Bumping manifests a=b2g-bump
[gecko.git] / media / libjpeg / jdmainct.c
blob26b816c52d91b11b0866e03f0e0ca9f4becb7de2
1 /*
2 * jdmainct.c
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1994-1996, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2010, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README file.
10 * This file contains the main buffer controller for decompression.
11 * The main buffer lies between the JPEG decompressor proper and the
12 * post-processor; it holds downsampled data in the JPEG colorspace.
14 * Note that this code is bypassed in raw-data mode, since the application
15 * supplies the equivalent of the main buffer in that case.
18 #define JPEG_INTERNALS
19 #include "jinclude.h"
20 #include "jpeglib.h"
21 #include "jpegcomp.h"
25 * In the current system design, the main buffer need never be a full-image
26 * buffer; any full-height buffers will be found inside the coefficient or
27 * postprocessing controllers. Nonetheless, the main controller is not
28 * trivial. Its responsibility is to provide context rows for upsampling/
29 * rescaling, and doing this in an efficient fashion is a bit tricky.
31 * Postprocessor input data is counted in "row groups". A row group
32 * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
33 * sample rows of each component. (We require DCT_scaled_size values to be
34 * chosen such that these numbers are integers. In practice DCT_scaled_size
35 * values will likely be powers of two, so we actually have the stronger
36 * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
37 * Upsampling will typically produce max_v_samp_factor pixel rows from each
38 * row group (times any additional scale factor that the upsampler is
39 * applying).
41 * The coefficient controller will deliver data to us one iMCU row at a time;
42 * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
43 * exactly min_DCT_scaled_size row groups. (This amount of data corresponds
44 * to one row of MCUs when the image is fully interleaved.) Note that the
45 * number of sample rows varies across components, but the number of row
46 * groups does not. Some garbage sample rows may be included in the last iMCU
47 * row at the bottom of the image.
49 * Depending on the vertical scaling algorithm used, the upsampler may need
50 * access to the sample row(s) above and below its current input row group.
51 * The upsampler is required to set need_context_rows TRUE at global selection
52 * time if so. When need_context_rows is FALSE, this controller can simply
53 * obtain one iMCU row at a time from the coefficient controller and dole it
54 * out as row groups to the postprocessor.
56 * When need_context_rows is TRUE, this controller guarantees that the buffer
57 * passed to postprocessing contains at least one row group's worth of samples
58 * above and below the row group(s) being processed. Note that the context
59 * rows "above" the first passed row group appear at negative row offsets in
60 * the passed buffer. At the top and bottom of the image, the required
61 * context rows are manufactured by duplicating the first or last real sample
62 * row; this avoids having special cases in the upsampling inner loops.
64 * The amount of context is fixed at one row group just because that's a
65 * convenient number for this controller to work with. The existing
66 * upsamplers really only need one sample row of context. An upsampler
67 * supporting arbitrary output rescaling might wish for more than one row
68 * group of context when shrinking the image; tough, we don't handle that.
69 * (This is justified by the assumption that downsizing will be handled mostly
70 * by adjusting the DCT_scaled_size values, so that the actual scale factor at
71 * the upsample step needn't be much less than one.)
73 * To provide the desired context, we have to retain the last two row groups
74 * of one iMCU row while reading in the next iMCU row. (The last row group
75 * can't be processed until we have another row group for its below-context,
76 * and so we have to save the next-to-last group too for its above-context.)
77 * We could do this most simply by copying data around in our buffer, but
78 * that'd be very slow. We can avoid copying any data by creating a rather
79 * strange pointer structure. Here's how it works. We allocate a workspace
80 * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
81 * of row groups per iMCU row). We create two sets of redundant pointers to
82 * the workspace. Labeling the physical row groups 0 to M+1, the synthesized
83 * pointer lists look like this:
84 * M+1 M-1
85 * master pointer --> 0 master pointer --> 0
86 * 1 1
87 * ... ...
88 * M-3 M-3
89 * M-2 M
90 * M-1 M+1
91 * M M-2
92 * M+1 M-1
93 * 0 0
94 * We read alternate iMCU rows using each master pointer; thus the last two
95 * row groups of the previous iMCU row remain un-overwritten in the workspace.
96 * The pointer lists are set up so that the required context rows appear to
97 * be adjacent to the proper places when we pass the pointer lists to the
98 * upsampler.
100 * The above pictures describe the normal state of the pointer lists.
101 * At top and bottom of the image, we diddle the pointer lists to duplicate
102 * the first or last sample row as necessary (this is cheaper than copying
103 * sample rows around).
105 * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
106 * situation each iMCU row provides only one row group so the buffering logic
107 * must be different (eg, we must read two iMCU rows before we can emit the
108 * first row group). For now, we simply do not support providing context
109 * rows when min_DCT_scaled_size is 1. That combination seems unlikely to
110 * be worth providing --- if someone wants a 1/8th-size preview, they probably
111 * want it quick and dirty, so a context-free upsampler is sufficient.
115 /* Private buffer controller object */
117 typedef struct {
118 struct jpeg_d_main_controller pub; /* public fields */
120 /* Pointer to allocated workspace (M or M+2 row groups). */
121 JSAMPARRAY buffer[MAX_COMPONENTS];
123 boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
124 JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
126 /* Remaining fields are only used in the context case. */
128 /* These are the master pointers to the funny-order pointer lists. */
129 JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
131 int whichptr; /* indicates which pointer set is now in use */
132 int context_state; /* process_data state machine status */
133 JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
134 JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
135 } my_main_controller;
137 typedef my_main_controller * my_main_ptr;
139 /* context_state values: */
140 #define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
141 #define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
142 #define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
145 /* Forward declarations */
146 METHODDEF(void) process_data_simple_main
147 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
148 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
149 METHODDEF(void) process_data_context_main
150 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
151 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
152 #ifdef QUANT_2PASS_SUPPORTED
153 METHODDEF(void) process_data_crank_post
154 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
155 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
156 #endif
159 LOCAL(void)
160 alloc_funny_pointers (j_decompress_ptr cinfo)
161 /* Allocate space for the funny pointer lists.
162 * This is done only once, not once per pass.
165 my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
166 int ci, rgroup;
167 int M = cinfo->_min_DCT_scaled_size;
168 jpeg_component_info *compptr;
169 JSAMPARRAY xbuf;
171 /* Get top-level space for component array pointers.
172 * We alloc both arrays with one call to save a few cycles.
174 main_ptr->xbuffer[0] = (JSAMPIMAGE)
175 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
176 cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
177 main_ptr->xbuffer[1] = main_ptr->xbuffer[0] + cinfo->num_components;
179 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
180 ci++, compptr++) {
181 rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
182 cinfo->_min_DCT_scaled_size; /* height of a row group of component */
183 /* Get space for pointer lists --- M+4 row groups in each list.
184 * We alloc both pointer lists with one call to save a few cycles.
186 xbuf = (JSAMPARRAY)
187 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
188 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
189 xbuf += rgroup; /* want one row group at negative offsets */
190 main_ptr->xbuffer[0][ci] = xbuf;
191 xbuf += rgroup * (M + 4);
192 main_ptr->xbuffer[1][ci] = xbuf;
197 LOCAL(void)
198 make_funny_pointers (j_decompress_ptr cinfo)
199 /* Create the funny pointer lists discussed in the comments above.
200 * The actual workspace is already allocated (in main_ptr->buffer),
201 * and the space for the pointer lists is allocated too.
202 * This routine just fills in the curiously ordered lists.
203 * This will be repeated at the beginning of each pass.
206 my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
207 int ci, i, rgroup;
208 int M = cinfo->_min_DCT_scaled_size;
209 jpeg_component_info *compptr;
210 JSAMPARRAY buf, xbuf0, xbuf1;
212 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
213 ci++, compptr++) {
214 rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
215 cinfo->_min_DCT_scaled_size; /* height of a row group of component */
216 xbuf0 = main_ptr->xbuffer[0][ci];
217 xbuf1 = main_ptr->xbuffer[1][ci];
218 /* First copy the workspace pointers as-is */
219 buf = main_ptr->buffer[ci];
220 for (i = 0; i < rgroup * (M + 2); i++) {
221 xbuf0[i] = xbuf1[i] = buf[i];
223 /* In the second list, put the last four row groups in swapped order */
224 for (i = 0; i < rgroup * 2; i++) {
225 xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
226 xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
228 /* The wraparound pointers at top and bottom will be filled later
229 * (see set_wraparound_pointers, below). Initially we want the "above"
230 * pointers to duplicate the first actual data line. This only needs
231 * to happen in xbuffer[0].
233 for (i = 0; i < rgroup; i++) {
234 xbuf0[i - rgroup] = xbuf0[0];
240 LOCAL(void)
241 set_wraparound_pointers (j_decompress_ptr cinfo)
242 /* Set up the "wraparound" pointers at top and bottom of the pointer lists.
243 * This changes the pointer list state from top-of-image to the normal state.
246 my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
247 int ci, i, rgroup;
248 int M = cinfo->_min_DCT_scaled_size;
249 jpeg_component_info *compptr;
250 JSAMPARRAY xbuf0, xbuf1;
252 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
253 ci++, compptr++) {
254 rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
255 cinfo->_min_DCT_scaled_size; /* height of a row group of component */
256 xbuf0 = main_ptr->xbuffer[0][ci];
257 xbuf1 = main_ptr->xbuffer[1][ci];
258 for (i = 0; i < rgroup; i++) {
259 xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
260 xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
261 xbuf0[rgroup*(M+2) + i] = xbuf0[i];
262 xbuf1[rgroup*(M+2) + i] = xbuf1[i];
268 LOCAL(void)
269 set_bottom_pointers (j_decompress_ptr cinfo)
270 /* Change the pointer lists to duplicate the last sample row at the bottom
271 * of the image. whichptr indicates which xbuffer holds the final iMCU row.
272 * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
275 my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
276 int ci, i, rgroup, iMCUheight, rows_left;
277 jpeg_component_info *compptr;
278 JSAMPARRAY xbuf;
280 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
281 ci++, compptr++) {
282 /* Count sample rows in one iMCU row and in one row group */
283 iMCUheight = compptr->v_samp_factor * compptr->_DCT_scaled_size;
284 rgroup = iMCUheight / cinfo->_min_DCT_scaled_size;
285 /* Count nondummy sample rows remaining for this component */
286 rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
287 if (rows_left == 0) rows_left = iMCUheight;
288 /* Count nondummy row groups. Should get same answer for each component,
289 * so we need only do it once.
291 if (ci == 0) {
292 main_ptr->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
294 /* Duplicate the last real sample row rgroup*2 times; this pads out the
295 * last partial rowgroup and ensures at least one full rowgroup of context.
297 xbuf = main_ptr->xbuffer[main_ptr->whichptr][ci];
298 for (i = 0; i < rgroup * 2; i++) {
299 xbuf[rows_left + i] = xbuf[rows_left-1];
306 * Initialize for a processing pass.
309 METHODDEF(void)
310 start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
312 my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
314 switch (pass_mode) {
315 case JBUF_PASS_THRU:
316 if (cinfo->upsample->need_context_rows) {
317 main_ptr->pub.process_data = process_data_context_main;
318 make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
319 main_ptr->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
320 main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
321 main_ptr->iMCU_row_ctr = 0;
322 } else {
323 /* Simple case with no context needed */
324 main_ptr->pub.process_data = process_data_simple_main;
326 main_ptr->buffer_full = FALSE; /* Mark buffer empty */
327 main_ptr->rowgroup_ctr = 0;
328 break;
329 #ifdef QUANT_2PASS_SUPPORTED
330 case JBUF_CRANK_DEST:
331 /* For last pass of 2-pass quantization, just crank the postprocessor */
332 main_ptr->pub.process_data = process_data_crank_post;
333 break;
334 #endif
335 default:
336 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
337 break;
343 * Process some data.
344 * This handles the simple case where no context is required.
347 METHODDEF(void)
348 process_data_simple_main (j_decompress_ptr cinfo,
349 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
350 JDIMENSION out_rows_avail)
352 my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
353 JDIMENSION rowgroups_avail;
355 /* Read input data if we haven't filled the main buffer yet */
356 if (! main_ptr->buffer_full) {
357 if (! (*cinfo->coef->decompress_data) (cinfo, main_ptr->buffer))
358 return; /* suspension forced, can do nothing more */
359 main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
362 /* There are always min_DCT_scaled_size row groups in an iMCU row. */
363 rowgroups_avail = (JDIMENSION) cinfo->_min_DCT_scaled_size;
364 /* Note: at the bottom of the image, we may pass extra garbage row groups
365 * to the postprocessor. The postprocessor has to check for bottom
366 * of image anyway (at row resolution), so no point in us doing it too.
369 /* Feed the postprocessor */
370 (*cinfo->post->post_process_data) (cinfo, main_ptr->buffer,
371 &main_ptr->rowgroup_ctr, rowgroups_avail,
372 output_buf, out_row_ctr, out_rows_avail);
374 /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
375 if (main_ptr->rowgroup_ctr >= rowgroups_avail) {
376 main_ptr->buffer_full = FALSE;
377 main_ptr->rowgroup_ctr = 0;
383 * Process some data.
384 * This handles the case where context rows must be provided.
387 METHODDEF(void)
388 process_data_context_main (j_decompress_ptr cinfo,
389 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
390 JDIMENSION out_rows_avail)
392 my_main_ptr main_ptr = (my_main_ptr) cinfo->main;
394 /* Read input data if we haven't filled the main buffer yet */
395 if (! main_ptr->buffer_full) {
396 if (! (*cinfo->coef->decompress_data) (cinfo,
397 main_ptr->xbuffer[main_ptr->whichptr]))
398 return; /* suspension forced, can do nothing more */
399 main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
400 main_ptr->iMCU_row_ctr++; /* count rows received */
403 /* Postprocessor typically will not swallow all the input data it is handed
404 * in one call (due to filling the output buffer first). Must be prepared
405 * to exit and restart. This switch lets us keep track of how far we got.
406 * Note that each case falls through to the next on successful completion.
408 switch (main_ptr->context_state) {
409 case CTX_POSTPONED_ROW:
410 /* Call postprocessor using previously set pointers for postponed row */
411 (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr],
412 &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail,
413 output_buf, out_row_ctr, out_rows_avail);
414 if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail)
415 return; /* Need to suspend */
416 main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
417 if (*out_row_ctr >= out_rows_avail)
418 return; /* Postprocessor exactly filled output buf */
419 /*FALLTHROUGH*/
420 case CTX_PREPARE_FOR_IMCU:
421 /* Prepare to process first M-1 row groups of this iMCU row */
422 main_ptr->rowgroup_ctr = 0;
423 main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->_min_DCT_scaled_size - 1);
424 /* Check for bottom of image: if so, tweak pointers to "duplicate"
425 * the last sample row, and adjust rowgroups_avail to ignore padding rows.
427 if (main_ptr->iMCU_row_ctr == cinfo->total_iMCU_rows)
428 set_bottom_pointers(cinfo);
429 main_ptr->context_state = CTX_PROCESS_IMCU;
430 /*FALLTHROUGH*/
431 case CTX_PROCESS_IMCU:
432 /* Call postprocessor using previously set pointers */
433 (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr],
434 &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail,
435 output_buf, out_row_ctr, out_rows_avail);
436 if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail)
437 return; /* Need to suspend */
438 /* After the first iMCU, change wraparound pointers to normal state */
439 if (main_ptr->iMCU_row_ctr == 1)
440 set_wraparound_pointers(cinfo);
441 /* Prepare to load new iMCU row using other xbuffer list */
442 main_ptr->whichptr ^= 1; /* 0=>1 or 1=>0 */
443 main_ptr->buffer_full = FALSE;
444 /* Still need to process last row group of this iMCU row, */
445 /* which is saved at index M+1 of the other xbuffer */
446 main_ptr->rowgroup_ctr = (JDIMENSION) (cinfo->_min_DCT_scaled_size + 1);
447 main_ptr->rowgroups_avail = (JDIMENSION) (cinfo->_min_DCT_scaled_size + 2);
448 main_ptr->context_state = CTX_POSTPONED_ROW;
454 * Process some data.
455 * Final pass of two-pass quantization: just call the postprocessor.
456 * Source data will be the postprocessor controller's internal buffer.
459 #ifdef QUANT_2PASS_SUPPORTED
461 METHODDEF(void)
462 process_data_crank_post (j_decompress_ptr cinfo,
463 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
464 JDIMENSION out_rows_avail)
466 (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
467 (JDIMENSION *) NULL, (JDIMENSION) 0,
468 output_buf, out_row_ctr, out_rows_avail);
471 #endif /* QUANT_2PASS_SUPPORTED */
475 * Initialize main buffer controller.
478 GLOBAL(void)
479 jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
481 my_main_ptr main_ptr;
482 int ci, rgroup, ngroups;
483 jpeg_component_info *compptr;
485 main_ptr = (my_main_ptr)
486 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
487 SIZEOF(my_main_controller));
488 cinfo->main = (struct jpeg_d_main_controller *) main_ptr;
489 main_ptr->pub.start_pass = start_pass_main;
491 if (need_full_buffer) /* shouldn't happen */
492 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
494 /* Allocate the workspace.
495 * ngroups is the number of row groups we need.
497 if (cinfo->upsample->need_context_rows) {
498 if (cinfo->_min_DCT_scaled_size < 2) /* unsupported, see comments above */
499 ERREXIT(cinfo, JERR_NOTIMPL);
500 alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
501 ngroups = cinfo->_min_DCT_scaled_size + 2;
502 } else {
503 ngroups = cinfo->_min_DCT_scaled_size;
506 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
507 ci++, compptr++) {
508 rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
509 cinfo->_min_DCT_scaled_size; /* height of a row group of component */
510 main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray)
511 ((j_common_ptr) cinfo, JPOOL_IMAGE,
512 compptr->width_in_blocks * compptr->_DCT_scaled_size,
513 (JDIMENSION) (rgroup * ngroups));