache if the media will fit entirely
803 // in memory
804 // aContentLength < 0 indicates we do not know content's actual size
805 const bool contentFitsInMediaMemoryCache =
806 (aContentLength > 0) && (aContentLength <= mediaMemoryCacheMaxSize);
808 // Try to allocate a memory cache for our content
809 if (contentFitsInMediaMemoryCache || forceMediaMemoryCache) {
810 // Figure out how large our cache should be
811 int64_t cacheSize = 0;
812 if (contentFitsInMediaMemoryCache) {
813 cacheSize = aContentLength;
814 } else if (forceMediaMemoryCache) {
815 // Unknown content length, we'll give the maximum allowed cache size
816 // just to be sure.
817 if (aContentLength < 0) {
818 cacheSize = mediaMemoryCacheMaxSize;
819 } else {
820 // If the content length is less than the maximum allowed cache size,
821 // use that, otherwise we cap it to max size.
822 cacheSize = std::min(aContentLength, mediaMemoryCacheMaxSize);
826 RefPtr<MediaBlockCacheBase> bc = new MemoryBlockCache(cacheSize);
827 nsresult rv = bc->Init();
828 if (NS_SUCCEEDED(rv)) {
829 RefPtr<MediaCache> mc = new MediaCache(bc);
830 LOG("GetMediaCache(%" PRIi64 ") -> Memory MediaCache %p", aContentLength,
831 mc.get());
832 return mc;
835 // MemoryBlockCache initialization failed.
836 // If we require use of a memory media cache, we will bail here.
837 // Otherwise use a file-backed MediaCache below.
838 if (forceMediaMemoryCache) {
839 return nullptr;
843 if (gMediaCache) {
844 LOG("GetMediaCache(%" PRIi64 ") -> Existing file-backed MediaCache",
845 aContentLength);
846 return gMediaCache;
849 RefPtr<MediaBlockCacheBase> bc = new FileBlockCache();
850 nsresult rv = bc->Init();
851 if (NS_SUCCEEDED(rv)) {
852 gMediaCache = new MediaCache(bc);
853 LOG("GetMediaCache(%" PRIi64 ") -> Created file-backed MediaCache",
854 aContentLength);
855 } else {
856 LOG("GetMediaCache(%" PRIi64 ") -> Failed to create file-backed MediaCache",
857 aContentLength);
860 return gMediaCache;
863 nsresult MediaCache::ReadCacheFile(AutoLock&, int64_t aOffset, void* aData,
864 int32_t aLength, int32_t* aBytes) {
865 if (!mBlockCache) {
866 return NS_ERROR_FAILURE;
868 return mBlockCache->Read(aOffset, reinterpret_cast<uint8_t*>(aData), aLength,
869 aBytes);
872 // Allowed range is whatever can be accessed with an int32_t block index.
873 static bool IsOffsetAllowed(int64_t aOffset) {
874 return aOffset < (int64_t(INT32_MAX) + 1) * MediaCache::BLOCK_SIZE &&
875 aOffset >= 0;
878 // Convert 64-bit offset to 32-bit block index.
879 // Assumes offset range-check was already done.
880 static int32_t OffsetToBlockIndexUnchecked(int64_t aOffset) {
881 // Still check for allowed range in debug builds, to catch out-of-range
882 // issues early during development.
883 MOZ_ASSERT(IsOffsetAllowed(aOffset));
884 return int32_t(aOffset / MediaCache::BLOCK_SIZE);
887 // Convert 64-bit offset to 32-bit block index. -1 if out of allowed range.
888 static int32_t OffsetToBlockIndex(int64_t aOffset) {
889 return IsOffsetAllowed(aOffset) ? OffsetToBlockIndexUnchecked(aOffset) : -1;
892 // Convert 64-bit offset to 32-bit offset inside a block.
893 // Will not fail (even if offset is outside allowed range), so there is no
894 // need to check for errors.
895 static int32_t OffsetInBlock(int64_t aOffset) {
896 // Still check for allowed range in debug builds, to catch out-of-range
897 // issues early during development.
898 MOZ_ASSERT(IsOffsetAllowed(aOffset));
899 return int32_t(aOffset % MediaCache::BLOCK_SIZE);
902 int32_t MediaCache::FindBlockForIncomingData(AutoLock& aLock, TimeStamp aNow,
903 MediaCacheStream* aStream,
904 int32_t aStreamBlockIndex) {
905 MOZ_ASSERT(sThread->IsOnCurrentThread());
907 int32_t blockIndex =
908 FindReusableBlock(aLock, aNow, aStream, aStreamBlockIndex, INT32_MAX);
910 if (blockIndex < 0 || !IsBlockFree(blockIndex)) {
911 // The block returned is already allocated.
912 // Don't reuse it if a) there's room to expand the cache or
913 // b) the data we're going to store in the free block is not higher
914 // priority than the data already stored in the free block.
915 // The latter can lead us to go over the cache limit a bit.
916 if ((mIndex.Length() <
917 uint32_t(mBlockCache->GetMaxBlocks(MediaCache::CacheSize())) ||
918 blockIndex < 0 ||
919 PredictNextUseForIncomingData(aLock, aStream) >=
920 PredictNextUse(aLock, aNow, blockIndex))) {
921 blockIndex = mIndex.Length();
922 // XXX(Bug 1631371) Check if this should use a fallible operation as it
923 // pretended earlier.
924 mIndex.AppendElement();
925 mFreeBlocks.AddFirstBlock(blockIndex);
926 return blockIndex;
930 return blockIndex;
933 bool MediaCache::BlockIsReusable(AutoLock&, int32_t aBlockIndex) {
934 Block* block = &mIndex[aBlockIndex];
935 for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
936 MediaCacheStream* stream = block->mOwners[i].mStream;
937 if (stream->mPinCount > 0 ||
938 uint32_t(OffsetToBlockIndex(stream->mStreamOffset)) ==
939 block->mOwners[i].mStreamBlock) {
940 return false;
943 return true;
946 void MediaCache::AppendMostReusableBlock(AutoLock& aLock, BlockList* aBlockList,
947 nsTArray<uint32_t>* aResult,
948 int32_t aBlockIndexLimit) {
949 int32_t blockIndex = aBlockList->GetLastBlock();
950 if (blockIndex < 0) return;
951 do {
952 // Don't consider blocks for pinned streams, or blocks that are
953 // beyond the specified limit, or a block that contains a stream's
954 // current read position (such a block contains both played data
955 // and readahead data)
956 if (blockIndex < aBlockIndexLimit && BlockIsReusable(aLock, blockIndex)) {
957 aResult->AppendElement(blockIndex);
958 return;
960 blockIndex = aBlockList->GetPrevBlock(blockIndex);
961 } while (blockIndex >= 0);
964 int32_t MediaCache::FindReusableBlock(AutoLock& aLock, TimeStamp aNow,
965 MediaCacheStream* aForStream,
966 int32_t aForStreamBlock,
967 int32_t aMaxSearchBlockIndex) {
968 MOZ_ASSERT(sThread->IsOnCurrentThread());
970 uint32_t length =
971 std::min(uint32_t(aMaxSearchBlockIndex), uint32_t(mIndex.Length()));
973 if (aForStream && aForStreamBlock > 0 &&
974 uint32_t(aForStreamBlock) <= aForStream->mBlocks.Length()) {
975 int32_t prevCacheBlock = aForStream->mBlocks[aForStreamBlock - 1];
976 if (prevCacheBlock >= 0) {
977 uint32_t freeBlockScanEnd =
978 std::min(length, prevCacheBlock + FREE_BLOCK_SCAN_LIMIT);
979 for (uint32_t i = prevCacheBlock; i < freeBlockScanEnd; ++i) {
980 if (IsBlockFree(i)) return i;
985 if (!mFreeBlocks.IsEmpty()) {
986 int32_t blockIndex = mFreeBlocks.GetFirstBlock();
987 do {
988 if (blockIndex < aMaxSearchBlockIndex) return blockIndex;
989 blockIndex = mFreeBlocks.GetNextBlock(blockIndex);
990 } while (blockIndex >= 0);
993 // Build a list of the blocks we should consider for the "latest
994 // predicted time of next use". We can exploit the fact that the block
995 // linked lists are ordered by increasing time of next use. This is
996 // actually the whole point of having the linked lists.
997 AutoTArray<uint32_t, 8> candidates;
998 for (uint32_t i = 0; i < mStreams.Length(); ++i) {
999 MediaCacheStream* stream = mStreams[i];
1000 if (stream->mPinCount > 0) {
1001 // No point in even looking at this stream's blocks
1002 continue;
1005 AppendMostReusableBlock(aLock, &stream->mMetadataBlocks, &candidates,
1006 length);
1007 AppendMostReusableBlock(aLock, &stream->mPlayedBlocks, &candidates, length);
1009 // Don't consider readahead blocks in non-seekable streams. If we
1010 // remove the block we won't be able to seek back to read it later.
1011 if (stream->mIsTransportSeekable) {
1012 AppendMostReusableBlock(aLock, &stream->mReadaheadBlocks, &candidates,
1013 length);
1017 TimeDuration latestUse;
1018 int32_t latestUseBlock = -1;
1019 for (uint32_t i = 0; i < candidates.Length(); ++i) {
1020 TimeDuration nextUse = PredictNextUse(aLock, aNow, candidates[i]);
1021 if (nextUse > latestUse) {
1022 latestUse = nextUse;
1023 latestUseBlock = candidates[i];
1027 return latestUseBlock;
1030 MediaCache::BlockList* MediaCache::GetListForBlock(AutoLock&,
1031 BlockOwner* aBlock) {
1032 switch (aBlock->mClass) {
1033 case METADATA_BLOCK:
1034 NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?");
1035 return &aBlock->mStream->mMetadataBlocks;
1036 case PLAYED_BLOCK:
1037 NS_ASSERTION(aBlock->mStream, "Metadata block has no stream?");
1038 return &aBlock->mStream->mPlayedBlocks;
1039 case READAHEAD_BLOCK:
1040 NS_ASSERTION(aBlock->mStream, "Readahead block has no stream?");
1041 return &aBlock->mStream->mReadaheadBlocks;
1042 default:
1043 NS_ERROR("Invalid block class");
1044 return nullptr;
1048 MediaCache::BlockOwner* MediaCache::GetBlockOwner(AutoLock&,
1049 int32_t aBlockIndex,
1050 MediaCacheStream* aStream) {
1051 Block* block = &mIndex[aBlockIndex];
1052 for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
1053 if (block->mOwners[i].mStream == aStream) return &block->mOwners[i];
1055 return nullptr;
1058 void MediaCache::SwapBlocks(AutoLock& aLock, int32_t aBlockIndex1,
1059 int32_t aBlockIndex2) {
1060 Block* block1 = &mIndex[aBlockIndex1];
1061 Block* block2 = &mIndex[aBlockIndex2];
1063 block1->mOwners.SwapElements(block2->mOwners);
1065 // Now all references to block1 have to be replaced with block2 and
1066 // vice versa.
1067 // First update stream references to blocks via mBlocks.
1068 const Block* blocks[] = {block1, block2};
1069 int32_t blockIndices[] = {aBlockIndex1, aBlockIndex2};
1070 for (int32_t i = 0; i < 2; ++i) {
1071 for (uint32_t j = 0; j < blocks[i]->mOwners.Length(); ++j) {
1072 const BlockOwner* b = &blocks[i]->mOwners[j];
1073 b->mStream->mBlocks[b->mStreamBlock] = blockIndices[i];
1077 // Now update references to blocks in block lists.
1078 mFreeBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
1080 nsTHashSet<MediaCacheStream*> visitedStreams;
1082 for (int32_t i = 0; i < 2; ++i) {
1083 for (uint32_t j = 0; j < blocks[i]->mOwners.Length(); ++j) {
1084 MediaCacheStream* stream = blocks[i]->mOwners[j].mStream;
1085 // Make sure that we don't update the same stream twice --- that
1086 // would result in swapping the block references back again!
1087 if (!visitedStreams.EnsureInserted(stream)) continue;
1088 stream->mReadaheadBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
1089 stream->mPlayedBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
1090 stream->mMetadataBlocks.NotifyBlockSwapped(aBlockIndex1, aBlockIndex2);
1094 Verify(aLock);
1097 void MediaCache::RemoveBlockOwner(AutoLock& aLock, int32_t aBlockIndex,
1098 MediaCacheStream* aStream) {
1099 Block* block = &mIndex[aBlockIndex];
1100 for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
1101 BlockOwner* bo = &block->mOwners[i];
1102 if (bo->mStream == aStream) {
1103 GetListForBlock(aLock, bo)->RemoveBlock(aBlockIndex);
1104 bo->mStream->mBlocks[bo->mStreamBlock] = -1;
1105 block->mOwners.RemoveElementAt(i);
1106 if (block->mOwners.IsEmpty()) {
1107 mFreeBlocks.AddFirstBlock(aBlockIndex);
1109 return;
1114 void MediaCache::AddBlockOwnerAsReadahead(AutoLock& aLock, int32_t aBlockIndex,
1115 MediaCacheStream* aStream,
1116 int32_t aStreamBlockIndex) {
1117 Block* block = &mIndex[aBlockIndex];
1118 if (block->mOwners.IsEmpty()) {
1119 mFreeBlocks.RemoveBlock(aBlockIndex);
1121 BlockOwner* bo = block->mOwners.AppendElement();
1122 bo->mStream = aStream;
1123 bo->mStreamBlock = aStreamBlockIndex;
1124 aStream->mBlocks[aStreamBlockIndex] = aBlockIndex;
1125 bo->mClass = READAHEAD_BLOCK;
1126 InsertReadaheadBlock(aLock, bo, aBlockIndex);
1129 void MediaCache::FreeBlock(AutoLock& aLock, int32_t aBlock) {
1130 Block* block = &mIndex[aBlock];
1131 if (block->mOwners.IsEmpty()) {
1132 // already free
1133 return;
1136 LOG("Released block %d", aBlock);
1138 for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
1139 BlockOwner* bo = &block->mOwners[i];
1140 GetListForBlock(aLock, bo)->RemoveBlock(aBlock);
1141 bo->mStream->mBlocks[bo->mStreamBlock] = -1;
1143 block->mOwners.Clear();
1144 mFreeBlocks.AddFirstBlock(aBlock);
1145 Verify(aLock);
1148 TimeDuration MediaCache::PredictNextUse(AutoLock&, TimeStamp aNow,
1149 int32_t aBlock) {
1150 MOZ_ASSERT(sThread->IsOnCurrentThread());
1151 NS_ASSERTION(!IsBlockFree(aBlock), "aBlock is free");
1153 Block* block = &mIndex[aBlock];
1154 // Blocks can be belong to multiple streams. The predicted next use
1155 // time is the earliest time predicted by any of the streams.
1156 TimeDuration result;
1157 for (uint32_t i = 0; i < block->mOwners.Length(); ++i) {
1158 BlockOwner* bo = &block->mOwners[i];
1159 TimeDuration prediction;
1160 switch (bo->mClass) {
1161 case METADATA_BLOCK:
1162 // This block should be managed in LRU mode. For metadata we predict
1163 // that the time until the next use is the time since the last use.
1164 prediction = aNow - bo->mLastUseTime;
1165 break;
1166 case PLAYED_BLOCK: {
1167 // This block should be managed in LRU mode, and we should impose
1168 // a "replay delay" to reflect the likelihood of replay happening
1169 NS_ASSERTION(static_cast<int64_t>(bo->mStreamBlock) * BLOCK_SIZE <
1170 bo->mStream->mStreamOffset,
1171 "Played block after the current stream position?");
1172 int64_t bytesBehind =
1173 bo->mStream->mStreamOffset -
1174 static_cast<int64_t>(bo->mStreamBlock) * BLOCK_SIZE;
1175 int64_t millisecondsBehind =
1176 bytesBehind * 1000 / bo->mStream->mPlaybackBytesPerSecond;
1177 prediction = TimeDuration::FromMilliseconds(std::min<int64_t>(
1178 millisecondsBehind * REPLAY_PENALTY_FACTOR, INT32_MAX));
1179 break;
1181 case READAHEAD_BLOCK: {
1182 int64_t bytesAhead =
1183 static_cast<int64_t>(bo->mStreamBlock) * BLOCK_SIZE -
1184 bo->mStream->mStreamOffset;
1185 NS_ASSERTION(bytesAhead >= 0,
1186 "Readahead block before the current stream position?");
1187 int64_t millisecondsAhead =
1188 bytesAhead * 1000 / bo->mStream->mPlaybackBytesPerSecond;
1189 prediction = TimeDuration::FromMilliseconds(
1190 std::min<int64_t>(millisecondsAhead, INT32_MAX));
1191 break;
1193 default:
1194 NS_ERROR("Invalid class for predicting next use");
1195 return TimeDuration(0);
1197 if (i == 0 || prediction < result) {
1198 result = prediction;
1201 return result;
1204 TimeDuration MediaCache::PredictNextUseForIncomingData(
1205 AutoLock&, MediaCacheStream* aStream) {
1206 MOZ_ASSERT(sThread->IsOnCurrentThread());
1208 int64_t bytesAhead = aStream->mChannelOffset - aStream->mStreamOffset;
1209 if (bytesAhead <= -BLOCK_SIZE) {
1210 // Hmm, no idea when data behind us will be used. Guess 24 hours.
1211 return TimeDuration::FromSeconds(24 * 60 * 60);
1213 if (bytesAhead <= 0) return TimeDuration(0);
1214 int64_t millisecondsAhead =
1215 bytesAhead * 1000 / aStream->mPlaybackBytesPerSecond;
1216 return TimeDuration::FromMilliseconds(
1217 std::min<int64_t>(millisecondsAhead, INT32_MAX));
1220 void MediaCache::Update() {
1221 MOZ_ASSERT(sThread->IsOnCurrentThread());
1223 AutoLock lock(mMonitor);
1225 mUpdateQueued = false;
1226 #ifdef DEBUG
1227 mInUpdate = true;
1228 #endif
1229 const TimeStamp now = TimeStamp::Now();
1230 const int32_t freeBlockCount = TrimCacheIfNeeded(lock, now);
1232 // The action to use for each stream. We store these so we can make
1233 // decisions while holding the cache lock but implement those decisions
1234 // without holding the cache lock, since we need to call out to
1235 // stream, decoder and element code.
1236 AutoTArray<StreamAction, 10> actions;
1237 DetermineActionsForStreams(lock, now, actions, freeBlockCount);
1239 #ifdef DEBUG
1240 mInUpdate = false;
1241 #endif
1243 // First, update the mCacheSuspended/mCacheEnded flags so that they're all
1244 // correct when we fire our CacheClient commands below. Those commands can
1245 // rely on these flags being set correctly for all streams.
1246 for (uint32_t i = 0; i < mStreams.Length(); ++i) {
1247 MediaCacheStream* stream = mStreams[i];
1248 switch (actions[i].mTag) {
1249 case StreamAction::SEEK:
1250 stream->mCacheSuspended = false;
1251 stream->mChannelEnded = false;
1252 break;
1253 case StreamAction::RESUME:
1254 stream->mCacheSuspended = false;
1255 break;
1256 case StreamAction::SUSPEND:
1257 stream->mCacheSuspended = true;
1258 break;
1259 default:
1260 break;
1264 for (uint32_t i = 0; i < mStreams.Length(); ++i) {
1265 MediaCacheStream* stream = mStreams[i];
1266 switch (actions[i].mTag) {
1267 case StreamAction::SEEK:
1268 LOG("Stream %p CacheSeek to %" PRId64 " (resume=%d)", stream,
1269 actions[i].mSeekTarget, actions[i].mResume);
1270 stream->mClient->CacheClientSeek(actions[i].mSeekTarget,
1271 actions[i].mResume);
1272 break;
1273 case StreamAction::RESUME:
1274 LOG("Stream %p Resumed", stream);
1275 stream->mClient->CacheClientResume();
1276 QueueSuspendedStatusUpdate(lock, stream->mResourceID);
1277 break;
1278 case StreamAction::SUSPEND:
1279 LOG("Stream %p Suspended", stream);
1280 stream->mClient->CacheClientSuspend();
1281 QueueSuspendedStatusUpdate(lock, stream->mResourceID);
1282 break;
1283 default:
1284 break;
1288 // Notify streams about the suspended status changes.
1289 for (uint32_t i = 0; i < mSuspendedStatusToNotify.Length(); ++i) {
1290 MediaCache::ResourceStreamIterator iter(this, mSuspendedStatusToNotify[i]);
1291 while (MediaCacheStream* stream = iter.Next(lock)) {
1292 stream->mClient->CacheClientNotifySuspendedStatusChanged(
1293 stream->AreAllStreamsForResourceSuspended(lock));
1296 mSuspendedStatusToNotify.Clear();
1299 int32_t MediaCache::TrimCacheIfNeeded(AutoLock& aLock, const TimeStamp& aNow) {
1300 MOZ_ASSERT(sThread->IsOnCurrentThread());
1302 const int32_t maxBlocks = mBlockCache->GetMaxBlocks(MediaCache::CacheSize());
1304 int32_t freeBlockCount = mFreeBlocks.GetCount();
1305 TimeDuration latestPredictedUseForOverflow = 0;
1306 if (mIndex.Length() > uint32_t(maxBlocks)) {
1307 // Try to trim back the cache to its desired maximum size. The cache may
1308 // have overflowed simply due to data being received when we have
1309 // no blocks in the main part of the cache that are free or lower
1310 // priority than the new data. The cache can also be overflowing because
1311 // the media.cache_size preference was reduced.
1312 // First, figure out what the least valuable block in the cache overflow
1313 // is. We don't want to replace any blocks in the main part of the
1314 // cache whose expected time of next use is earlier or equal to that.
1315 // If we allow that, we can effectively end up discarding overflowing
1316 // blocks (by moving an overflowing block to the main part of the cache,
1317 // and then overwriting it with another overflowing block), and we try
1318 // to avoid that since it requires HTTP seeks.
1319 // We also use this loop to eliminate overflowing blocks from
1320 // freeBlockCount.
1321 for (int32_t blockIndex = mIndex.Length() - 1; blockIndex >= maxBlocks;
1322 --blockIndex) {
1323 if (IsBlockFree(blockIndex)) {
1324 // Don't count overflowing free blocks in our free block count
1325 --freeBlockCount;
1326 continue;
1328 TimeDuration predictedUse = PredictNextUse(aLock, aNow, blockIndex);
1329 latestPredictedUseForOverflow =
1330 std::max(latestPredictedUseForOverflow, predictedUse);
1332 } else {
1333 freeBlockCount += maxBlocks - mIndex.Length();
1336 // Now try to move overflowing blocks to the main part of the cache.
1337 for (int32_t blockIndex = mIndex.Length() - 1; blockIndex >= maxBlocks;
1338 --blockIndex) {
1339 if (IsBlockFree(blockIndex)) continue;
1341 Block* block = &mIndex[blockIndex];
1342 // Try to relocate the block close to other blocks for the first stream.
1343 // There is no point in trying to make it close to other blocks in
1344 // *all* the streams it might belong to.
1345 int32_t destinationBlockIndex =
1346 FindReusableBlock(aLock, aNow, block->mOwners[0].mStream,
1347 block->mOwners[0].mStreamBlock, maxBlocks);
1348 if (destinationBlockIndex < 0) {
1349 // Nowhere to place this overflow block. We won't be able to
1350 // place any more overflow blocks.
1351 break;
1354 // Don't evict |destinationBlockIndex| if it is within [cur, end) otherwise
1355 // a new channel will be opened to download this block again which is bad.
1356 bool inCurrentCachedRange = false;
1357 for (BlockOwner& owner : mIndex[destinationBlockIndex].mOwners) {
1358 MediaCacheStream* stream = owner.mStream;
1359 int64_t end = OffsetToBlockIndexUnchecked(
1360 stream->GetCachedDataEndInternal(aLock, stream->mStreamOffset));
1361 int64_t cur = OffsetToBlockIndexUnchecked(stream->mStreamOffset);
1362 if (cur <= owner.mStreamBlock && owner.mStreamBlock < end) {
1363 inCurrentCachedRange = true;
1364 break;
1367 if (inCurrentCachedRange) {
1368 continue;
1371 if (IsBlockFree(destinationBlockIndex) ||
1372 PredictNextUse(aLock, aNow, destinationBlockIndex) >
1373 latestPredictedUseForOverflow) {
1374 // Reuse blocks in the main part of the cache that are less useful than
1375 // the least useful overflow blocks
1377 nsresult rv = mBlockCache->MoveBlock(blockIndex, destinationBlockIndex);
1379 if (NS_SUCCEEDED(rv)) {
1380 // We successfully copied the file data.
1381 LOG("Swapping blocks %d and %d (trimming cache)", blockIndex,
1382 destinationBlockIndex);
1383 // Swapping the block metadata here lets us maintain the
1384 // correct positions in the linked lists
1385 SwapBlocks(aLock, blockIndex, destinationBlockIndex);
1386 // Free the overflowing block even if the copy failed.
1387 LOG("Released block %d (trimming cache)", blockIndex);
1388 FreeBlock(aLock, blockIndex);
1390 } else {
1391 LOG("Could not trim cache block %d (destination %d, "
1392 "predicted next use %f, latest predicted use for overflow %f",
1393 blockIndex, destinationBlockIndex,
1394 PredictNextUse(aLock, aNow, destinationBlockIndex).ToSeconds(),
1395 latestPredictedUseForOverflow.ToSeconds());
1398 // Try chopping back the array of cache entries and the cache file.
1399 Truncate();
1400 return freeBlockCount;
1403 void MediaCache::DetermineActionsForStreams(AutoLock& aLock,
1404 const TimeStamp& aNow,
1405 nsTArray<StreamAction>& aActions,
1406 int32_t aFreeBlockCount) {
1407 MOZ_ASSERT(sThread->IsOnCurrentThread());
1409 // Count the blocks allocated for readahead of non-seekable streams
1410 // (these blocks can't be freed but we don't want them to monopolize the
1411 // cache)
1412 int32_t nonSeekableReadaheadBlockCount = 0;
1413 for (uint32_t i = 0; i < mStreams.Length(); ++i) {
1414 MediaCacheStream* stream = mStreams[i];
1415 if (!stream->mIsTransportSeekable) {
1416 nonSeekableReadaheadBlockCount += stream->mReadaheadBlocks.GetCount();
1420 // If freeBlockCount is zero, then compute the latest of
1421 // the predicted next-uses for all blocks
1422 TimeDuration latestNextUse;
1423 const int32_t maxBlocks = mBlockCache->GetMaxBlocks(MediaCache::CacheSize());
1424 if (aFreeBlockCount == 0) {
1425 const int32_t reusableBlock =
1426 FindReusableBlock(aLock, aNow, nullptr, 0, maxBlocks);
1427 if (reusableBlock >= 0) {
1428 latestNextUse = PredictNextUse(aLock, aNow, reusableBlock);
1432 for (uint32_t i = 0; i < mStreams.Length(); ++i) {
1433 aActions.AppendElement(StreamAction{});
1435 MediaCacheStream* stream = mStreams[i];
1436 if (stream->mClosed) {
1437 LOG("Stream %p closed", stream);
1438 continue;
1441 // We make decisions based on mSeekTarget when there is a pending seek.
1442 // Otherwise we will keep issuing seek requests until mChannelOffset
1443 // is changed by NotifyDataStarted() which is bad.
1444 const int64_t channelOffset = stream->mSeekTarget != -1
1445 ? stream->mSeekTarget
1446 : stream->mChannelOffset;
1448 // Figure out where we should be reading from. It's the first
1449 // uncached byte after the current mStreamOffset.
1450 const int64_t dataOffset =
1451 stream->GetCachedDataEndInternal(aLock, stream->mStreamOffset);
1452 MOZ_ASSERT(dataOffset >= 0);
1454 // Compute where we'd actually seek to to read at readOffset
1455 int64_t desiredOffset = dataOffset;
1456 if (stream->mIsTransportSeekable) {
1457 if (desiredOffset > channelOffset &&
1458 desiredOffset <= channelOffset + SEEK_VS_READ_THRESHOLD) {
1459 // Assume it's more efficient to just keep reading up to the
1460 // desired position instead of trying to seek
1461 desiredOffset = channelOffset;
1463 } else {
1464 // We can't seek directly to the desired offset...
1465 if (channelOffset > desiredOffset) {
1466 // Reading forward won't get us anywhere, we need to go backwards.
1467 // Seek back to 0 (the client will reopen the stream) and then
1468 // read forward.
1469 NS_WARNING("Can't seek backwards, so seeking to 0");
1470 desiredOffset = 0;
1471 // Flush cached blocks out, since if this is a live stream
1472 // the cached data may be completely different next time we
1473 // read it. We have to assume that live streams don't
1474 // advertise themselves as being seekable...
1475 ReleaseStreamBlocks(aLock, stream);
1476 } else {
1477 // otherwise reading forward is looking good, so just stay where we
1478 // are and don't trigger a channel seek!
1479 desiredOffset = channelOffset;
1483 // Figure out if we should be reading data now or not. It's amazing
1484 // how complex this is, but each decision is simple enough.
1485 bool enableReading;
1486 if (stream->mStreamLength >= 0 && dataOffset >= stream->mStreamLength) {
1487 // We want data at the end of the stream, where there's nothing to
1488 // read. We don't want to try to read if we're suspended, because that
1489 // might create a new channel and seek unnecessarily (and incorrectly,
1490 // since HTTP doesn't allow seeking to the actual EOF), and we don't want
1491 // to suspend if we're not suspended and already reading at the end of
1492 // the stream, since there just might be more data than the server
1493 // advertised with Content-Length, and we may as well keep reading.
1494 // But we don't want to seek to the end of the stream if we're not
1495 // already there.
1496 LOG("Stream %p at end of stream", stream);
1497 enableReading =
1498 !stream->mCacheSuspended && stream->mStreamLength == channelOffset;
1499 } else if (desiredOffset < stream->mStreamOffset) {
1500 // We're reading to try to catch up to where the current stream
1501 // reader wants to be. Better not stop.
1502 LOG("Stream %p catching up", stream);
1503 enableReading = true;
1504 } else if (desiredOffset < stream->mStreamOffset + BLOCK_SIZE) {
1505 // The stream reader is waiting for us, or nearly so. Better feed it.
1506 LOG("Stream %p feeding reader", stream);
1507 enableReading = true;
1508 } else if (!stream->mIsTransportSeekable &&
1509 nonSeekableReadaheadBlockCount >=
1510 maxBlocks * NONSEEKABLE_READAHEAD_MAX) {
1511 // This stream is not seekable and there are already too many blocks
1512 // being cached for readahead for nonseekable streams (which we can't
1513 // free). So stop reading ahead now.
1514 LOG("Stream %p throttling non-seekable readahead", stream);
1515 enableReading = false;
1516 } else if (mIndex.Length() > uint32_t(maxBlocks)) {
1517 // We're in the process of bringing the cache size back to the
1518 // desired limit, so don't bring in more data yet
1519 LOG("Stream %p throttling to reduce cache size", stream);
1520 enableReading = false;
1521 } else {
1522 TimeDuration predictedNewDataUse =
1523 PredictNextUseForIncomingData(aLock, stream);
1525 if (stream->mThrottleReadahead && stream->mCacheSuspended &&
1526 predictedNewDataUse.ToSeconds() > MediaCache::ResumeThreshold()) {
1527 // Don't need data for a while, so don't bother waking up the stream
1528 LOG("Stream %p avoiding wakeup since more data is not needed", stream);
1529 enableReading = false;
1530 } else if (stream->mThrottleReadahead &&
1531 predictedNewDataUse.ToSeconds() >
1532 MediaCache::ReadaheadLimit()) {
1533 // Don't read ahead more than this much
1534 LOG("Stream %p throttling to avoid reading ahead too far", stream);
1535 enableReading = false;
1536 } else if (aFreeBlockCount > 0) {
1537 // Free blocks in the cache, so keep reading
1538 LOG("Stream %p reading since there are free blocks", stream);
1539 enableReading = true;
1540 } else if (latestNextUse <= TimeDuration(0)) {
1541 // No reusable blocks, so can't read anything
1542 LOG("Stream %p throttling due to no reusable blocks", stream);
1543 enableReading = false;
1544 } else {
1545 // Read ahead if the data we expect to read is more valuable than
1546 // the least valuable block in the main part of the cache
1547 LOG("Stream %p predict next data in %f, current worst block is %f",
1548 stream, predictedNewDataUse.ToSeconds(), latestNextUse.ToSeconds());
1549 enableReading = predictedNewDataUse < latestNextUse;
1553 if (enableReading) {
1554 for (uint32_t j = 0; j < i; ++j) {
1555 MediaCacheStream* other = mStreams[j];
1556 if (other->mResourceID == stream->mResourceID && !other->mClosed &&
1557 !other->mClientSuspended && !other->mChannelEnded &&
1558 OffsetToBlockIndexUnchecked(other->mSeekTarget != -1
1559 ? other->mSeekTarget
1560 : other->mChannelOffset) ==
1561 OffsetToBlockIndexUnchecked(desiredOffset)) {
1562 // This block is already going to be read by the other stream.
1563 // So don't try to read it from this stream as well.
1564 enableReading = false;
1565 LOG("Stream %p waiting on same block (%" PRId32 ") from stream %p",
1566 stream, OffsetToBlockIndexUnchecked(desiredOffset), other);
1567 break;
1572 if (channelOffset != desiredOffset && enableReading) {
1573 // We need to seek now.
1574 NS_ASSERTION(stream->mIsTransportSeekable || desiredOffset == 0,
1575 "Trying to seek in a non-seekable stream!");
1576 // Round seek offset down to the start of the block. This is essential
1577 // because we don't want to think we have part of a block already
1578 // in mPartialBlockBuffer.
1579 stream->mSeekTarget =
1580 OffsetToBlockIndexUnchecked(desiredOffset) * BLOCK_SIZE;
1581 aActions[i].mTag = StreamAction::SEEK;
1582 aActions[i].mResume = stream->mCacheSuspended;
1583 aActions[i].mSeekTarget = stream->mSeekTarget;
1584 } else if (enableReading && stream->mCacheSuspended) {
1585 aActions[i].mTag = StreamAction::RESUME;
1586 } else if (!enableReading && !stream->mCacheSuspended) {
1587 aActions[i].mTag = StreamAction::SUSPEND;
1589 LOG("Stream %p, mCacheSuspended=%d, enableReading=%d, action=%s", stream,
1590 stream->mCacheSuspended, enableReading,
1591 aActions[i].mTag == StreamAction::SEEK ? "SEEK"
1592 : aActions[i].mTag == StreamAction::RESUME ? "RESUME"
1593 : aActions[i].mTag == StreamAction::SUSPEND ? "SUSPEND"
1594 : "NONE");
1598 void MediaCache::QueueUpdate(AutoLock&) {
1599 // Queuing an update while we're in an update raises a high risk of
1600 // triggering endless events
1601 NS_ASSERTION(!mInUpdate, "Queuing an update while we're in an update");
1602 if (mUpdateQueued) {
1603 return;
1605 mUpdateQueued = true;
1606 sThread->Dispatch(NS_NewRunnableFunction(
1607 "MediaCache::QueueUpdate", [self = RefPtr<MediaCache>(this)]() mutable {
1608 self->Update();
1609 // Ensure MediaCache is deleted on the main thread.
1610 NS_ReleaseOnMainThread("UpdateEvent::mMediaCache", self.forget());
1611 }));
1614 void MediaCache::QueueSuspendedStatusUpdate(AutoLock&, int64_t aResourceID) {
1615 if (!mSuspendedStatusToNotify.Contains(aResourceID)) {
1616 mSuspendedStatusToNotify.AppendElement(aResourceID);
1620 #ifdef DEBUG_VERIFY_CACHE
1621 void MediaCache::Verify(AutoLock&) {
1622 mFreeBlocks.Verify();
1623 for (uint32_t i = 0; i < mStreams.Length(); ++i) {
1624 MediaCacheStream* stream = mStreams[i];
1625 stream->mReadaheadBlocks.Verify();
1626 stream->mPlayedBlocks.Verify();
1627 stream->mMetadataBlocks.Verify();
1629 // Verify that the readahead blocks are listed in stream block order
1630 int32_t block = stream->mReadaheadBlocks.GetFirstBlock();
1631 int32_t lastStreamBlock = -1;
1632 while (block >= 0) {
1633 uint32_t j = 0;
1634 while (mIndex[block].mOwners[j].mStream != stream) {
1635 ++j;
1637 int32_t nextStreamBlock = int32_t(mIndex[block].mOwners[j].mStreamBlock);
1638 NS_ASSERTION(lastStreamBlock < nextStreamBlock,
1639 "Blocks not increasing in readahead stream");
1640 lastStreamBlock = nextStreamBlock;
1641 block = stream->mReadaheadBlocks.GetNextBlock(block);
1645 #endif
1647 void MediaCache::InsertReadaheadBlock(AutoLock& aLock, BlockOwner* aBlockOwner,
1648 int32_t aBlockIndex) {
1649 // Find the last block whose stream block is before aBlockIndex's
1650 // stream block, and insert after it
1651 MediaCacheStream* stream = aBlockOwner->mStream;
1652 int32_t readaheadIndex = stream->mReadaheadBlocks.GetLastBlock();
1653 while (readaheadIndex >= 0) {
1654 BlockOwner* bo = GetBlockOwner(aLock, readaheadIndex, stream);
1655 NS_ASSERTION(bo, "stream must own its blocks");
1656 if (bo->mStreamBlock < aBlockOwner->mStreamBlock) {
1657 stream->mReadaheadBlocks.AddAfter(aBlockIndex, readaheadIndex);
1658 return;
1660 NS_ASSERTION(bo->mStreamBlock > aBlockOwner->mStreamBlock,
1661 "Duplicated blocks??");
1662 readaheadIndex = stream->mReadaheadBlocks.GetPrevBlock(readaheadIndex);
1665 stream->mReadaheadBlocks.AddFirstBlock(aBlockIndex);
1666 Verify(aLock);
1669 void MediaCache::AllocateAndWriteBlock(AutoLock& aLock,
1670 MediaCacheStream* aStream,
1671 int32_t aStreamBlockIndex,
1672 Span<const uint8_t> aData1,
1673 Span<const uint8_t> aData2) {
1674 MOZ_ASSERT(sThread->IsOnCurrentThread());
1676 // Remove all cached copies of this block
1677 ResourceStreamIterator iter(this, aStream->mResourceID);
1678 while (MediaCacheStream* stream = iter.Next(aLock)) {
1679 while (aStreamBlockIndex >= int32_t(stream->mBlocks.Length())) {
1680 stream->mBlocks.AppendElement(-1);
1682 if (stream->mBlocks[aStreamBlockIndex] >= 0) {
1683 // We no longer want to own this block
1684 int32_t globalBlockIndex = stream->mBlocks[aStreamBlockIndex];
1685 LOG("Released block %d from stream %p block %d(%" PRId64 ")",
1686 globalBlockIndex, stream, aStreamBlockIndex,
1687 aStreamBlockIndex * BLOCK_SIZE);
1688 RemoveBlockOwner(aLock, globalBlockIndex, stream);
1692 // Extend the mBlocks array as necessary
1694 TimeStamp now = TimeStamp::Now();
1695 int32_t blockIndex =
1696 FindBlockForIncomingData(aLock, now, aStream, aStreamBlockIndex);
1697 if (blockIndex >= 0) {
1698 FreeBlock(aLock, blockIndex);
1700 Block* block = &mIndex[blockIndex];
1701 LOG("Allocated block %d to stream %p block %d(%" PRId64 ")", blockIndex,
1702 aStream, aStreamBlockIndex, aStreamBlockIndex * BLOCK_SIZE);
1704 ResourceStreamIterator iter(this, aStream->mResourceID);
1705 while (MediaCacheStream* stream = iter.Next(aLock)) {
1706 BlockOwner* bo = block->mOwners.AppendElement();
1707 if (!bo) {
1708 // Roll back mOwners if any allocation fails.
1709 block->mOwners.Clear();
1710 return;
1712 bo->mStream = stream;
1715 if (block->mOwners.IsEmpty()) {
1716 // This happens when all streams with the resource id are closed. We can
1717 // just return here now and discard the data.
1718 return;
1721 // Tell each stream using this resource about the new block.
1722 for (auto& bo : block->mOwners) {
1723 bo.mStreamBlock = aStreamBlockIndex;
1724 bo.mLastUseTime = now;
1725 bo.mStream->mBlocks[aStreamBlockIndex] = blockIndex;
1726 if (aStreamBlockIndex * BLOCK_SIZE < bo.mStream->mStreamOffset) {
1727 bo.mClass = PLAYED_BLOCK;
1728 // This must be the most-recently-used block, since we
1729 // marked it as used now (which may be slightly bogus, but we'll
1730 // treat it as used for simplicity).
1731 GetListForBlock(aLock, &bo)->AddFirstBlock(blockIndex);
1732 Verify(aLock);
1733 } else {
1734 // This may not be the latest readahead block, although it usually
1735 // will be. We may have to scan for the right place to insert
1736 // the block in the list.
1737 bo.mClass = READAHEAD_BLOCK;
1738 InsertReadaheadBlock(aLock, &bo, blockIndex);
1742 // Invariant: block->mOwners.IsEmpty() iff we can find an entry
1743 // in mFreeBlocks for a given blockIndex.
1744 MOZ_DIAGNOSTIC_ASSERT(!block->mOwners.IsEmpty());
1745 mFreeBlocks.RemoveBlock(blockIndex);
1747 nsresult rv = mBlockCache->WriteBlock(blockIndex, aData1, aData2);
1748 if (NS_FAILED(rv)) {
1749 LOG("Released block %d from stream %p block %d(%" PRId64 ")", blockIndex,
1750 aStream, aStreamBlockIndex, aStreamBlockIndex * BLOCK_SIZE);
1751 FreeBlock(aLock, blockIndex);
1755 // Queue an Update since the cache state has changed (for example
1756 // we might want to stop loading because the cache is full)
1757 QueueUpdate(aLock);
1760 void MediaCache::OpenStream(AutoLock& aLock, MediaCacheStream* aStream,
1761 bool aIsClone) {
1762 LOG("Stream %p opened, aIsClone=%d, mCacheSuspended=%d, "
1763 "mDidNotifyDataEnded=%d",
1764 aStream, aIsClone, aStream->mCacheSuspended,
1765 aStream->mDidNotifyDataEnded);
1766 mStreams.AppendElement(aStream);
1768 // A cloned stream should've got the ID from its original.
1769 if (!aIsClone) {
1770 MOZ_ASSERT(aStream->mResourceID == 0, "mResourceID has been initialized.");
1771 aStream->mResourceID = AllocateResourceID(aLock);
1774 // We should have a valid ID now no matter it is cloned or not.
1775 MOZ_ASSERT(aStream->mResourceID > 0, "mResourceID is invalid");
1777 // Queue an update since a new stream has been opened.
1778 QueueUpdate(aLock);
1781 void MediaCache::ReleaseStream(AutoLock&, MediaCacheStream* aStream) {
1782 MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
1783 LOG("Stream %p closed", aStream);
1784 mStreams.RemoveElement(aStream);
1785 // The caller needs to call QueueUpdate() to re-run Update().
1788 void MediaCache::ReleaseStreamBlocks(AutoLock& aLock,
1789 MediaCacheStream* aStream) {
1790 // XXX scanning the entire stream doesn't seem great, if not much of it
1791 // is cached, but the only easy alternative is to scan the entire cache
1792 // which isn't better
1793 uint32_t length = aStream->mBlocks.Length();
1794 for (uint32_t i = 0; i < length; ++i) {
1795 int32_t blockIndex = aStream->mBlocks[i];
1796 if (blockIndex >= 0) {
1797 LOG("Released block %d from stream %p block %d(%" PRId64 ")", blockIndex,
1798 aStream, i, i * BLOCK_SIZE);
1799 RemoveBlockOwner(aLock, blockIndex, aStream);
1804 void MediaCache::Truncate() {
1805 uint32_t end;
1806 for (end = mIndex.Length(); end > 0; --end) {
1807 if (!IsBlockFree(end - 1)) break;
1808 mFreeBlocks.RemoveBlock(end - 1);
1811 if (end < mIndex.Length()) {
1812 mIndex.TruncateLength(end);
1813 // XXX We could truncate the cache file here, but we don't seem
1814 // to have a cross-platform API for doing that. At least when all
1815 // streams are closed we shut down the cache, which erases the
1816 // file at that point.
1820 void MediaCache::NoteBlockUsage(AutoLock& aLock, MediaCacheStream* aStream,
1821 int32_t aBlockIndex, int64_t aStreamOffset,
1822 MediaCacheStream::ReadMode aMode,
1823 TimeStamp aNow) {
1824 if (aBlockIndex < 0) {
1825 // this block is not in the cache yet
1826 return;
1829 BlockOwner* bo = GetBlockOwner(aLock, aBlockIndex, aStream);
1830 if (!bo) {
1831 // this block is not in the cache yet
1832 return;
1835 // The following check has to be <= because the stream offset has
1836 // not yet been updated for the data read from this block
1837 NS_ASSERTION(bo->mStreamBlock * BLOCK_SIZE <= aStreamOffset,
1838 "Using a block that's behind the read position?");
1840 GetListForBlock(aLock, bo)->RemoveBlock(aBlockIndex);
1841 bo->mClass =
1842 (aMode == MediaCacheStream::MODE_METADATA || bo->mClass == METADATA_BLOCK)
1843 ? METADATA_BLOCK
1844 : PLAYED_BLOCK;
1845 // Since this is just being used now, it can definitely be at the front
1846 // of mMetadataBlocks or mPlayedBlocks
1847 GetListForBlock(aLock, bo)->AddFirstBlock(aBlockIndex);
1848 bo->mLastUseTime = aNow;
1849 Verify(aLock);
1852 void MediaCache::NoteSeek(AutoLock& aLock, MediaCacheStream* aStream,
1853 int64_t aOldOffset) {
1854 if (aOldOffset < aStream->mStreamOffset) {
1855 // We seeked forward. Convert blocks from readahead to played.
1856 // Any readahead block that intersects the seeked-over range must
1857 // be converted.
1858 int32_t blockIndex = OffsetToBlockIndex(aOldOffset);
1859 if (blockIndex < 0) {
1860 return;
1862 int32_t endIndex =
1863 std::min(OffsetToBlockIndex(aStream->mStreamOffset + (BLOCK_SIZE - 1)),
1864 int32_t(aStream->mBlocks.Length()));
1865 if (endIndex < 0) {
1866 return;
1868 TimeStamp now = TimeStamp::Now();
1869 while (blockIndex < endIndex) {
1870 int32_t cacheBlockIndex = aStream->mBlocks[blockIndex];
1871 if (cacheBlockIndex >= 0) {
1872 // Marking the block used may not be exactly what we want but
1873 // it's simple
1874 NoteBlockUsage(aLock, aStream, cacheBlockIndex, aStream->mStreamOffset,
1875 MediaCacheStream::MODE_PLAYBACK, now);
1877 ++blockIndex;
1879 } else {
1880 // We seeked backward. Convert from played to readahead.
1881 // Any played block that is entirely after the start of the seeked-over
1882 // range must be converted.
1883 int32_t blockIndex =
1884 OffsetToBlockIndex(aStream->mStreamOffset + (BLOCK_SIZE - 1));
1885 if (blockIndex < 0) {
1886 return;
1888 int32_t endIndex =
1889 std::min(OffsetToBlockIndex(aOldOffset + (BLOCK_SIZE - 1)),
1890 int32_t(aStream->mBlocks.Length()));
1891 if (endIndex < 0) {
1892 return;
1894 while (blockIndex < endIndex) {
1895 MOZ_ASSERT(endIndex > 0);
1896 int32_t cacheBlockIndex = aStream->mBlocks[endIndex - 1];
1897 if (cacheBlockIndex >= 0) {
1898 BlockOwner* bo = GetBlockOwner(aLock, cacheBlockIndex, aStream);
1899 NS_ASSERTION(bo, "Stream doesn't own its blocks?");
1900 if (bo->mClass == PLAYED_BLOCK) {
1901 aStream->mPlayedBlocks.RemoveBlock(cacheBlockIndex);
1902 bo->mClass = READAHEAD_BLOCK;
1903 // Adding this as the first block is sure to be OK since
1904 // this must currently be the earliest readahead block
1905 // (that's why we're proceeding backwards from the end of
1906 // the seeked range to the start)
1907 aStream->mReadaheadBlocks.AddFirstBlock(cacheBlockIndex);
1908 Verify(aLock);
1911 --endIndex;
1916 void MediaCacheStream::NotifyLoadID(uint32_t aLoadID) {
1917 MOZ_ASSERT(aLoadID > 0);
1919 nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
1920 "MediaCacheStream::NotifyLoadID",
1921 [client = RefPtr<ChannelMediaResource>(mClient), this, aLoadID]() {
1922 AutoLock lock(mMediaCache->Monitor());
1923 mLoadID = aLoadID;
1925 OwnerThread()->Dispatch(r.forget());
1928 void MediaCacheStream::NotifyDataStartedInternal(uint32_t aLoadID,
1929 int64_t aOffset,
1930 bool aSeekable,
1931 int64_t aLength) {
1932 MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
1933 MOZ_ASSERT(aLoadID > 0);
1934 LOG("Stream %p DataStarted: %" PRId64 " aLoadID=%u aLength=%" PRId64, this,
1935 aOffset, aLoadID, aLength);
1937 AutoLock lock(mMediaCache->Monitor());
1938 NS_WARNING_ASSERTION(aOffset == mSeekTarget || aOffset == mChannelOffset,
1939 "Server is giving us unexpected offset");
1940 MOZ_ASSERT(aOffset >= 0);
1941 if (aLength >= 0) {
1942 mStreamLength = aLength;
1944 mChannelOffset = aOffset;
1945 if (mStreamLength >= 0) {
1946 // If we started reading at a certain offset, then for sure
1947 // the stream is at least that long.
1948 mStreamLength = std::max(mStreamLength, mChannelOffset);
1950 mLoadID = aLoadID;
1952 MOZ_ASSERT(aOffset == 0 || aSeekable,
1953 "channel offset must be zero when we become non-seekable");
1954 mIsTransportSeekable = aSeekable;
1955 // Queue an Update since we may change our strategy for dealing
1956 // with this stream
1957 mMediaCache->QueueUpdate(lock);
1959 // Reset mSeekTarget since the seek is completed so MediaCache::Update() will
1960 // make decisions based on mChannelOffset instead of mSeekTarget.
1961 mSeekTarget = -1;
1963 // Reset these flags since a new load has begun.
1964 mChannelEnded = false;
1965 mDidNotifyDataEnded = false;
1967 UpdateDownloadStatistics(lock);
1970 void MediaCacheStream::NotifyDataStarted(uint32_t aLoadID, int64_t aOffset,
1971 bool aSeekable, int64_t aLength) {
1972 MOZ_ASSERT(NS_IsMainThread());
1973 MOZ_ASSERT(aLoadID > 0);
1975 nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
1976 "MediaCacheStream::NotifyDataStarted",
1977 [=, client = RefPtr<ChannelMediaResource>(mClient)]() {
1978 NotifyDataStartedInternal(aLoadID, aOffset, aSeekable, aLength);
1980 OwnerThread()->Dispatch(r.forget());
1983 void MediaCacheStream::NotifyDataReceived(uint32_t aLoadID, uint32_t aCount,
1984 const uint8_t* aData) {
1985 MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
1986 MOZ_ASSERT(aLoadID > 0);
1988 AutoLock lock(mMediaCache->Monitor());
1989 if (mClosed) {
1990 // Nothing to do if the stream is closed.
1991 return;
1994 LOG("Stream %p DataReceived at %" PRId64 " count=%u aLoadID=%u", this,
1995 mChannelOffset, aCount, aLoadID);
1997 if (mLoadID != aLoadID) {
1998 // mChannelOffset is updated to a new position when loading a new channel.
1999 // We should discard the data coming from the old channel so it won't be
2000 // stored to the wrong positoin.
2001 return;
2004 mDownloadStatistics.AddBytes(aCount);
2006 // True if we commit any blocks to the cache.
2007 bool cacheUpdated = false;
2009 auto source = Span<const uint8_t>(aData, aCount);
2011 // We process the data one block (or part of a block) at a time
2012 while (!source.IsEmpty()) {
2013 // The data we've collected so far in the partial block.
2014 auto partial = Span<const uint8_t>(mPartialBlockBuffer.get(),
2015 OffsetInBlock(mChannelOffset));
2017 // The number of bytes needed to complete the partial block.
2018 size_t remaining = BLOCK_SIZE - partial.Length();
2020 if (source.Length() >= remaining) {
2021 // We have a whole block now to write it out.
2022 mMediaCache->AllocateAndWriteBlock(
2023 lock, this, OffsetToBlockIndexUnchecked(mChannelOffset), partial,
2024 source.First(remaining));
2025 source = source.From(remaining);
2026 mChannelOffset += remaining;
2027 cacheUpdated = true;
2028 } else {
2029 // The buffer to be filled in the partial block.
2030 auto buf = Span<uint8_t>(mPartialBlockBuffer.get() + partial.Length(),
2031 remaining);
2032 memcpy(buf.Elements(), source.Elements(), source.Length());
2033 mChannelOffset += source.Length();
2034 break;
2038 MediaCache::ResourceStreamIterator iter(mMediaCache, mResourceID);
2039 while (MediaCacheStream* stream = iter.Next(lock)) {
2040 if (stream->mStreamLength >= 0) {
2041 // The stream is at least as long as what we've read
2042 stream->mStreamLength = std::max(stream->mStreamLength, mChannelOffset);
2044 stream->mClient->CacheClientNotifyDataReceived();
2047 // XXX it would be fairly easy to optimize things a lot more to
2048 // avoid waking up reader threads unnecessarily
2049 if (cacheUpdated) {
2050 // Wake up the reader who is waiting for the committed blocks.
2051 lock.NotifyAll();
2055 void MediaCacheStream::FlushPartialBlockInternal(AutoLock& aLock,
2056 bool aNotifyAll) {
2057 MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
2059 int32_t blockIndex = OffsetToBlockIndexUnchecked(mChannelOffset);
2060 int32_t blockOffset = OffsetInBlock(mChannelOffset);
2061 if (blockOffset > 0) {
2062 LOG("Stream %p writing partial block: [%d] bytes; "
2063 "mStreamOffset [%" PRId64 "] mChannelOffset[%" PRId64
2064 "] mStreamLength [%" PRId64 "] notifying: [%s]",
2065 this, blockOffset, mStreamOffset, mChannelOffset, mStreamLength,
2066 aNotifyAll ? "yes" : "no");
2068 // Write back the partial block
2069 memset(mPartialBlockBuffer.get() + blockOffset, 0,
2070 BLOCK_SIZE - blockOffset);
2071 auto data = Span<const uint8_t>(mPartialBlockBuffer.get(), BLOCK_SIZE);
2072 mMediaCache->AllocateAndWriteBlock(aLock, this, blockIndex, data);
2075 // |mChannelOffset == 0| means download ends with no bytes received.
2076 // We should also wake up those readers who are waiting for data
2077 // that will never come.
2078 if ((blockOffset > 0 || mChannelOffset == 0) && aNotifyAll) {
2079 // Wake up readers who may be waiting for this data
2080 aLock.NotifyAll();
2084 void MediaCacheStream::UpdateDownloadStatistics(AutoLock&) {
2085 if (mChannelEnded || mClientSuspended) {
2086 mDownloadStatistics.Stop();
2087 } else {
2088 mDownloadStatistics.Start();
2092 void MediaCacheStream::NotifyDataEndedInternal(uint32_t aLoadID,
2093 nsresult aStatus) {
2094 MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
2095 AutoLock lock(mMediaCache->Monitor());
2097 if (mClosed || aLoadID != mLoadID) {
2098 // Nothing to do if the stream is closed or a new load has begun.
2099 return;
2102 // It is prudent to update channel/cache status before calling
2103 // CacheClientNotifyDataEnded() which will read |mChannelEnded|.
2104 mChannelEnded = true;
2105 mMediaCache->QueueUpdate(lock);
2107 UpdateDownloadStatistics(lock);
2109 if (NS_FAILED(aStatus)) {
2110 // Notify the client about this network error.
2111 mDidNotifyDataEnded = true;
2112 mNotifyDataEndedStatus = aStatus;
2113 mClient->CacheClientNotifyDataEnded(aStatus);
2114 // Wake up the readers so they can fail gracefully.
2115 lock.NotifyAll();
2116 return;
2119 // Note we don't flush the partial block when download ends abnormally for
2120 // the padding zeros will give wrong data to other streams.
2121 FlushPartialBlockInternal(lock, true);
2123 MediaCache::ResourceStreamIterator iter(mMediaCache, mResourceID);
2124 while (MediaCacheStream* stream = iter.Next(lock)) {
2125 // We read the whole stream, so remember the true length
2126 stream->mStreamLength = mChannelOffset;
2127 if (!stream->mDidNotifyDataEnded) {
2128 stream->mDidNotifyDataEnded = true;
2129 stream->mNotifyDataEndedStatus = aStatus;
2130 stream->mClient->CacheClientNotifyDataEnded(aStatus);
2135 void MediaCacheStream::NotifyDataEnded(uint32_t aLoadID, nsresult aStatus) {
2136 MOZ_ASSERT(NS_IsMainThread());
2137 MOZ_ASSERT(aLoadID > 0);
2139 RefPtr<ChannelMediaResource> client = mClient;
2140 nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
2141 "MediaCacheStream::NotifyDataEnded", [client, this, aLoadID, aStatus]() {
2142 NotifyDataEndedInternal(aLoadID, aStatus);
2144 OwnerThread()->Dispatch(r.forget());
2147 void MediaCacheStream::NotifyClientSuspended(bool aSuspended) {
2148 MOZ_ASSERT(NS_IsMainThread());
2150 RefPtr<ChannelMediaResource> client = mClient;
2151 nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
2152 "MediaCacheStream::NotifyClientSuspended", [client, this, aSuspended]() {
2153 AutoLock lock(mMediaCache->Monitor());
2154 if (!mClosed && mClientSuspended != aSuspended) {
2155 mClientSuspended = aSuspended;
2156 // mClientSuspended changes the decision of reading streams.
2157 mMediaCache->QueueUpdate(lock);
2158 UpdateDownloadStatistics(lock);
2159 if (mClientSuspended) {
2160 // Download is suspended. Wake up the readers that might be able to
2161 // get data from the partial block.
2162 lock.NotifyAll();
2166 OwnerThread()->Dispatch(r.forget());
2169 void MediaCacheStream::NotifyResume() {
2170 MOZ_ASSERT(NS_IsMainThread());
2172 nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
2173 "MediaCacheStream::NotifyResume",
2174 [this, client = RefPtr<ChannelMediaResource>(mClient)]() {
2175 AutoLock lock(mMediaCache->Monitor());
2176 if (mClosed) {
2177 return;
2179 // Don't resume download if we are already at the end of the stream for
2180 // seek will fail and be wasted anyway.
2181 int64_t offset = mSeekTarget != -1 ? mSeekTarget : mChannelOffset;
2182 if (mStreamLength < 0 || offset < mStreamLength) {
2183 mClient->CacheClientSeek(offset, false);
2184 // DownloadResumed() will be notified when a new channel is opened.
2186 // The channel remains dead. If we want to read some other data in the
2187 // future, CacheClientSeek() will be called to reopen the channel.
2189 OwnerThread()->Dispatch(r.forget());
2192 MediaCacheStream::~MediaCacheStream() {
2193 MOZ_ASSERT(NS_IsMainThread(), "Only call on main thread");
2194 MOZ_ASSERT(!mPinCount, "Unbalanced Pin");
2195 MOZ_ASSERT(!mMediaCache || mClosed);
2197 uint32_t lengthKb = uint32_t(std::min(
2198 std::max(mStreamLength, int64_t(0)) / 1024, int64_t(UINT32_MAX)));
2199 LOG("MediaCacheStream::~MediaCacheStream(this=%p) "
2200 "MEDIACACHESTREAM_LENGTH_KB=%" PRIu32,
2201 this, lengthKb);
2204 bool MediaCacheStream::AreAllStreamsForResourceSuspended(AutoLock& aLock) {
2205 MOZ_ASSERT(!NS_IsMainThread());
2207 MediaCache::ResourceStreamIterator iter(mMediaCache, mResourceID);
2208 // Look for a stream that's able to read the data we need
2209 int64_t dataOffset = -1;
2210 while (MediaCacheStream* stream = iter.Next(aLock)) {
2211 if (stream->mCacheSuspended || stream->mChannelEnded || stream->mClosed) {
2212 continue;
2214 if (dataOffset < 0) {
2215 dataOffset = GetCachedDataEndInternal(aLock, mStreamOffset);
2217 // Ignore streams that are reading beyond the data we need
2218 if (stream->mChannelOffset > dataOffset) {
2219 continue;
2221 return false;
2224 return true;
2227 RefPtr<GenericPromise> MediaCacheStream::Close() {
2228 MOZ_ASSERT(NS_IsMainThread());
2229 if (!mMediaCache) {
2230 return GenericPromise::CreateAndResolve(true, __func__);
2233 return InvokeAsync(OwnerThread(), "MediaCacheStream::Close",
2234 [this, client = RefPtr<ChannelMediaResource>(mClient)] {
2235 AutoLock lock(mMediaCache->Monitor());
2236 CloseInternal(lock);
2237 return GenericPromise::CreateAndResolve(true, __func__);
2241 void MediaCacheStream::CloseInternal(AutoLock& aLock) {
2242 MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
2244 if (mClosed) {
2245 return;
2248 // Closing a stream will change the return value of
2249 // MediaCacheStream::AreAllStreamsForResourceSuspended as well as
2250 // ChannelMediaResource::IsSuspendedByCache. Let's notify it.
2251 mMediaCache->QueueSuspendedStatusUpdate(aLock, mResourceID);
2253 mClosed = true;
2254 mMediaCache->ReleaseStreamBlocks(aLock, this);
2255 mMediaCache->ReleaseStream(aLock, this);
2256 // Wake up any blocked readers
2257 aLock.NotifyAll();
2259 // Queue an Update since we may have created more free space.
2260 mMediaCache->QueueUpdate(aLock);
2263 void MediaCacheStream::Pin() {
2264 MOZ_ASSERT(!NS_IsMainThread());
2265 AutoLock lock(mMediaCache->Monitor());
2266 ++mPinCount;
2267 // Queue an Update since we may no longer want to read more into the
2268 // cache, if this stream's block have become non-evictable
2269 mMediaCache->QueueUpdate(lock);
2272 void MediaCacheStream::Unpin() {
2273 MOZ_ASSERT(!NS_IsMainThread());
2274 AutoLock lock(mMediaCache->Monitor());
2275 NS_ASSERTION(mPinCount > 0, "Unbalanced Unpin");
2276 --mPinCount;
2277 // Queue an Update since we may be able to read more into the
2278 // cache, if this stream's block have become evictable
2279 mMediaCache->QueueUpdate(lock);
2282 int64_t MediaCacheStream::GetLength() const {
2283 MOZ_ASSERT(!NS_IsMainThread());
2284 AutoLock lock(mMediaCache->Monitor());
2285 return mStreamLength;
2288 MediaCacheStream::LengthAndOffset MediaCacheStream::GetLengthAndOffset() const {
2289 MOZ_ASSERT(NS_IsMainThread());
2290 AutoLock lock(mMediaCache->Monitor());
2291 return {mStreamLength, mChannelOffset};
2294 int64_t MediaCacheStream::GetNextCachedData(int64_t aOffset) {
2295 MOZ_ASSERT(!NS_IsMainThread());
2296 AutoLock lock(mMediaCache->Monitor());
2297 return GetNextCachedDataInternal(lock, aOffset);
2300 int64_t MediaCacheStream::GetCachedDataEnd(int64_t aOffset) {
2301 MOZ_ASSERT(!NS_IsMainThread());
2302 AutoLock lock(mMediaCache->Monitor());
2303 return GetCachedDataEndInternal(lock, aOffset);
2306 bool MediaCacheStream::IsDataCachedToEndOfStream(int64_t aOffset) {
2307 MOZ_ASSERT(!NS_IsMainThread());
2308 AutoLock lock(mMediaCache->Monitor());
2309 if (mStreamLength < 0) return false;
2310 return GetCachedDataEndInternal(lock, aOffset) >= mStreamLength;
2313 int64_t MediaCacheStream::GetCachedDataEndInternal(AutoLock&, int64_t aOffset) {
2314 int32_t blockIndex = OffsetToBlockIndex(aOffset);
2315 if (blockIndex < 0) {
2316 return aOffset;
2318 while (size_t(blockIndex) < mBlocks.Length() && mBlocks[blockIndex] != -1) {
2319 ++blockIndex;
2321 int64_t result = blockIndex * BLOCK_SIZE;
2322 if (blockIndex == OffsetToBlockIndexUnchecked(mChannelOffset)) {
2323 // The block containing mChannelOffset may be partially read but not
2324 // yet committed to the main cache
2325 result = mChannelOffset;
2327 if (mStreamLength >= 0) {
2328 // The last block in the cache may only be partially valid, so limit
2329 // the cached range to the stream length
2330 result = std::min(result, mStreamLength);
2332 return std::max(result, aOffset);
2335 int64_t MediaCacheStream::GetNextCachedDataInternal(AutoLock&,
2336 int64_t aOffset) {
2337 if (aOffset == mStreamLength) return -1;
2339 int32_t startBlockIndex = OffsetToBlockIndex(aOffset);
2340 if (startBlockIndex < 0) {
2341 return -1;
2343 int32_t channelBlockIndex = OffsetToBlockIndexUnchecked(mChannelOffset);
2345 if (startBlockIndex == channelBlockIndex && aOffset < mChannelOffset) {
2346 // The block containing mChannelOffset is partially read, but not
2347 // yet committed to the main cache. aOffset lies in the partially
2348 // read portion, thus it is effectively cached.
2349 return aOffset;
2352 if (size_t(startBlockIndex) >= mBlocks.Length()) return -1;
2354 // Is the current block cached?
2355 if (mBlocks[startBlockIndex] != -1) return aOffset;
2357 // Count the number of uncached blocks
2358 bool hasPartialBlock = OffsetInBlock(mChannelOffset) != 0;
2359 int32_t blockIndex = startBlockIndex + 1;
2360 while (true) {
2361 if ((hasPartialBlock && blockIndex == channelBlockIndex) ||
2362 (size_t(blockIndex) < mBlocks.Length() && mBlocks[blockIndex] != -1)) {
2363 // We at the incoming channel block, which has has data in it,
2364 // or are we at a cached block. Return index of block start.
2365 return blockIndex * BLOCK_SIZE;
2368 // No more cached blocks?
2369 if (size_t(blockIndex) >= mBlocks.Length()) return -1;
2371 ++blockIndex;
2374 MOZ_ASSERT_UNREACHABLE("Should return in loop");
2375 return -1;
2378 void MediaCacheStream::SetReadMode(ReadMode aMode) {
2379 nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
2380 "MediaCacheStream::SetReadMode",
2381 [this, client = RefPtr<ChannelMediaResource>(mClient), aMode]() {
2382 AutoLock lock(mMediaCache->Monitor());
2383 if (!mClosed && mCurrentMode != aMode) {
2384 mCurrentMode = aMode;
2385 mMediaCache->QueueUpdate(lock);
2388 OwnerThread()->Dispatch(r.forget());
2391 void MediaCacheStream::SetPlaybackRate(uint32_t aBytesPerSecond) {
2392 MOZ_ASSERT(!NS_IsMainThread());
2393 MOZ_ASSERT(aBytesPerSecond > 0, "Zero playback rate not allowed");
2395 AutoLock lock(mMediaCache->Monitor());
2396 if (!mClosed && mPlaybackBytesPerSecond != aBytesPerSecond) {
2397 mPlaybackBytesPerSecond = aBytesPerSecond;
2398 mMediaCache->QueueUpdate(lock);
2402 nsresult MediaCacheStream::Seek(AutoLock& aLock, int64_t aOffset) {
2403 MOZ_ASSERT(!NS_IsMainThread());
2405 if (!IsOffsetAllowed(aOffset)) {
2406 return NS_ERROR_ILLEGAL_VALUE;
2408 if (mClosed) {
2409 return NS_ERROR_ABORT;
2412 int64_t oldOffset = mStreamOffset;
2413 mStreamOffset = aOffset;
2414 LOG("Stream %p Seek to %" PRId64, this, mStreamOffset);
2415 mMediaCache->NoteSeek(aLock, this, oldOffset);
2416 mMediaCache->QueueUpdate(aLock);
2417 return NS_OK;
2420 void MediaCacheStream::ThrottleReadahead(bool bThrottle) {
2421 MOZ_ASSERT(NS_IsMainThread());
2423 nsCOMPtr<nsIRunnable> r = NS_NewRunnableFunction(
2424 "MediaCacheStream::ThrottleReadahead",
2425 [client = RefPtr<ChannelMediaResource>(mClient), this, bThrottle]() {
2426 AutoLock lock(mMediaCache->Monitor());
2427 if (!mClosed && mThrottleReadahead != bThrottle) {
2428 LOGI("Stream %p ThrottleReadahead %d", this, bThrottle);
2429 mThrottleReadahead = bThrottle;
2430 mMediaCache->QueueUpdate(lock);
2433 OwnerThread()->Dispatch(r.forget());
2436 uint32_t MediaCacheStream::ReadPartialBlock(AutoLock&, int64_t aOffset,
2437 Span<char> aBuffer) {
2438 MOZ_ASSERT(IsOffsetAllowed(aOffset));
2440 if (OffsetToBlockIndexUnchecked(mChannelOffset) !=
2441 OffsetToBlockIndexUnchecked(aOffset) ||
2442 aOffset >= mChannelOffset) {
2443 // Not in the partial block or no data to read.
2444 return 0;
2447 auto source = Span<const uint8_t>(
2448 mPartialBlockBuffer.get() + OffsetInBlock(aOffset),
2449 OffsetInBlock(mChannelOffset) - OffsetInBlock(aOffset));
2450 // We have |source.Length() <= BLOCK_SIZE < INT32_MAX| to guarantee
2451 // that |bytesToRead| can fit into a uint32_t.
2452 uint32_t bytesToRead = std::min(aBuffer.Length(), source.Length());
2453 memcpy(aBuffer.Elements(), source.Elements(), bytesToRead);
2454 return bytesToRead;
2457 Result<uint32_t, nsresult> MediaCacheStream::ReadBlockFromCache(
2458 AutoLock& aLock, int64_t aOffset, Span<char> aBuffer,
2459 bool aNoteBlockUsage) {
2460 MOZ_ASSERT(IsOffsetAllowed(aOffset));
2462 // OffsetToBlockIndexUnchecked() is always non-negative.
2463 uint32_t index = OffsetToBlockIndexUnchecked(aOffset);
2464 int32_t cacheBlock = index < mBlocks.Length() ? mBlocks[index] : -1;
2465 if (cacheBlock < 0 || (mStreamLength >= 0 && aOffset >= mStreamLength)) {
2466 // Not in the cache.
2467 return 0;
2470 if (aBuffer.Length() > size_t(BLOCK_SIZE)) {
2471 // Clamp the buffer to avoid overflow below since we will read at most
2472 // BLOCK_SIZE bytes.
2473 aBuffer = aBuffer.First(BLOCK_SIZE);
2476 if (mStreamLength >= 0 &&
2477 int64_t(aBuffer.Length()) > mStreamLength - aOffset) {
2478 // Clamp reads to stream's length
2479 aBuffer = aBuffer.First(mStreamLength - aOffset);
2482 // |BLOCK_SIZE - OffsetInBlock(aOffset)| <= BLOCK_SIZE
2483 int32_t bytesToRead =
2484 std::min<int32_t>(BLOCK_SIZE - OffsetInBlock(aOffset), aBuffer.Length());
2485 int32_t bytesRead = 0;
2486 nsresult rv = mMediaCache->ReadCacheFile(
2487 aLock, cacheBlock * BLOCK_SIZE + OffsetInBlock(aOffset),
2488 aBuffer.Elements(), bytesToRead, &bytesRead);
2490 // Ensure |cacheBlock * BLOCK_SIZE + OffsetInBlock(aOffset)| won't overflow.
2491 static_assert(INT64_MAX >= BLOCK_SIZE * (uint32_t(INT32_MAX) + 1),
2492 "BLOCK_SIZE too large!");
2494 if (NS_FAILED(rv)) {
2495 nsCString name;
2496 GetErrorName(rv, name);
2497 LOGE("Stream %p ReadCacheFile failed, rv=%s", this, name.Data());
2498 return mozilla::Err(rv);
2501 if (aNoteBlockUsage) {
2502 mMediaCache->NoteBlockUsage(aLock, this, cacheBlock, aOffset, mCurrentMode,
2503 TimeStamp::Now());
2506 return bytesRead;
2509 nsresult MediaCacheStream::Read(AutoLock& aLock, char* aBuffer, uint32_t aCount,
2510 uint32_t* aBytes) {
2511 MOZ_ASSERT(!NS_IsMainThread());
2513 // Cache the offset in case it is changed again when we are waiting for the
2514 // monitor to be notified to avoid reading at the wrong position.
2515 auto streamOffset = mStreamOffset;
2517 // The buffer we are about to fill.
2518 auto buffer = Span<char>(aBuffer, aCount);
2520 // Read one block (or part of a block) at a time
2521 while (!buffer.IsEmpty()) {
2522 if (mClosed) {
2523 return NS_ERROR_ABORT;
2526 if (!IsOffsetAllowed(streamOffset)) {
2527 LOGE("Stream %p invalid offset=%" PRId64, this, streamOffset);
2528 return NS_ERROR_ILLEGAL_VALUE;
2531 if (mStreamLength >= 0 && streamOffset >= mStreamLength) {
2532 // Don't try to read beyond the end of the stream
2533 break;
2536 Result<uint32_t, nsresult> rv = ReadBlockFromCache(
2537 aLock, streamOffset, buffer, true /* aNoteBlockUsage */);
2538 if (rv.isErr()) {
2539 return rv.unwrapErr();
2542 uint32_t bytes = rv.unwrap();
2543 if (bytes > 0) {
2544 // Got data from the cache successfully. Read next block.
2545 streamOffset += bytes;
2546 buffer = buffer.From(bytes);
2547 continue;
2550 // See if we can use the data in the partial block of any stream reading
2551 // this resource. Note we use the partial block only when it is completed,
2552 // that is reaching EOS.
2553 bool foundDataInPartialBlock = false;
2554 MediaCache::ResourceStreamIterator iter(mMediaCache, mResourceID);
2555 while (MediaCacheStream* stream = iter.Next(aLock)) {
2556 if (OffsetToBlockIndexUnchecked(stream->mChannelOffset) ==
2557 OffsetToBlockIndexUnchecked(streamOffset) &&
2558 stream->mChannelOffset == stream->mStreamLength) {
2559 uint32_t bytes = stream->ReadPartialBlock(aLock, streamOffset, buffer);
2560 streamOffset += bytes;
2561 buffer = buffer.From(bytes);
2562 foundDataInPartialBlock = true;
2563 break;
2566 if (foundDataInPartialBlock) {
2567 // Break for we've reached EOS.
2568 break;
2571 if (mDidNotifyDataEnded && NS_FAILED(mNotifyDataEndedStatus)) {
2572 // Since download ends abnormally, there is no point in waiting for new
2573 // data to come. We will check the partial block to read as many bytes as
2574 // possible before exiting this function.
2575 bytes = ReadPartialBlock(aLock, streamOffset, buffer);
2576 streamOffset += bytes;
2577 buffer = buffer.From(bytes);
2578 break;
2581 if (mStreamOffset != streamOffset) {
2582 // Update mStreamOffset before we drop the lock. We need to run
2583 // Update() again since stream reading strategy might have changed.
2584 mStreamOffset = streamOffset;
2585 mMediaCache->QueueUpdate(aLock);
2588 // No data to read, so block
2589 aLock.Wait();
2592 uint32_t count = buffer.Elements() - aBuffer;
2593 *aBytes = count;
2594 if (count == 0) {
2595 return NS_OK;
2598 // Some data was read, so queue an update since block priorities may
2599 // have changed
2600 mMediaCache->QueueUpdate(aLock);
2602 LOG("Stream %p Read at %" PRId64 " count=%d", this, streamOffset - count,
2603 count);
2604 mStreamOffset = streamOffset;
2605 return NS_OK;
2608 nsresult MediaCacheStream::ReadAt(int64_t aOffset, char* aBuffer,
2609 uint32_t aCount, uint32_t* aBytes) {
2610 MOZ_ASSERT(!NS_IsMainThread());
2611 AutoLock lock(mMediaCache->Monitor());
2612 nsresult rv = Seek(lock, aOffset);
2613 if (NS_FAILED(rv)) return rv;
2614 return Read(lock, aBuffer, aCount, aBytes);
2617 nsresult MediaCacheStream::ReadFromCache(char* aBuffer, int64_t aOffset,
2618 uint32_t aCount) {
2619 MOZ_ASSERT(!NS_IsMainThread());
2620 AutoLock lock(mMediaCache->Monitor());
2622 // The buffer we are about to fill.
2623 auto buffer = Span<char>(aBuffer, aCount);
2625 // Read one block (or part of a block) at a time
2626 int64_t streamOffset = aOffset;
2627 while (!buffer.IsEmpty()) {
2628 if (mClosed) {
2629 // We need to check |mClosed| in each iteration which might be changed
2630 // after calling |mMediaCache->ReadCacheFile|.
2631 return NS_ERROR_FAILURE;
2634 if (!IsOffsetAllowed(streamOffset)) {
2635 LOGE("Stream %p invalid offset=%" PRId64, this, streamOffset);
2636 return NS_ERROR_ILLEGAL_VALUE;
2639 Result<uint32_t, nsresult> rv =
2640 ReadBlockFromCache(lock, streamOffset, buffer);
2641 if (rv.isErr()) {
2642 return rv.unwrapErr();
2645 uint32_t bytes = rv.unwrap();
2646 if (bytes > 0) {
2647 // Read data from the cache successfully. Let's try next block.
2648 streamOffset += bytes;
2649 buffer = buffer.From(bytes);
2650 continue;
2653 // The partial block is our last chance to get data.
2654 bytes = ReadPartialBlock(lock, streamOffset, buffer);
2655 if (bytes < buffer.Length()) {
2656 // Not enough data to read.
2657 return NS_ERROR_FAILURE;
2660 // Return for we've got all the requested bytes.
2661 return NS_OK;
2664 return NS_OK;
2667 nsresult MediaCacheStream::Init(int64_t aContentLength) {
2668 NS_ASSERTION(NS_IsMainThread(), "Only call on main thread");
2669 MOZ_ASSERT(!mMediaCache, "Has been initialized.");
2671 if (aContentLength > 0) {
2672 uint32_t length = uint32_t(std::min(aContentLength, int64_t(UINT32_MAX)));
2673 LOG("MediaCacheStream::Init(this=%p) "
2674 "MEDIACACHESTREAM_NOTIFIED_LENGTH=%" PRIu32,
2675 this, length);
2677 mStreamLength = aContentLength;
2680 mMediaCache = MediaCache::GetMediaCache(aContentLength, mIsPrivateBrowsing);
2681 if (!mMediaCache) {
2682 return NS_ERROR_FAILURE;
2685 OwnerThread()->Dispatch(NS_NewRunnableFunction(
2686 "MediaCacheStream::Init",
2687 [this, res = RefPtr<ChannelMediaResource>(mClient)]() {
2688 AutoLock lock(mMediaCache->Monitor());
2689 mMediaCache->OpenStream(lock, this);
2690 }));
2692 return NS_OK;
2695 void MediaCacheStream::InitAsClone(MediaCacheStream* aOriginal) {
2696 MOZ_ASSERT(!mMediaCache, "Has been initialized.");
2697 MOZ_ASSERT(aOriginal->mMediaCache, "Don't clone an uninitialized stream.");
2699 // Use the same MediaCache as our clone.
2700 mMediaCache = aOriginal->mMediaCache;
2701 OwnerThread()->Dispatch(NS_NewRunnableFunction(
2702 "MediaCacheStream::InitAsClone",
2703 [this, aOriginal, r1 = RefPtr<ChannelMediaResource>(mClient),
2704 r2 = RefPtr<ChannelMediaResource>(aOriginal->mClient)]() {
2705 InitAsCloneInternal(aOriginal);
2706 }));
2709 void MediaCacheStream::InitAsCloneInternal(MediaCacheStream* aOriginal) {
2710 MOZ_ASSERT(OwnerThread()->IsOnCurrentThread());
2711 AutoLock lock(mMediaCache->Monitor());
2712 LOG("MediaCacheStream::InitAsCloneInternal(this=%p, original=%p)", this,
2713 aOriginal);
2715 // Download data and notify events if necessary. Note the order is important
2716 // in order to mimic the behavior of data being downloaded from the channel.
2718 // Step 1: copy/download data from the original stream.
2719 mResourceID = aOriginal->mResourceID;
2720 mStreamLength = aOriginal->mStreamLength;
2721 mIsTransportSeekable = aOriginal->mIsTransportSeekable;
2722 mDownloadStatistics = aOriginal->mDownloadStatistics;
2723 mDownloadStatistics.Stop();
2725 // Grab cache blocks from aOriginal as readahead blocks for our stream
2726 for (uint32_t i = 0; i < aOriginal->mBlocks.Length(); ++i) {
2727 int32_t cacheBlockIndex = aOriginal->mBlocks[i];
2728 if (cacheBlockIndex < 0) continue;
2730 while (i >= mBlocks.Length()) {
2731 mBlocks.AppendElement(-1);
2733 // Every block is a readahead block for the clone because the clone's
2734 // initial stream offset is zero
2735 mMediaCache->AddBlockOwnerAsReadahead(lock, cacheBlockIndex, this, i);
2738 // Copy the partial block.
2739 mChannelOffset = aOriginal->mChannelOffset;
2740 memcpy(mPartialBlockBuffer.get(), aOriginal->mPartialBlockBuffer.get(),
2741 BLOCK_SIZE);
2743 // Step 2: notify the client that we have new data so the decoder has a chance
2744 // to compute 'canplaythrough' and buffer ranges.
2745 mClient->CacheClientNotifyDataReceived();
2747 // Step 3: notify download ended if necessary.
2748 if (aOriginal->mDidNotifyDataEnded &&
2749 NS_SUCCEEDED(aOriginal->mNotifyDataEndedStatus)) {
2750 mNotifyDataEndedStatus = aOriginal->mNotifyDataEndedStatus;
2751 mDidNotifyDataEnded = true;
2752 mClient->CacheClientNotifyDataEnded(mNotifyDataEndedStatus);
2755 // Step 4: notify download is suspended by the cache.
2756 mClientSuspended = true;
2757 mCacheSuspended = true;
2758 mChannelEnded = true;
2759 mClient->CacheClientSuspend();
2760 mMediaCache->QueueSuspendedStatusUpdate(lock, mResourceID);
2762 // Step 5: add the stream to be managed by the cache.
2763 mMediaCache->OpenStream(lock, this, true /* aIsClone */);
2764 // Wake up the reader which is waiting for the cloned data.
2765 lock.NotifyAll();
2768 nsISerialEventTarget* MediaCacheStream::OwnerThread() const {
2769 return mMediaCache->OwnerThread();
2772 nsresult MediaCacheStream::GetCachedRanges(MediaByteRangeSet& aRanges) {
2773 MOZ_ASSERT(!NS_IsMainThread());
2774 // Take the monitor, so that the cached data ranges can't grow while we're
2775 // trying to loop over them.
2776 AutoLock lock(mMediaCache->Monitor());
2778 // We must be pinned while running this, otherwise the cached data ranges may
2779 // shrink while we're trying to loop over them.
2780 NS_ASSERTION(mPinCount > 0, "Must be pinned");
2782 int64_t startOffset = GetNextCachedDataInternal(lock, 0);
2783 while (startOffset >= 0) {
2784 int64_t endOffset = GetCachedDataEndInternal(lock, startOffset);
2785 NS_ASSERTION(startOffset < endOffset,
2786 "Buffered range must end after its start");
2787 // Bytes [startOffset..endOffset] are cached.
2788 aRanges += MediaByteRange(startOffset, endOffset);
2789 startOffset = GetNextCachedDataInternal(lock, endOffset);
2790 NS_ASSERTION(
2791 startOffset == -1 || startOffset > endOffset,
2792 "Must have advanced to start of next range, or hit end of stream");
2794 return NS_OK;
2797 double MediaCacheStream::GetDownloadRate(bool* aIsReliable) {
2798 MOZ_ASSERT(!NS_IsMainThread());
2799 AutoLock lock(mMediaCache->Monitor());
2800 return mDownloadStatistics.GetRate(aIsReliable);
2803 void MediaCacheStream::GetDebugInfo(dom::MediaCacheStreamDebugInfo& aInfo) {
2804 AutoLock lock(mMediaCache->GetMonitorOnTheMainThread());
2805 aInfo.mStreamLength = mStreamLength;
2806 aInfo.mChannelOffset = mChannelOffset;
2807 aInfo.mCacheSuspended = mCacheSuspended;
2808 aInfo.mChannelEnded = mChannelEnded;
2809 aInfo.mLoadID = mLoadID;
2812 } // namespace mozilla
2814 // avoid redefined macro in unified build
2815 #undef LOG
2816 #undef LOGI