Bug 1079322 - Extract properties using libc functions. r=gwagner
[gecko.git] / tools / profiler / LulExidx.cpp
blobfbe18968912f9238be851c34051f6869be138404
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
4 /* libunwind - a platform-independent unwind library
5 Copyright 2011 Linaro Limited
7 This file is part of libunwind.
9 Permission is hereby granted, free of charge, to any person obtaining
10 a copy of this software and associated documentation files (the
11 "Software"), to deal in the Software without restriction, including
12 without limitation the rights to use, copy, modify, merge, publish,
13 distribute, sublicense, and/or sell copies of the Software, and to
14 permit persons to whom the Software is furnished to do so, subject to
15 the following conditions:
17 The above copyright notice and this permission notice shall be
18 included in all copies or substantial portions of the Software.
20 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
21 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
23 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
24 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
25 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
26 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29 // Copyright (c) 2010 Google Inc.
30 // All rights reserved.
32 // Redistribution and use in source and binary forms, with or without
33 // modification, are permitted provided that the following conditions are
34 // met:
36 // * Redistributions of source code must retain the above copyright
37 // notice, this list of conditions and the following disclaimer.
38 // * Redistributions in binary form must reproduce the above
39 // copyright notice, this list of conditions and the following disclaimer
40 // in the documentation and/or other materials provided with the
41 // distribution.
42 // * Neither the name of Google Inc. nor the names of its
43 // contributors may be used to endorse or promote products derived from
44 // this software without specific prior written permission.
46 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
47 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
48 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
49 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
50 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
51 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
52 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
53 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
54 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
55 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
56 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59 // Derived from libunwind, with extensive modifications.
61 // This file translates EXIDX unwind information into the same format
62 // that LUL uses for CFI information. Hence LUL's CFI unwinding
63 // abilities also become usable for EXIDX.
65 // See: "Exception Handling ABI for the ARM Architecture", ARM IHI 0038A
66 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038a/IHI0038A_ehabi.pdf
68 // EXIDX data is presented in two parts:
70 // * an index table. This contains two words per routine,
71 // the first of which identifies the routine, and the second
72 // of which is a reference to the unwind bytecode. If the
73 // bytecode is very compact -- 3 bytes or less -- it can be
74 // stored directly in the second word.
76 // * an area containing the unwind bytecodes.
78 // General flow is: ExceptionTableInfo::Start iterates over all
79 // of the index table entries (pairs). For each entry, it:
81 // * calls ExceptionTableInfo::ExtabEntryExtract to copy the bytecode
82 // out into an intermediate buffer.
84 // * uses ExceptionTableInfo::ExtabEntryDecode to parse the intermediate
85 // buffer. Each bytecode instruction is bundled into a
86 // arm_ex_to_module::extab_data structure, and handed to ..
88 // * .. ARMExToModule::ImproveStackFrame, which in turn hands it to
89 // ARMExToModule::TranslateCmd, and that generates the pseudo-CFI
90 // records that Breakpad stores.
92 // This file is derived from the following files in
93 // toolkit/crashreporter/google-breakpad:
94 // src/common/arm_ex_to_module.cc
95 // src/common/arm_ex_reader.cc
97 #include "mozilla/Assertions.h"
98 #include "mozilla/NullPtr.h"
100 #include "LulExidxExt.h"
103 #define ARM_EXBUF_START(x) (((x) >> 4) & 0x0f)
104 #define ARM_EXBUF_COUNT(x) ((x) & 0x0f)
105 #define ARM_EXBUF_END(x) (ARM_EXBUF_START(x) + ARM_EXBUF_COUNT(x))
107 namespace lul {
109 // Translate command from extab_data to command for Module.
110 int ARMExToModule::TranslateCmd(const struct extab_data* edata,
111 LExpr& vsp) {
112 int ret = 0;
113 switch (edata->cmd) {
114 case ARM_EXIDX_CMD_FINISH:
115 /* Copy LR to PC if there isn't currently a rule for PC in force. */
116 if (curr_rules_.mR15expr.mHow == LExpr::UNKNOWN) {
117 if (curr_rules_.mR14expr.mHow == LExpr::UNKNOWN) {
118 curr_rules_.mR15expr = LExpr(LExpr::NODEREF, DW_REG_ARM_R14, 0);
119 } else {
120 curr_rules_.mR15expr = curr_rules_.mR14expr;
123 break;
124 case ARM_EXIDX_CMD_SUB_FROM_VSP:
125 vsp = vsp.add_delta(- static_cast<long>(edata->data));
126 break;
127 case ARM_EXIDX_CMD_ADD_TO_VSP:
128 vsp = vsp.add_delta(static_cast<long>(edata->data));
129 break;
130 case ARM_EXIDX_CMD_REG_POP:
131 for (unsigned int i = 0; i < 16; i++) {
132 if (edata->data & (1 << i)) {
133 // See if we're summarising for int register |i|. If so,
134 // describe how to pull it off the stack. The cast of |i| is
135 // a bit of a kludge but works because DW_REG_ARM_Rn has the
136 // value |n|, for 0 <= |n| <= 15 -- that is, for the ARM
137 // general-purpose registers.
138 LExpr* regI_exprP = curr_rules_.ExprForRegno((DW_REG_NUMBER)i);
139 if (regI_exprP) {
140 *regI_exprP = vsp.deref();
142 vsp = vsp.add_delta(4);
145 /* Set cfa in case the SP got popped. */
146 if (edata->data & (1 << 13)) {
147 vsp = curr_rules_.mR13expr;
149 break;
150 case ARM_EXIDX_CMD_REG_TO_SP: {
151 MOZ_ASSERT (edata->data < 16);
152 int reg_no = edata->data;
153 // Same comment as above, re the casting of |reg_no|, applies.
154 LExpr* reg_exprP = curr_rules_.ExprForRegno((DW_REG_NUMBER)reg_no);
155 if (reg_exprP) {
156 if (reg_exprP->mHow == LExpr::UNKNOWN) {
157 curr_rules_.mR13expr = LExpr(LExpr::NODEREF, reg_no, 0);
158 } else {
159 curr_rules_.mR13expr = *reg_exprP;
161 vsp = curr_rules_.mR13expr;
163 break;
165 case ARM_EXIDX_CMD_VFP_POP:
166 /* Don't recover VFP registers, but be sure to adjust the stack
167 pointer. */
168 for (unsigned int i = ARM_EXBUF_START(edata->data);
169 i <= ARM_EXBUF_END(edata->data); i++) {
170 vsp = vsp.add_delta(8);
172 if (!(edata->data & ARM_EXIDX_VFP_FSTMD)) {
173 vsp = vsp.add_delta(4);
175 break;
176 case ARM_EXIDX_CMD_WREG_POP:
177 for (unsigned int i = ARM_EXBUF_START(edata->data);
178 i <= ARM_EXBUF_END(edata->data); i++) {
179 vsp = vsp.add_delta(8);
181 break;
182 case ARM_EXIDX_CMD_WCGR_POP:
183 // Pop wCGR registers under mask {wCGR3,2,1,0}, hence "i < 4"
184 for (unsigned int i = 0; i < 4; i++) {
185 if (edata->data & (1 << i)) {
186 vsp = vsp.add_delta(4);
189 break;
190 case ARM_EXIDX_CMD_REFUSED:
191 case ARM_EXIDX_CMD_RESERVED:
192 ret = -1;
193 break;
195 return ret;
198 void ARMExToModule::AddStackFrame(uintptr_t addr, size_t size) {
199 // Here we are effectively reinitialising the EXIDX summariser for a
200 // new code address range. smap_ stays unchanged. All other fields
201 // are reinitialised.
202 vsp_ = LExpr(LExpr::NODEREF, DW_REG_ARM_R13, 0);
203 (void) new (&curr_rules_) RuleSet();
204 curr_rules_.mAddr = (uintptr_t)addr;
205 curr_rules_.mLen = (uintptr_t)size;
206 if (0) {
207 char buf[100];
208 sprintf(buf, " AddStackFrame %llx .. %llx",
209 (uint64_t)addr, (uint64_t)(addr + size - 1));
210 log_(buf);
214 int ARMExToModule::ImproveStackFrame(const struct extab_data* edata) {
215 return TranslateCmd(edata, vsp_) ;
218 void ARMExToModule::DeleteStackFrame() {
221 void ARMExToModule::SubmitStackFrame() {
222 // JRS: I'm really not sure what this means, or if it is necessary
223 // return address always winds up in pc
224 //stack_frame_entry_->initial_rules[ustr__ZDra()] // ".ra"
225 // = stack_frame_entry_->initial_rules[ustr__pc()];
226 // maybe don't need to do anything here?
228 // the final value of vsp is the new value of sp
229 curr_rules_.mR13expr = vsp_;
231 // Finally, add the completed RuleSet to the SecMap
232 if (curr_rules_.mLen > 0) {
234 // Futz with the rules for r4 .. r11 in the same way as happens
235 // with the CFI summariser:
236 /* Mark callee-saved registers (r4 .. r11) as unchanged, if there is
237 no other information about them. FIXME: do this just once, at
238 the point where the ruleset is committed. */
239 if (curr_rules_.mR7expr.mHow == LExpr::UNKNOWN) {
240 curr_rules_.mR7expr = LExpr(LExpr::NODEREF, DW_REG_ARM_R7, 0);
242 if (curr_rules_.mR11expr.mHow == LExpr::UNKNOWN) {
243 curr_rules_.mR11expr = LExpr(LExpr::NODEREF, DW_REG_ARM_R11, 0);
245 if (curr_rules_.mR12expr.mHow == LExpr::UNKNOWN) {
246 curr_rules_.mR12expr = LExpr(LExpr::NODEREF, DW_REG_ARM_R12, 0);
248 if (curr_rules_.mR14expr.mHow == LExpr::UNKNOWN) {
249 curr_rules_.mR14expr = LExpr(LExpr::NODEREF, DW_REG_ARM_R14, 0);
252 // And add them
253 smap_->AddRuleSet(&curr_rules_);
255 if (0) {
256 curr_rules_.Print(log_);
258 if (0) {
259 char buf[100];
260 sprintf(buf, " SubmitStackFrame %llx .. %llx",
261 (uint64_t)curr_rules_.mAddr,
262 (uint64_t)(curr_rules_.mAddr + curr_rules_.mLen - 1));
263 log_(buf);
269 #define ARM_EXIDX_CANT_UNWIND 0x00000001
270 #define ARM_EXIDX_COMPACT 0x80000000
271 #define ARM_EXTBL_OP_FINISH 0xb0
272 #define ARM_EXIDX_TABLE_LIMIT (255*4)
274 using lul::ARM_EXIDX_CMD_FINISH;
275 using lul::ARM_EXIDX_CMD_SUB_FROM_VSP;
276 using lul::ARM_EXIDX_CMD_ADD_TO_VSP;
277 using lul::ARM_EXIDX_CMD_REG_POP;
278 using lul::ARM_EXIDX_CMD_REG_TO_SP;
279 using lul::ARM_EXIDX_CMD_VFP_POP;
280 using lul::ARM_EXIDX_CMD_WREG_POP;
281 using lul::ARM_EXIDX_CMD_WCGR_POP;
282 using lul::ARM_EXIDX_CMD_RESERVED;
283 using lul::ARM_EXIDX_CMD_REFUSED;
284 using lul::exidx_entry;
285 using lul::ARM_EXIDX_VFP_SHIFT_16;
286 using lul::ARM_EXIDX_VFP_FSTMD;
287 using lul::MemoryRange;
290 static void* Prel31ToAddr(const void* addr)
292 uint32_t offset32 = *reinterpret_cast<const uint32_t*>(addr);
293 // sign extend offset32[30:0] to 64 bits -- copy bit 30 to positions
294 // 63:31 inclusive.
295 uint64_t offset64 = offset32;
296 if (offset64 & (1ULL << 30))
297 offset64 |= 0xFFFFFFFF80000000ULL;
298 else
299 offset64 &= 0x000000007FFFFFFFULL;
300 return ((char*)addr) + (uintptr_t)offset64;
304 // Extract unwind bytecode for the function denoted by |entry| into |buf|,
305 // and return the number of bytes of |buf| written, along with a code
306 // indicating the outcome.
308 ExceptionTableInfo::ExExtractResult
309 ExceptionTableInfo::ExtabEntryExtract(const struct exidx_entry* entry,
310 uint8_t* buf, size_t buf_size,
311 /*OUT*/size_t* buf_used)
313 MemoryRange mr_out(buf, buf_size);
315 *buf_used = 0;
317 # define PUT_BUF_U8(_byte) \
318 do { if (!mr_out.Covers(*buf_used, 1)) return ExOutBufOverflow; \
319 buf[(*buf_used)++] = (_byte); } while (0)
321 # define GET_EX_U32(_lval, _addr, _sec_mr) \
322 do { if (!(_sec_mr).Covers(reinterpret_cast<const uint8_t*>(_addr) \
323 - (_sec_mr).data(), 4)) \
324 return ExInBufOverflow; \
325 (_lval) = *(reinterpret_cast<const uint32_t*>(_addr)); } while (0)
327 # define GET_EXIDX_U32(_lval, _addr) \
328 GET_EX_U32(_lval, _addr, mr_exidx_avma_)
329 # define GET_EXTAB_U32(_lval, _addr) \
330 GET_EX_U32(_lval, _addr, mr_extab_avma_)
332 uint32_t data;
333 GET_EXIDX_U32(data, &entry->data);
335 // A function can be marked CANT_UNWIND if (eg) it is known to be
336 // at the bottom of the stack.
337 if (data == ARM_EXIDX_CANT_UNWIND)
338 return ExCantUnwind;
340 uint32_t pers; // personality number
341 uint32_t extra; // number of extra data words required
342 uint32_t extra_allowed; // number of extra data words allowed
343 uint32_t* extbl_data; // the handler entry, if not inlined
345 if (data & ARM_EXIDX_COMPACT) {
346 // The handler table entry has been inlined into the index table entry.
347 // In this case it can only be an ARM-defined compact model, since
348 // bit 31 is 1. Only personalities 0, 1 and 2 are defined for the
349 // ARM compact model, but 1 and 2 are "Long format" and may require
350 // extra data words. Hence the allowable personalities here are:
351 // personality 0, in which case 'extra' has no meaning
352 // personality 1, with zero extra words
353 // personality 2, with zero extra words
354 extbl_data = nullptr;
355 pers = (data >> 24) & 0x0F;
356 extra = (data >> 16) & 0xFF;
357 extra_allowed = 0;
359 else {
360 // The index table entry is a pointer to the handler entry. Note
361 // that Prel31ToAddr will read the given address, but we already
362 // range-checked above.
363 extbl_data = reinterpret_cast<uint32_t*>(Prel31ToAddr(&entry->data));
364 GET_EXTAB_U32(data, extbl_data);
365 if (!(data & ARM_EXIDX_COMPACT)) {
366 // This denotes a "generic model" handler. That will involve
367 // executing arbitary machine code, which is something we
368 // can't represent here; hence reject it.
369 return ExCantRepresent;
371 // So we have a compact model representation. Again, 3 possible
372 // personalities, but this time up to 255 allowable extra words.
373 pers = (data >> 24) & 0x0F;
374 extra = (data >> 16) & 0xFF;
375 extra_allowed = 255;
376 extbl_data++;
379 // Now look at the the handler table entry. The first word is
380 // |data| and subsequent words start at |*extbl_data|. The number
381 // of extra words to use is |extra|, provided that the personality
382 // allows extra words. Even if it does, none may be available --
383 // extra_allowed is the maximum number of extra words allowed. */
384 if (pers == 0) {
385 // "Su16" in the documentation -- 3 unwinding insn bytes
386 // |extra| has no meaning here; instead that byte is an unwind-info byte
387 PUT_BUF_U8(data >> 16);
388 PUT_BUF_U8(data >> 8);
389 PUT_BUF_U8(data);
391 else if ((pers == 1 || pers == 2) && extra <= extra_allowed) {
392 // "Lu16" or "Lu32" respectively -- 2 unwinding insn bytes,
393 // and up to 255 extra words.
394 PUT_BUF_U8(data >> 8);
395 PUT_BUF_U8(data);
396 for (uint32_t j = 0; j < extra; j++) {
397 GET_EXTAB_U32(data, extbl_data);
398 extbl_data++;
399 PUT_BUF_U8(data >> 24);
400 PUT_BUF_U8(data >> 16);
401 PUT_BUF_U8(data >> 8);
402 PUT_BUF_U8(data >> 0);
405 else {
406 // The entry is invalid.
407 return ExInvalid;
410 // Make sure the entry is terminated with "FINISH"
411 if (*buf_used > 0 && buf[(*buf_used) - 1] != ARM_EXTBL_OP_FINISH)
412 PUT_BUF_U8(ARM_EXTBL_OP_FINISH);
414 return ExSuccess;
416 # undef GET_EXTAB_U32
417 # undef GET_EXIDX_U32
418 # undef GET_U32
419 # undef PUT_BUF_U8
423 // Take the unwind information extracted by ExtabEntryExtract
424 // and parse it into frame-unwind instructions. These are as
425 // specified in "Table 4, ARM-defined frame-unwinding instructions"
426 // in the specification document detailed in comments at the top
427 // of this file.
429 // This reads from |buf[0, +data_size)|. It checks for overruns of
430 // the input buffer and returns a negative value if that happens, or
431 // for any other failure cases. It returns zero in case of success.
432 int ExceptionTableInfo::ExtabEntryDecode(const uint8_t* buf, size_t buf_size)
434 if (buf == nullptr || buf_size == 0)
435 return -1;
437 MemoryRange mr_in(buf, buf_size);
438 const uint8_t* buf_initially = buf;
440 # define GET_BUF_U8(_lval) \
441 do { if (!mr_in.Covers(buf - buf_initially, 1)) return -1; \
442 (_lval) = *(buf++); } while (0)
444 const uint8_t* end = buf + buf_size;
446 while (buf < end) {
447 struct lul::extab_data edata;
448 memset(&edata, 0, sizeof(edata));
450 uint8_t op;
451 GET_BUF_U8(op);
452 if ((op & 0xc0) == 0x00) {
453 // vsp = vsp + (xxxxxx << 2) + 4
454 edata.cmd = ARM_EXIDX_CMD_ADD_TO_VSP;
455 edata.data = (((int)op & 0x3f) << 2) + 4;
457 else if ((op & 0xc0) == 0x40) {
458 // vsp = vsp - (xxxxxx << 2) - 4
459 edata.cmd = ARM_EXIDX_CMD_SUB_FROM_VSP;
460 edata.data = (((int)op & 0x3f) << 2) + 4;
462 else if ((op & 0xf0) == 0x80) {
463 uint8_t op2;
464 GET_BUF_U8(op2);
465 if (op == 0x80 && op2 == 0x00) {
466 // Refuse to unwind
467 edata.cmd = ARM_EXIDX_CMD_REFUSED;
468 } else {
469 // Pop up to 12 integer registers under masks {r15-r12},{r11-r4}
470 edata.cmd = ARM_EXIDX_CMD_REG_POP;
471 edata.data = ((op & 0xf) << 8) | op2;
472 edata.data = edata.data << 4;
475 else if ((op & 0xf0) == 0x90) {
476 if (op == 0x9d || op == 0x9f) {
477 // 9d: Reserved as prefix for ARM register to register moves
478 // 9f: Reserved as perfix for Intel Wireless MMX reg to reg moves
479 edata.cmd = ARM_EXIDX_CMD_RESERVED;
480 } else {
481 // Set vsp = r[nnnn]
482 edata.cmd = ARM_EXIDX_CMD_REG_TO_SP;
483 edata.data = op & 0x0f;
486 else if ((op & 0xf0) == 0xa0) {
487 // Pop r4 to r[4+nnn], or
488 // Pop r4 to r[4+nnn] and r14 or
489 unsigned end = (op & 0x07);
490 edata.data = (1 << (end + 1)) - 1;
491 edata.data = edata.data << 4;
492 if (op & 0x08) edata.data |= 1 << 14;
493 edata.cmd = ARM_EXIDX_CMD_REG_POP;
495 else if (op == ARM_EXTBL_OP_FINISH) {
496 // Finish
497 edata.cmd = ARM_EXIDX_CMD_FINISH;
498 buf = end;
500 else if (op == 0xb1) {
501 uint8_t op2;
502 GET_BUF_U8(op2);
503 if (op2 == 0 || (op2 & 0xf0)) {
504 // Spare
505 edata.cmd = ARM_EXIDX_CMD_RESERVED;
506 } else {
507 // Pop integer registers under mask {r3,r2,r1,r0}
508 edata.cmd = ARM_EXIDX_CMD_REG_POP;
509 edata.data = op2 & 0x0f;
512 else if (op == 0xb2) {
513 // vsp = vsp + 0x204 + (uleb128 << 2)
514 uint64_t offset = 0;
515 uint8_t byte, shift = 0;
516 do {
517 GET_BUF_U8(byte);
518 offset |= (byte & 0x7f) << shift;
519 shift += 7;
520 } while ((byte & 0x80) && buf < end);
521 edata.data = offset * 4 + 0x204;
522 edata.cmd = ARM_EXIDX_CMD_ADD_TO_VSP;
524 else if (op == 0xb3 || op == 0xc8 || op == 0xc9) {
525 // b3: Pop VFP regs D[ssss] to D[ssss+cccc], FSTMFDX-ishly
526 // c8: Pop VFP regs D[16+ssss] to D[16+ssss+cccc], FSTMFDD-ishly
527 // c9: Pop VFP regs D[ssss] to D[ssss+cccc], FSTMFDD-ishly
528 edata.cmd = ARM_EXIDX_CMD_VFP_POP;
529 GET_BUF_U8(edata.data);
530 if (op == 0xc8) edata.data |= ARM_EXIDX_VFP_SHIFT_16;
531 if (op != 0xb3) edata.data |= ARM_EXIDX_VFP_FSTMD;
533 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0) {
534 // b8: Pop VFP regs D[8] to D[8+nnn], FSTMFDX-ishly
535 // d0: Pop VFP regs D[8] to D[8+nnn], FSTMFDD-ishly
536 edata.cmd = ARM_EXIDX_CMD_VFP_POP;
537 edata.data = 0x80 | (op & 0x07);
538 if ((op & 0xf8) == 0xd0) edata.data |= ARM_EXIDX_VFP_FSTMD;
540 else if (op >= 0xc0 && op <= 0xc5) {
541 // Intel Wireless MMX pop wR[10]-wr[10+nnn], nnn != 6,7
542 edata.cmd = ARM_EXIDX_CMD_WREG_POP;
543 edata.data = 0xa0 | (op & 0x07);
545 else if (op == 0xc6) {
546 // Intel Wireless MMX pop wR[ssss] to wR[ssss+cccc]
547 edata.cmd = ARM_EXIDX_CMD_WREG_POP;
548 GET_BUF_U8(edata.data);
550 else if (op == 0xc7) {
551 uint8_t op2;
552 GET_BUF_U8(op2);
553 if (op2 == 0 || (op2 & 0xf0)) {
554 // Spare
555 edata.cmd = ARM_EXIDX_CMD_RESERVED;
556 } else {
557 // Intel Wireless MMX pop wCGR registers under mask {wCGR3,2,1,0}
558 edata.cmd = ARM_EXIDX_CMD_WCGR_POP;
559 edata.data = op2 & 0x0f;
562 else {
563 // Spare
564 edata.cmd = ARM_EXIDX_CMD_RESERVED;
567 int ret = handler_->ImproveStackFrame(&edata);
568 if (ret < 0) return ret;
570 return 0;
572 # undef GET_BUF_U8
575 void ExceptionTableInfo::Start()
577 const struct exidx_entry* start
578 = reinterpret_cast<const struct exidx_entry*>(mr_exidx_avma_.data());
579 const struct exidx_entry* end
580 = reinterpret_cast<const struct exidx_entry*>(mr_exidx_avma_.data()
581 + mr_exidx_avma_.length());
583 // Iterate over each of the EXIDX entries (pairs of 32-bit words).
584 // These occupy the entire .exidx section.
585 for (const struct exidx_entry* entry = start; entry < end; ++entry) {
587 // Figure out the code address range that this table entry is
588 // associated with.
589 uint32_t avma = reinterpret_cast<uint32_t>(Prel31ToAddr(&entry->addr));
590 uint32_t next_avma;
591 if (entry < end - 1) {
592 next_avma
593 = reinterpret_cast<uint32_t>(Prel31ToAddr(&((entry + 1)->addr)));
594 } else {
595 // This is the last EXIDX entry in the sequence, so we don't
596 // have an address for the start of the next function, to limit
597 // this one. Instead use the address of the last byte of the
598 // text section associated with this .exidx section, that we
599 // have been given. So as to avoid junking up the CFI unwind
600 // tables with absurdly large address ranges in the case where
601 // text_last_avma_ is wrong, only use the value if it is nonzero
602 // and within one page of |avma|. Otherwise assume a length of 1.
604 // In some cases, gcc has been observed to finish the exidx
605 // section with an entry of length 1 marked CANT_UNWIND,
606 // presumably exactly for the purpose of giving a definite
607 // length for the last real entry, without having to look at
608 // text segment boundaries.
610 bool plausible;
611 uint32_t maybe_next_avma = text_last_avma_ + 1;
612 if (maybe_next_avma > avma && maybe_next_avma - avma <= 4096) {
613 next_avma = maybe_next_avma;
614 plausible = true;
615 } else {
616 next_avma = avma + 1;
617 plausible = false;
620 if (!plausible && avma != text_last_avma_ + 1) {
621 char buf[100];
622 snprintf(buf, sizeof(buf),
623 "ExceptionTableInfo: implausible EXIDX last entry size %d"
624 "; using 1 instead.", (int32_t)(text_last_avma_ - avma));
625 buf[sizeof(buf)-1] = 0;
626 log_(buf);
630 // Extract the unwind info into |buf|. This might fail for
631 // various reasons. It involves reading both the .exidx and
632 // .extab sections. All accesses to those sections are
633 // bounds-checked.
634 uint8_t buf[ARM_EXIDX_TABLE_LIMIT];
635 size_t buf_used = 0;
636 ExExtractResult res = ExtabEntryExtract(entry, buf, sizeof(buf), &buf_used);
637 if (res != ExSuccess) {
638 // Couldn't extract the unwind info, for some reason. Move on.
639 switch (res) {
640 case ExInBufOverflow:
641 log_("ExtabEntryExtract: .exidx/.extab section overrun");
642 break;
643 case ExOutBufOverflow:
644 log_("ExtabEntryExtract: bytecode buffer overflow");
645 break;
646 case ExCantUnwind:
647 log_("ExtabEntryExtract: function is marked CANT_UNWIND");
648 break;
649 case ExCantRepresent:
650 log_("ExtabEntryExtract: bytecode can't be represented");
651 break;
652 case ExInvalid:
653 log_("ExtabEntryExtract: index table entry is invalid");
654 break;
655 default: {
656 char buf[100];
657 snprintf(buf, sizeof(buf),
658 "ExtabEntryExtract: unknown error: %d", (int)res);
659 buf[sizeof(buf)-1] = 0;
660 log_(buf);
661 break;
664 continue;
667 // Finally, work through the unwind instructions in |buf| and
668 // create CFI entries that Breakpad can use. This can also fail.
669 // First, add a new stack frame entry, into which ExtabEntryDecode
670 // will write the CFI entries.
671 handler_->AddStackFrame(avma, next_avma - avma);
672 int ret = ExtabEntryDecode(buf, buf_used);
673 if (ret < 0) {
674 handler_->DeleteStackFrame();
675 char buf[100];
676 snprintf(buf, sizeof(buf),
677 "ExtabEntryDecode: failed with error code: %d", ret);
678 buf[sizeof(buf)-1] = 0;
679 log_(buf);
680 continue;
682 handler_->SubmitStackFrame();
683 } /* iterating over .exidx */
686 } // namespace lul