Bumping manifests a=b2g-bump
[gecko.git] / media / libjpeg / jmemmgr.c
blobcf32524ea70522a4aed2ac5fa895729f0e8f0aa1
1 /*
2 * jmemmgr.c
4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains the JPEG system-independent memory management
9 * routines. This code is usable across a wide variety of machines; most
10 * of the system dependencies have been isolated in a separate file.
11 * The major functions provided here are:
12 * * pool-based allocation and freeing of memory;
13 * * policy decisions about how to divide available memory among the
14 * virtual arrays;
15 * * control logic for swapping virtual arrays between main memory and
16 * backing storage.
17 * The separate system-dependent file provides the actual backing-storage
18 * access code, and it contains the policy decision about how much total
19 * main memory to use.
20 * This file is system-dependent in the sense that some of its functions
21 * are unnecessary in some systems. For example, if there is enough virtual
22 * memory so that backing storage will never be used, much of the virtual
23 * array control logic could be removed. (Of course, if you have that much
24 * memory then you shouldn't care about a little bit of unused code...)
27 #define JPEG_INTERNALS
28 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
29 #include "jinclude.h"
30 #include "jpeglib.h"
31 #include "jmemsys.h" /* import the system-dependent declarations */
33 #ifndef NO_GETENV
34 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
35 extern char * getenv JPP((const char * name));
36 #endif
37 #endif
40 LOCAL(size_t)
41 round_up_pow2 (size_t a, size_t b)
42 /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
43 /* Assumes a >= 0, b > 0, and b is a power of 2 */
45 return ((a + b - 1) & (~(b - 1)));
50 * Some important notes:
51 * The allocation routines provided here must never return NULL.
52 * They should exit to error_exit if unsuccessful.
54 * It's not a good idea to try to merge the sarray and barray routines,
55 * even though they are textually almost the same, because samples are
56 * usually stored as bytes while coefficients are shorts or ints. Thus,
57 * in machines where byte pointers have a different representation from
58 * word pointers, the resulting machine code could not be the same.
63 * Many machines require storage alignment: longs must start on 4-byte
64 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
65 * always returns pointers that are multiples of the worst-case alignment
66 * requirement, and we had better do so too.
67 * There isn't any really portable way to determine the worst-case alignment
68 * requirement. This module assumes that the alignment requirement is
69 * multiples of ALIGN_SIZE.
70 * By default, we define ALIGN_SIZE as sizeof(double). This is necessary on some
71 * workstations (where doubles really do need 8-byte alignment) and will work
72 * fine on nearly everything. If your machine has lesser alignment needs,
73 * you can save a few bytes by making ALIGN_SIZE smaller.
74 * The only place I know of where this will NOT work is certain Macintosh
75 * 680x0 compilers that define double as a 10-byte IEEE extended float.
76 * Doing 10-byte alignment is counterproductive because longwords won't be
77 * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have
78 * such a compiler.
81 #ifndef ALIGN_SIZE /* so can override from jconfig.h */
82 #ifndef WITH_SIMD
83 #define ALIGN_SIZE SIZEOF(double)
84 #else
85 #define ALIGN_SIZE 16 /* Most SIMD implementations require this */
86 #endif
87 #endif
90 * We allocate objects from "pools", where each pool is gotten with a single
91 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
92 * overhead within a pool, except for alignment padding. Each pool has a
93 * header with a link to the next pool of the same class.
94 * Small and large pool headers are identical except that the latter's
95 * link pointer must be FAR on 80x86 machines.
98 typedef struct small_pool_struct * small_pool_ptr;
100 typedef struct small_pool_struct {
101 small_pool_ptr next; /* next in list of pools */
102 size_t bytes_used; /* how many bytes already used within pool */
103 size_t bytes_left; /* bytes still available in this pool */
104 } small_pool_hdr;
106 typedef struct large_pool_struct FAR * large_pool_ptr;
108 typedef struct large_pool_struct {
109 large_pool_ptr next; /* next in list of pools */
110 size_t bytes_used; /* how many bytes already used within pool */
111 size_t bytes_left; /* bytes still available in this pool */
112 } large_pool_hdr;
115 * Here is the full definition of a memory manager object.
118 typedef struct {
119 struct jpeg_memory_mgr pub; /* public fields */
121 /* Each pool identifier (lifetime class) names a linked list of pools. */
122 small_pool_ptr small_list[JPOOL_NUMPOOLS];
123 large_pool_ptr large_list[JPOOL_NUMPOOLS];
125 /* Since we only have one lifetime class of virtual arrays, only one
126 * linked list is necessary (for each datatype). Note that the virtual
127 * array control blocks being linked together are actually stored somewhere
128 * in the small-pool list.
130 jvirt_sarray_ptr virt_sarray_list;
131 jvirt_barray_ptr virt_barray_list;
133 /* This counts total space obtained from jpeg_get_small/large */
134 size_t total_space_allocated;
136 /* alloc_sarray and alloc_barray set this value for use by virtual
137 * array routines.
139 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
140 } my_memory_mgr;
142 typedef my_memory_mgr * my_mem_ptr;
146 * The control blocks for virtual arrays.
147 * Note that these blocks are allocated in the "small" pool area.
148 * System-dependent info for the associated backing store (if any) is hidden
149 * inside the backing_store_info struct.
152 struct jvirt_sarray_control {
153 JSAMPARRAY mem_buffer; /* => the in-memory buffer */
154 JDIMENSION rows_in_array; /* total virtual array height */
155 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
156 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
157 JDIMENSION rows_in_mem; /* height of memory buffer */
158 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
159 JDIMENSION cur_start_row; /* first logical row # in the buffer */
160 JDIMENSION first_undef_row; /* row # of first uninitialized row */
161 boolean pre_zero; /* pre-zero mode requested? */
162 boolean dirty; /* do current buffer contents need written? */
163 boolean b_s_open; /* is backing-store data valid? */
164 jvirt_sarray_ptr next; /* link to next virtual sarray control block */
165 backing_store_info b_s_info; /* System-dependent control info */
168 struct jvirt_barray_control {
169 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
170 JDIMENSION rows_in_array; /* total virtual array height */
171 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
172 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
173 JDIMENSION rows_in_mem; /* height of memory buffer */
174 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
175 JDIMENSION cur_start_row; /* first logical row # in the buffer */
176 JDIMENSION first_undef_row; /* row # of first uninitialized row */
177 boolean pre_zero; /* pre-zero mode requested? */
178 boolean dirty; /* do current buffer contents need written? */
179 boolean b_s_open; /* is backing-store data valid? */
180 jvirt_barray_ptr next; /* link to next virtual barray control block */
181 backing_store_info b_s_info; /* System-dependent control info */
185 #ifdef MEM_STATS /* optional extra stuff for statistics */
187 LOCAL(void)
188 print_mem_stats (j_common_ptr cinfo, int pool_id)
190 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
191 small_pool_ptr shdr_ptr;
192 large_pool_ptr lhdr_ptr;
194 /* Since this is only a debugging stub, we can cheat a little by using
195 * fprintf directly rather than going through the trace message code.
196 * This is helpful because message parm array can't handle longs.
198 fprintf(stderr, "Freeing pool %d, total space = %ld\n",
199 pool_id, mem->total_space_allocated);
201 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
202 lhdr_ptr = lhdr_ptr->next) {
203 fprintf(stderr, " Large chunk used %ld\n",
204 (long) lhdr_ptr->bytes_used);
207 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
208 shdr_ptr = shdr_ptr->next) {
209 fprintf(stderr, " Small chunk used %ld free %ld\n",
210 (long) shdr_ptr->bytes_used,
211 (long) shdr_ptr->bytes_left);
215 #endif /* MEM_STATS */
218 LOCAL(void)
219 out_of_memory (j_common_ptr cinfo, int which)
220 /* Report an out-of-memory error and stop execution */
221 /* If we compiled MEM_STATS support, report alloc requests before dying */
223 #ifdef MEM_STATS
224 cinfo->err->trace_level = 2; /* force self_destruct to report stats */
225 #endif
226 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
231 * Allocation of "small" objects.
233 * For these, we use pooled storage. When a new pool must be created,
234 * we try to get enough space for the current request plus a "slop" factor,
235 * where the slop will be the amount of leftover space in the new pool.
236 * The speed vs. space tradeoff is largely determined by the slop values.
237 * A different slop value is provided for each pool class (lifetime),
238 * and we also distinguish the first pool of a class from later ones.
239 * NOTE: the values given work fairly well on both 16- and 32-bit-int
240 * machines, but may be too small if longs are 64 bits or more.
242 * Since we do not know what alignment malloc() gives us, we have to
243 * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
244 * adjustment.
247 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
249 1600, /* first PERMANENT pool */
250 16000 /* first IMAGE pool */
253 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
255 0, /* additional PERMANENT pools */
256 5000 /* additional IMAGE pools */
259 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
262 METHODDEF(void *)
263 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
264 /* Allocate a "small" object */
266 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
267 small_pool_ptr hdr_ptr, prev_hdr_ptr;
268 char * data_ptr;
269 size_t min_request, slop;
272 * Round up the requested size to a multiple of ALIGN_SIZE in order
273 * to assure alignment for the next object allocated in the same pool
274 * and so that algorithms can straddle outside the proper area up
275 * to the next alignment.
277 sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
279 /* Check for unsatisfiable request (do now to ensure no overflow below) */
280 if ((SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
281 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
283 /* See if space is available in any existing pool */
284 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
285 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
286 prev_hdr_ptr = NULL;
287 hdr_ptr = mem->small_list[pool_id];
288 while (hdr_ptr != NULL) {
289 if (hdr_ptr->bytes_left >= sizeofobject)
290 break; /* found pool with enough space */
291 prev_hdr_ptr = hdr_ptr;
292 hdr_ptr = hdr_ptr->next;
295 /* Time to make a new pool? */
296 if (hdr_ptr == NULL) {
297 /* min_request is what we need now, slop is what will be leftover */
298 min_request = SIZEOF(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
299 if (prev_hdr_ptr == NULL) /* first pool in class? */
300 slop = first_pool_slop[pool_id];
301 else
302 slop = extra_pool_slop[pool_id];
303 /* Don't ask for more than MAX_ALLOC_CHUNK */
304 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
305 slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
306 /* Try to get space, if fail reduce slop and try again */
307 for (;;) {
308 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
309 if (hdr_ptr != NULL)
310 break;
311 slop /= 2;
312 if (slop < MIN_SLOP) /* give up when it gets real small */
313 out_of_memory(cinfo, 2); /* jpeg_get_small failed */
315 mem->total_space_allocated += min_request + slop;
316 /* Success, initialize the new pool header and add to end of list */
317 hdr_ptr->next = NULL;
318 hdr_ptr->bytes_used = 0;
319 hdr_ptr->bytes_left = sizeofobject + slop;
320 if (prev_hdr_ptr == NULL) /* first pool in class? */
321 mem->small_list[pool_id] = hdr_ptr;
322 else
323 prev_hdr_ptr->next = hdr_ptr;
326 /* OK, allocate the object from the current pool */
327 data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
328 data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
329 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
330 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
331 data_ptr += hdr_ptr->bytes_used; /* point to place for object */
332 hdr_ptr->bytes_used += sizeofobject;
333 hdr_ptr->bytes_left -= sizeofobject;
335 return (void *) data_ptr;
340 * Allocation of "large" objects.
342 * The external semantics of these are the same as "small" objects,
343 * except that FAR pointers are used on 80x86. However the pool
344 * management heuristics are quite different. We assume that each
345 * request is large enough that it may as well be passed directly to
346 * jpeg_get_large; the pool management just links everything together
347 * so that we can free it all on demand.
348 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
349 * structures. The routines that create these structures (see below)
350 * deliberately bunch rows together to ensure a large request size.
353 METHODDEF(void FAR *)
354 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
355 /* Allocate a "large" object */
357 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
358 large_pool_ptr hdr_ptr;
359 char FAR * data_ptr;
362 * Round up the requested size to a multiple of ALIGN_SIZE so that
363 * algorithms can straddle outside the proper area up to the next
364 * alignment.
366 sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
368 /* Check for unsatisfiable request (do now to ensure no overflow below) */
369 if ((SIZEOF(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK)
370 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
372 /* Always make a new pool */
373 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
374 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
376 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
377 SIZEOF(large_pool_hdr) +
378 ALIGN_SIZE - 1);
379 if (hdr_ptr == NULL)
380 out_of_memory(cinfo, 4); /* jpeg_get_large failed */
381 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr) + ALIGN_SIZE - 1;
383 /* Success, initialize the new pool header and add to list */
384 hdr_ptr->next = mem->large_list[pool_id];
385 /* We maintain space counts in each pool header for statistical purposes,
386 * even though they are not needed for allocation.
388 hdr_ptr->bytes_used = sizeofobject;
389 hdr_ptr->bytes_left = 0;
390 mem->large_list[pool_id] = hdr_ptr;
392 data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
393 data_ptr += SIZEOF(small_pool_hdr); /* ...by skipping the header... */
394 if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
395 data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
397 return (void FAR *) data_ptr;
402 * Creation of 2-D sample arrays.
403 * The pointers are in near heap, the samples themselves in FAR heap.
405 * To minimize allocation overhead and to allow I/O of large contiguous
406 * blocks, we allocate the sample rows in groups of as many rows as possible
407 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
408 * NB: the virtual array control routines, later in this file, know about
409 * this chunking of rows. The rowsperchunk value is left in the mem manager
410 * object so that it can be saved away if this sarray is the workspace for
411 * a virtual array.
413 * Since we are often upsampling with a factor 2, we align the size (not
414 * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
415 * to be as careful about size.
418 METHODDEF(JSAMPARRAY)
419 alloc_sarray (j_common_ptr cinfo, int pool_id,
420 JDIMENSION samplesperrow, JDIMENSION numrows)
421 /* Allocate a 2-D sample array */
423 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
424 JSAMPARRAY result;
425 JSAMPROW workspace;
426 JDIMENSION rowsperchunk, currow, i;
427 long ltemp;
429 /* Make sure each row is properly aligned */
430 if ((ALIGN_SIZE % SIZEOF(JSAMPLE)) != 0)
431 out_of_memory(cinfo, 5); /* safety check */
432 samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / SIZEOF(JSAMPLE));
434 /* Calculate max # of rows allowed in one allocation chunk */
435 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
436 ((long) samplesperrow * SIZEOF(JSAMPLE));
437 if (ltemp <= 0)
438 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
439 if (ltemp < (long) numrows)
440 rowsperchunk = (JDIMENSION) ltemp;
441 else
442 rowsperchunk = numrows;
443 mem->last_rowsperchunk = rowsperchunk;
445 /* Get space for row pointers (small object) */
446 result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
447 (size_t) (numrows * SIZEOF(JSAMPROW)));
449 /* Get the rows themselves (large objects) */
450 currow = 0;
451 while (currow < numrows) {
452 rowsperchunk = MIN(rowsperchunk, numrows - currow);
453 workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
454 (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
455 * SIZEOF(JSAMPLE)));
456 for (i = rowsperchunk; i > 0; i--) {
457 result[currow++] = workspace;
458 workspace += samplesperrow;
462 return result;
467 * Creation of 2-D coefficient-block arrays.
468 * This is essentially the same as the code for sample arrays, above.
471 METHODDEF(JBLOCKARRAY)
472 alloc_barray (j_common_ptr cinfo, int pool_id,
473 JDIMENSION blocksperrow, JDIMENSION numrows)
474 /* Allocate a 2-D coefficient-block array */
476 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
477 JBLOCKARRAY result;
478 JBLOCKROW workspace;
479 JDIMENSION rowsperchunk, currow, i;
480 long ltemp;
482 /* Make sure each row is properly aligned */
483 if ((SIZEOF(JBLOCK) % ALIGN_SIZE) != 0)
484 out_of_memory(cinfo, 6); /* safety check */
486 /* Calculate max # of rows allowed in one allocation chunk */
487 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
488 ((long) blocksperrow * SIZEOF(JBLOCK));
489 if (ltemp <= 0)
490 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
491 if (ltemp < (long) numrows)
492 rowsperchunk = (JDIMENSION) ltemp;
493 else
494 rowsperchunk = numrows;
495 mem->last_rowsperchunk = rowsperchunk;
497 /* Get space for row pointers (small object) */
498 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
499 (size_t) (numrows * SIZEOF(JBLOCKROW)));
501 /* Get the rows themselves (large objects) */
502 currow = 0;
503 while (currow < numrows) {
504 rowsperchunk = MIN(rowsperchunk, numrows - currow);
505 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
506 (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
507 * SIZEOF(JBLOCK)));
508 for (i = rowsperchunk; i > 0; i--) {
509 result[currow++] = workspace;
510 workspace += blocksperrow;
514 return result;
519 * About virtual array management:
521 * The above "normal" array routines are only used to allocate strip buffers
522 * (as wide as the image, but just a few rows high). Full-image-sized buffers
523 * are handled as "virtual" arrays. The array is still accessed a strip at a
524 * time, but the memory manager must save the whole array for repeated
525 * accesses. The intended implementation is that there is a strip buffer in
526 * memory (as high as is possible given the desired memory limit), plus a
527 * backing file that holds the rest of the array.
529 * The request_virt_array routines are told the total size of the image and
530 * the maximum number of rows that will be accessed at once. The in-memory
531 * buffer must be at least as large as the maxaccess value.
533 * The request routines create control blocks but not the in-memory buffers.
534 * That is postponed until realize_virt_arrays is called. At that time the
535 * total amount of space needed is known (approximately, anyway), so free
536 * memory can be divided up fairly.
538 * The access_virt_array routines are responsible for making a specific strip
539 * area accessible (after reading or writing the backing file, if necessary).
540 * Note that the access routines are told whether the caller intends to modify
541 * the accessed strip; during a read-only pass this saves having to rewrite
542 * data to disk. The access routines are also responsible for pre-zeroing
543 * any newly accessed rows, if pre-zeroing was requested.
545 * In current usage, the access requests are usually for nonoverlapping
546 * strips; that is, successive access start_row numbers differ by exactly
547 * num_rows = maxaccess. This means we can get good performance with simple
548 * buffer dump/reload logic, by making the in-memory buffer be a multiple
549 * of the access height; then there will never be accesses across bufferload
550 * boundaries. The code will still work with overlapping access requests,
551 * but it doesn't handle bufferload overlaps very efficiently.
555 METHODDEF(jvirt_sarray_ptr)
556 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
557 JDIMENSION samplesperrow, JDIMENSION numrows,
558 JDIMENSION maxaccess)
559 /* Request a virtual 2-D sample array */
561 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
562 jvirt_sarray_ptr result;
564 /* Only IMAGE-lifetime virtual arrays are currently supported */
565 if (pool_id != JPOOL_IMAGE)
566 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
568 /* get control block */
569 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
570 SIZEOF(struct jvirt_sarray_control));
572 result->mem_buffer = NULL; /* marks array not yet realized */
573 result->rows_in_array = numrows;
574 result->samplesperrow = samplesperrow;
575 result->maxaccess = maxaccess;
576 result->pre_zero = pre_zero;
577 result->b_s_open = FALSE; /* no associated backing-store object */
578 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
579 mem->virt_sarray_list = result;
581 return result;
585 METHODDEF(jvirt_barray_ptr)
586 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
587 JDIMENSION blocksperrow, JDIMENSION numrows,
588 JDIMENSION maxaccess)
589 /* Request a virtual 2-D coefficient-block array */
591 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
592 jvirt_barray_ptr result;
594 /* Only IMAGE-lifetime virtual arrays are currently supported */
595 if (pool_id != JPOOL_IMAGE)
596 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
598 /* get control block */
599 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
600 SIZEOF(struct jvirt_barray_control));
602 result->mem_buffer = NULL; /* marks array not yet realized */
603 result->rows_in_array = numrows;
604 result->blocksperrow = blocksperrow;
605 result->maxaccess = maxaccess;
606 result->pre_zero = pre_zero;
607 result->b_s_open = FALSE; /* no associated backing-store object */
608 result->next = mem->virt_barray_list; /* add to list of virtual arrays */
609 mem->virt_barray_list = result;
611 return result;
615 METHODDEF(void)
616 realize_virt_arrays (j_common_ptr cinfo)
617 /* Allocate the in-memory buffers for any unrealized virtual arrays */
619 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
620 size_t space_per_minheight, maximum_space, avail_mem;
621 size_t minheights, max_minheights;
622 jvirt_sarray_ptr sptr;
623 jvirt_barray_ptr bptr;
625 /* Compute the minimum space needed (maxaccess rows in each buffer)
626 * and the maximum space needed (full image height in each buffer).
627 * These may be of use to the system-dependent jpeg_mem_available routine.
629 space_per_minheight = 0;
630 maximum_space = 0;
631 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
632 if (sptr->mem_buffer == NULL) { /* if not realized yet */
633 space_per_minheight += (long) sptr->maxaccess *
634 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
635 maximum_space += (long) sptr->rows_in_array *
636 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
639 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
640 if (bptr->mem_buffer == NULL) { /* if not realized yet */
641 space_per_minheight += (long) bptr->maxaccess *
642 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
643 maximum_space += (long) bptr->rows_in_array *
644 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
648 if (space_per_minheight <= 0)
649 return; /* no unrealized arrays, no work */
651 /* Determine amount of memory to actually use; this is system-dependent. */
652 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
653 mem->total_space_allocated);
655 /* If the maximum space needed is available, make all the buffers full
656 * height; otherwise parcel it out with the same number of minheights
657 * in each buffer.
659 if (avail_mem >= maximum_space)
660 max_minheights = 1000000000L;
661 else {
662 max_minheights = avail_mem / space_per_minheight;
663 /* If there doesn't seem to be enough space, try to get the minimum
664 * anyway. This allows a "stub" implementation of jpeg_mem_available().
666 if (max_minheights <= 0)
667 max_minheights = 1;
670 /* Allocate the in-memory buffers and initialize backing store as needed. */
672 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
673 if (sptr->mem_buffer == NULL) { /* if not realized yet */
674 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
675 if (minheights <= max_minheights) {
676 /* This buffer fits in memory */
677 sptr->rows_in_mem = sptr->rows_in_array;
678 } else {
679 /* It doesn't fit in memory, create backing store. */
680 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
681 jpeg_open_backing_store(cinfo, & sptr->b_s_info,
682 (long) sptr->rows_in_array *
683 (long) sptr->samplesperrow *
684 (long) SIZEOF(JSAMPLE));
685 sptr->b_s_open = TRUE;
687 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
688 sptr->samplesperrow, sptr->rows_in_mem);
689 sptr->rowsperchunk = mem->last_rowsperchunk;
690 sptr->cur_start_row = 0;
691 sptr->first_undef_row = 0;
692 sptr->dirty = FALSE;
696 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
697 if (bptr->mem_buffer == NULL) { /* if not realized yet */
698 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
699 if (minheights <= max_minheights) {
700 /* This buffer fits in memory */
701 bptr->rows_in_mem = bptr->rows_in_array;
702 } else {
703 /* It doesn't fit in memory, create backing store. */
704 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
705 jpeg_open_backing_store(cinfo, & bptr->b_s_info,
706 (long) bptr->rows_in_array *
707 (long) bptr->blocksperrow *
708 (long) SIZEOF(JBLOCK));
709 bptr->b_s_open = TRUE;
711 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
712 bptr->blocksperrow, bptr->rows_in_mem);
713 bptr->rowsperchunk = mem->last_rowsperchunk;
714 bptr->cur_start_row = 0;
715 bptr->first_undef_row = 0;
716 bptr->dirty = FALSE;
722 LOCAL(void)
723 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
724 /* Do backing store read or write of a virtual sample array */
726 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
728 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
729 file_offset = ptr->cur_start_row * bytesperrow;
730 /* Loop to read or write each allocation chunk in mem_buffer */
731 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
732 /* One chunk, but check for short chunk at end of buffer */
733 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
734 /* Transfer no more than is currently defined */
735 thisrow = (long) ptr->cur_start_row + i;
736 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
737 /* Transfer no more than fits in file */
738 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
739 if (rows <= 0) /* this chunk might be past end of file! */
740 break;
741 byte_count = rows * bytesperrow;
742 if (writing)
743 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
744 (void FAR *) ptr->mem_buffer[i],
745 file_offset, byte_count);
746 else
747 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
748 (void FAR *) ptr->mem_buffer[i],
749 file_offset, byte_count);
750 file_offset += byte_count;
755 LOCAL(void)
756 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
757 /* Do backing store read or write of a virtual coefficient-block array */
759 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
761 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
762 file_offset = ptr->cur_start_row * bytesperrow;
763 /* Loop to read or write each allocation chunk in mem_buffer */
764 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
765 /* One chunk, but check for short chunk at end of buffer */
766 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
767 /* Transfer no more than is currently defined */
768 thisrow = (long) ptr->cur_start_row + i;
769 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
770 /* Transfer no more than fits in file */
771 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
772 if (rows <= 0) /* this chunk might be past end of file! */
773 break;
774 byte_count = rows * bytesperrow;
775 if (writing)
776 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
777 (void FAR *) ptr->mem_buffer[i],
778 file_offset, byte_count);
779 else
780 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
781 (void FAR *) ptr->mem_buffer[i],
782 file_offset, byte_count);
783 file_offset += byte_count;
788 METHODDEF(JSAMPARRAY)
789 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
790 JDIMENSION start_row, JDIMENSION num_rows,
791 boolean writable)
792 /* Access the part of a virtual sample array starting at start_row */
793 /* and extending for num_rows rows. writable is true if */
794 /* caller intends to modify the accessed area. */
796 JDIMENSION end_row = start_row + num_rows;
797 JDIMENSION undef_row;
799 /* debugging check */
800 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
801 ptr->mem_buffer == NULL)
802 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
804 /* Make the desired part of the virtual array accessible */
805 if (start_row < ptr->cur_start_row ||
806 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
807 if (! ptr->b_s_open)
808 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
809 /* Flush old buffer contents if necessary */
810 if (ptr->dirty) {
811 do_sarray_io(cinfo, ptr, TRUE);
812 ptr->dirty = FALSE;
814 /* Decide what part of virtual array to access.
815 * Algorithm: if target address > current window, assume forward scan,
816 * load starting at target address. If target address < current window,
817 * assume backward scan, load so that target area is top of window.
818 * Note that when switching from forward write to forward read, will have
819 * start_row = 0, so the limiting case applies and we load from 0 anyway.
821 if (start_row > ptr->cur_start_row) {
822 ptr->cur_start_row = start_row;
823 } else {
824 /* use long arithmetic here to avoid overflow & unsigned problems */
825 long ltemp;
827 ltemp = (long) end_row - (long) ptr->rows_in_mem;
828 if (ltemp < 0)
829 ltemp = 0; /* don't fall off front end of file */
830 ptr->cur_start_row = (JDIMENSION) ltemp;
832 /* Read in the selected part of the array.
833 * During the initial write pass, we will do no actual read
834 * because the selected part is all undefined.
836 do_sarray_io(cinfo, ptr, FALSE);
838 /* Ensure the accessed part of the array is defined; prezero if needed.
839 * To improve locality of access, we only prezero the part of the array
840 * that the caller is about to access, not the entire in-memory array.
842 if (ptr->first_undef_row < end_row) {
843 if (ptr->first_undef_row < start_row) {
844 if (writable) /* writer skipped over a section of array */
845 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
846 undef_row = start_row; /* but reader is allowed to read ahead */
847 } else {
848 undef_row = ptr->first_undef_row;
850 if (writable)
851 ptr->first_undef_row = end_row;
852 if (ptr->pre_zero) {
853 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
854 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
855 end_row -= ptr->cur_start_row;
856 while (undef_row < end_row) {
857 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
858 undef_row++;
860 } else {
861 if (! writable) /* reader looking at undefined data */
862 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
865 /* Flag the buffer dirty if caller will write in it */
866 if (writable)
867 ptr->dirty = TRUE;
868 /* Return address of proper part of the buffer */
869 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
873 METHODDEF(JBLOCKARRAY)
874 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
875 JDIMENSION start_row, JDIMENSION num_rows,
876 boolean writable)
877 /* Access the part of a virtual block array starting at start_row */
878 /* and extending for num_rows rows. writable is true if */
879 /* caller intends to modify the accessed area. */
881 JDIMENSION end_row = start_row + num_rows;
882 JDIMENSION undef_row;
884 /* debugging check */
885 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
886 ptr->mem_buffer == NULL)
887 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
889 /* Make the desired part of the virtual array accessible */
890 if (start_row < ptr->cur_start_row ||
891 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
892 if (! ptr->b_s_open)
893 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
894 /* Flush old buffer contents if necessary */
895 if (ptr->dirty) {
896 do_barray_io(cinfo, ptr, TRUE);
897 ptr->dirty = FALSE;
899 /* Decide what part of virtual array to access.
900 * Algorithm: if target address > current window, assume forward scan,
901 * load starting at target address. If target address < current window,
902 * assume backward scan, load so that target area is top of window.
903 * Note that when switching from forward write to forward read, will have
904 * start_row = 0, so the limiting case applies and we load from 0 anyway.
906 if (start_row > ptr->cur_start_row) {
907 ptr->cur_start_row = start_row;
908 } else {
909 /* use long arithmetic here to avoid overflow & unsigned problems */
910 long ltemp;
912 ltemp = (long) end_row - (long) ptr->rows_in_mem;
913 if (ltemp < 0)
914 ltemp = 0; /* don't fall off front end of file */
915 ptr->cur_start_row = (JDIMENSION) ltemp;
917 /* Read in the selected part of the array.
918 * During the initial write pass, we will do no actual read
919 * because the selected part is all undefined.
921 do_barray_io(cinfo, ptr, FALSE);
923 /* Ensure the accessed part of the array is defined; prezero if needed.
924 * To improve locality of access, we only prezero the part of the array
925 * that the caller is about to access, not the entire in-memory array.
927 if (ptr->first_undef_row < end_row) {
928 if (ptr->first_undef_row < start_row) {
929 if (writable) /* writer skipped over a section of array */
930 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
931 undef_row = start_row; /* but reader is allowed to read ahead */
932 } else {
933 undef_row = ptr->first_undef_row;
935 if (writable)
936 ptr->first_undef_row = end_row;
937 if (ptr->pre_zero) {
938 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
939 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
940 end_row -= ptr->cur_start_row;
941 while (undef_row < end_row) {
942 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
943 undef_row++;
945 } else {
946 if (! writable) /* reader looking at undefined data */
947 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
950 /* Flag the buffer dirty if caller will write in it */
951 if (writable)
952 ptr->dirty = TRUE;
953 /* Return address of proper part of the buffer */
954 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
959 * Release all objects belonging to a specified pool.
962 METHODDEF(void)
963 free_pool (j_common_ptr cinfo, int pool_id)
965 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
966 small_pool_ptr shdr_ptr;
967 large_pool_ptr lhdr_ptr;
968 size_t space_freed;
970 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
971 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
973 #ifdef MEM_STATS
974 if (cinfo->err->trace_level > 1)
975 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
976 #endif
978 /* If freeing IMAGE pool, close any virtual arrays first */
979 if (pool_id == JPOOL_IMAGE) {
980 jvirt_sarray_ptr sptr;
981 jvirt_barray_ptr bptr;
983 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
984 if (sptr->b_s_open) { /* there may be no backing store */
985 sptr->b_s_open = FALSE; /* prevent recursive close if error */
986 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
989 mem->virt_sarray_list = NULL;
990 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
991 if (bptr->b_s_open) { /* there may be no backing store */
992 bptr->b_s_open = FALSE; /* prevent recursive close if error */
993 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
996 mem->virt_barray_list = NULL;
999 /* Release large objects */
1000 lhdr_ptr = mem->large_list[pool_id];
1001 mem->large_list[pool_id] = NULL;
1003 while (lhdr_ptr != NULL) {
1004 large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
1005 space_freed = lhdr_ptr->bytes_used +
1006 lhdr_ptr->bytes_left +
1007 SIZEOF(large_pool_hdr);
1008 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
1009 mem->total_space_allocated -= space_freed;
1010 lhdr_ptr = next_lhdr_ptr;
1013 /* Release small objects */
1014 shdr_ptr = mem->small_list[pool_id];
1015 mem->small_list[pool_id] = NULL;
1017 while (shdr_ptr != NULL) {
1018 small_pool_ptr next_shdr_ptr = shdr_ptr->next;
1019 space_freed = shdr_ptr->bytes_used +
1020 shdr_ptr->bytes_left +
1021 SIZEOF(small_pool_hdr);
1022 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
1023 mem->total_space_allocated -= space_freed;
1024 shdr_ptr = next_shdr_ptr;
1030 * Close up shop entirely.
1031 * Note that this cannot be called unless cinfo->mem is non-NULL.
1034 METHODDEF(void)
1035 self_destruct (j_common_ptr cinfo)
1037 int pool;
1039 /* Close all backing store, release all memory.
1040 * Releasing pools in reverse order might help avoid fragmentation
1041 * with some (brain-damaged) malloc libraries.
1043 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1044 free_pool(cinfo, pool);
1047 /* Release the memory manager control block too. */
1048 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1049 cinfo->mem = NULL; /* ensures I will be called only once */
1051 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1056 * Memory manager initialization.
1057 * When this is called, only the error manager pointer is valid in cinfo!
1060 GLOBAL(void)
1061 jinit_memory_mgr (j_common_ptr cinfo)
1063 my_mem_ptr mem;
1064 long max_to_use;
1065 int pool;
1066 size_t test_mac;
1068 cinfo->mem = NULL; /* for safety if init fails */
1070 /* Check for configuration errors.
1071 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1072 * doesn't reflect any real hardware alignment requirement.
1073 * The test is a little tricky: for X>0, X and X-1 have no one-bits
1074 * in common if and only if X is a power of 2, ie has only one one-bit.
1075 * Some compilers may give an "unreachable code" warning here; ignore it.
1077 if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
1078 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1079 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1080 * a multiple of ALIGN_SIZE.
1081 * Again, an "unreachable code" warning may be ignored here.
1082 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1084 test_mac = (size_t) MAX_ALLOC_CHUNK;
1085 if ((long) test_mac != MAX_ALLOC_CHUNK ||
1086 (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
1087 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1089 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1091 /* Attempt to allocate memory manager's control block */
1092 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1094 if (mem == NULL) {
1095 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1096 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1099 /* OK, fill in the method pointers */
1100 mem->pub.alloc_small = alloc_small;
1101 mem->pub.alloc_large = alloc_large;
1102 mem->pub.alloc_sarray = alloc_sarray;
1103 mem->pub.alloc_barray = alloc_barray;
1104 mem->pub.request_virt_sarray = request_virt_sarray;
1105 mem->pub.request_virt_barray = request_virt_barray;
1106 mem->pub.realize_virt_arrays = realize_virt_arrays;
1107 mem->pub.access_virt_sarray = access_virt_sarray;
1108 mem->pub.access_virt_barray = access_virt_barray;
1109 mem->pub.free_pool = free_pool;
1110 mem->pub.self_destruct = self_destruct;
1112 /* Make MAX_ALLOC_CHUNK accessible to other modules */
1113 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1115 /* Initialize working state */
1116 mem->pub.max_memory_to_use = max_to_use;
1118 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1119 mem->small_list[pool] = NULL;
1120 mem->large_list[pool] = NULL;
1122 mem->virt_sarray_list = NULL;
1123 mem->virt_barray_list = NULL;
1125 mem->total_space_allocated = SIZEOF(my_memory_mgr);
1127 /* Declare ourselves open for business */
1128 cinfo->mem = & mem->pub;
1130 /* Check for an environment variable JPEGMEM; if found, override the
1131 * default max_memory setting from jpeg_mem_init. Note that the
1132 * surrounding application may again override this value.
1133 * If your system doesn't support getenv(), define NO_GETENV to disable
1134 * this feature.
1136 #ifndef NO_GETENV
1137 { char * memenv;
1139 if ((memenv = getenv("JPEGMEM")) != NULL) {
1140 char ch = 'x';
1142 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1143 if (ch == 'm' || ch == 'M')
1144 max_to_use *= 1000L;
1145 mem->pub.max_memory_to_use = max_to_use * 1000L;
1149 #endif