Bumping manifests a=b2g-bump
[gecko.git] / media / libjpeg / jdhuff.c
blobd21d39925aef09b290e4f643f646cd87b7302502
1 /*
2 * jdhuff.c
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009-2011, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README file.
10 * This file contains Huffman entropy decoding routines.
12 * Much of the complexity here has to do with supporting input suspension.
13 * If the data source module demands suspension, we want to be able to back
14 * up to the start of the current MCU. To do this, we copy state variables
15 * into local working storage, and update them back to the permanent
16 * storage only upon successful completion of an MCU.
19 #define JPEG_INTERNALS
20 #include "jinclude.h"
21 #include "jpeglib.h"
22 #include "jdhuff.h" /* Declarations shared with jdphuff.c */
23 #include "jpegcomp.h"
24 #include "jstdhuff.c"
28 * Expanded entropy decoder object for Huffman decoding.
30 * The savable_state subrecord contains fields that change within an MCU,
31 * but must not be updated permanently until we complete the MCU.
34 typedef struct {
35 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
36 } savable_state;
38 /* This macro is to work around compilers with missing or broken
39 * structure assignment. You'll need to fix this code if you have
40 * such a compiler and you change MAX_COMPS_IN_SCAN.
43 #ifndef NO_STRUCT_ASSIGN
44 #define ASSIGN_STATE(dest,src) ((dest) = (src))
45 #else
46 #if MAX_COMPS_IN_SCAN == 4
47 #define ASSIGN_STATE(dest,src) \
48 ((dest).last_dc_val[0] = (src).last_dc_val[0], \
49 (dest).last_dc_val[1] = (src).last_dc_val[1], \
50 (dest).last_dc_val[2] = (src).last_dc_val[2], \
51 (dest).last_dc_val[3] = (src).last_dc_val[3])
52 #endif
53 #endif
56 typedef struct {
57 struct jpeg_entropy_decoder pub; /* public fields */
59 /* These fields are loaded into local variables at start of each MCU.
60 * In case of suspension, we exit WITHOUT updating them.
62 bitread_perm_state bitstate; /* Bit buffer at start of MCU */
63 savable_state saved; /* Other state at start of MCU */
65 /* These fields are NOT loaded into local working state. */
66 unsigned int restarts_to_go; /* MCUs left in this restart interval */
68 /* Pointers to derived tables (these workspaces have image lifespan) */
69 d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
70 d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
72 /* Precalculated info set up by start_pass for use in decode_mcu: */
74 /* Pointers to derived tables to be used for each block within an MCU */
75 d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
76 d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
77 /* Whether we care about the DC and AC coefficient values for each block */
78 boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
79 boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
80 } huff_entropy_decoder;
82 typedef huff_entropy_decoder * huff_entropy_ptr;
86 * Initialize for a Huffman-compressed scan.
89 METHODDEF(void)
90 start_pass_huff_decoder (j_decompress_ptr cinfo)
92 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
93 int ci, blkn, dctbl, actbl;
94 jpeg_component_info * compptr;
96 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
97 * This ought to be an error condition, but we make it a warning because
98 * there are some baseline files out there with all zeroes in these bytes.
100 if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
101 cinfo->Ah != 0 || cinfo->Al != 0)
102 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
104 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
105 compptr = cinfo->cur_comp_info[ci];
106 dctbl = compptr->dc_tbl_no;
107 actbl = compptr->ac_tbl_no;
108 /* Compute derived values for Huffman tables */
109 /* We may do this more than once for a table, but it's not expensive */
110 jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
111 & entropy->dc_derived_tbls[dctbl]);
112 jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
113 & entropy->ac_derived_tbls[actbl]);
114 /* Initialize DC predictions to 0 */
115 entropy->saved.last_dc_val[ci] = 0;
118 /* Precalculate decoding info for each block in an MCU of this scan */
119 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
120 ci = cinfo->MCU_membership[blkn];
121 compptr = cinfo->cur_comp_info[ci];
122 /* Precalculate which table to use for each block */
123 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
124 entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
125 /* Decide whether we really care about the coefficient values */
126 if (compptr->component_needed) {
127 entropy->dc_needed[blkn] = TRUE;
128 /* we don't need the ACs if producing a 1/8th-size image */
129 entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
130 } else {
131 entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
135 /* Initialize bitread state variables */
136 entropy->bitstate.bits_left = 0;
137 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
138 entropy->pub.insufficient_data = FALSE;
140 /* Initialize restart counter */
141 entropy->restarts_to_go = cinfo->restart_interval;
146 * Compute the derived values for a Huffman table.
147 * This routine also performs some validation checks on the table.
149 * Note this is also used by jdphuff.c.
152 GLOBAL(void)
153 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
154 d_derived_tbl ** pdtbl)
156 JHUFF_TBL *htbl;
157 d_derived_tbl *dtbl;
158 int p, i, l, si, numsymbols;
159 int lookbits, ctr;
160 char huffsize[257];
161 unsigned int huffcode[257];
162 unsigned int code;
164 /* Note that huffsize[] and huffcode[] are filled in code-length order,
165 * paralleling the order of the symbols themselves in htbl->huffval[].
168 /* Find the input Huffman table */
169 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
170 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
171 htbl =
172 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
173 if (htbl == NULL)
174 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
176 /* Allocate a workspace if we haven't already done so. */
177 if (*pdtbl == NULL)
178 *pdtbl = (d_derived_tbl *)
179 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
180 SIZEOF(d_derived_tbl));
181 dtbl = *pdtbl;
182 dtbl->pub = htbl; /* fill in back link */
184 /* Figure C.1: make table of Huffman code length for each symbol */
186 p = 0;
187 for (l = 1; l <= 16; l++) {
188 i = (int) htbl->bits[l];
189 if (i < 0 || p + i > 256) /* protect against table overrun */
190 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
191 while (i--)
192 huffsize[p++] = (char) l;
194 huffsize[p] = 0;
195 numsymbols = p;
197 /* Figure C.2: generate the codes themselves */
198 /* We also validate that the counts represent a legal Huffman code tree. */
200 code = 0;
201 si = huffsize[0];
202 p = 0;
203 while (huffsize[p]) {
204 while (((int) huffsize[p]) == si) {
205 huffcode[p++] = code;
206 code++;
208 /* code is now 1 more than the last code used for codelength si; but
209 * it must still fit in si bits, since no code is allowed to be all ones.
211 if (((INT32) code) >= (((INT32) 1) << si))
212 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
213 code <<= 1;
214 si++;
217 /* Figure F.15: generate decoding tables for bit-sequential decoding */
219 p = 0;
220 for (l = 1; l <= 16; l++) {
221 if (htbl->bits[l]) {
222 /* valoffset[l] = huffval[] index of 1st symbol of code length l,
223 * minus the minimum code of length l
225 dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
226 p += htbl->bits[l];
227 dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
228 } else {
229 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
232 dtbl->valoffset[17] = 0;
233 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
235 /* Compute lookahead tables to speed up decoding.
236 * First we set all the table entries to 0, indicating "too long";
237 * then we iterate through the Huffman codes that are short enough and
238 * fill in all the entries that correspond to bit sequences starting
239 * with that code.
242 for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
243 dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
245 p = 0;
246 for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
247 for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
248 /* l = current code's length, p = its index in huffcode[] & huffval[]. */
249 /* Generate left-justified code followed by all possible bit sequences */
250 lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
251 for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
252 dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
253 lookbits++;
258 /* Validate symbols as being reasonable.
259 * For AC tables, we make no check, but accept all byte values 0..255.
260 * For DC tables, we require the symbols to be in range 0..15.
261 * (Tighter bounds could be applied depending on the data depth and mode,
262 * but this is sufficient to ensure safe decoding.)
264 if (isDC) {
265 for (i = 0; i < numsymbols; i++) {
266 int sym = htbl->huffval[i];
267 if (sym < 0 || sym > 15)
268 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
275 * Out-of-line code for bit fetching (shared with jdphuff.c).
276 * See jdhuff.h for info about usage.
277 * Note: current values of get_buffer and bits_left are passed as parameters,
278 * but are returned in the corresponding fields of the state struct.
280 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
281 * of get_buffer to be used. (On machines with wider words, an even larger
282 * buffer could be used.) However, on some machines 32-bit shifts are
283 * quite slow and take time proportional to the number of places shifted.
284 * (This is true with most PC compilers, for instance.) In this case it may
285 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
286 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
289 #ifdef SLOW_SHIFT_32
290 #define MIN_GET_BITS 15 /* minimum allowable value */
291 #else
292 #define MIN_GET_BITS (BIT_BUF_SIZE-7)
293 #endif
296 GLOBAL(boolean)
297 jpeg_fill_bit_buffer (bitread_working_state * state,
298 register bit_buf_type get_buffer, register int bits_left,
299 int nbits)
300 /* Load up the bit buffer to a depth of at least nbits */
302 /* Copy heavily used state fields into locals (hopefully registers) */
303 register const JOCTET * next_input_byte = state->next_input_byte;
304 register size_t bytes_in_buffer = state->bytes_in_buffer;
305 j_decompress_ptr cinfo = state->cinfo;
307 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
308 /* (It is assumed that no request will be for more than that many bits.) */
309 /* We fail to do so only if we hit a marker or are forced to suspend. */
311 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
312 while (bits_left < MIN_GET_BITS) {
313 register int c;
315 /* Attempt to read a byte */
316 if (bytes_in_buffer == 0) {
317 if (! (*cinfo->src->fill_input_buffer) (cinfo))
318 return FALSE;
319 next_input_byte = cinfo->src->next_input_byte;
320 bytes_in_buffer = cinfo->src->bytes_in_buffer;
322 bytes_in_buffer--;
323 c = GETJOCTET(*next_input_byte++);
325 /* If it's 0xFF, check and discard stuffed zero byte */
326 if (c == 0xFF) {
327 /* Loop here to discard any padding FF's on terminating marker,
328 * so that we can save a valid unread_marker value. NOTE: we will
329 * accept multiple FF's followed by a 0 as meaning a single FF data
330 * byte. This data pattern is not valid according to the standard.
332 do {
333 if (bytes_in_buffer == 0) {
334 if (! (*cinfo->src->fill_input_buffer) (cinfo))
335 return FALSE;
336 next_input_byte = cinfo->src->next_input_byte;
337 bytes_in_buffer = cinfo->src->bytes_in_buffer;
339 bytes_in_buffer--;
340 c = GETJOCTET(*next_input_byte++);
341 } while (c == 0xFF);
343 if (c == 0) {
344 /* Found FF/00, which represents an FF data byte */
345 c = 0xFF;
346 } else {
347 /* Oops, it's actually a marker indicating end of compressed data.
348 * Save the marker code for later use.
349 * Fine point: it might appear that we should save the marker into
350 * bitread working state, not straight into permanent state. But
351 * once we have hit a marker, we cannot need to suspend within the
352 * current MCU, because we will read no more bytes from the data
353 * source. So it is OK to update permanent state right away.
355 cinfo->unread_marker = c;
356 /* See if we need to insert some fake zero bits. */
357 goto no_more_bytes;
361 /* OK, load c into get_buffer */
362 get_buffer = (get_buffer << 8) | c;
363 bits_left += 8;
364 } /* end while */
365 } else {
366 no_more_bytes:
367 /* We get here if we've read the marker that terminates the compressed
368 * data segment. There should be enough bits in the buffer register
369 * to satisfy the request; if so, no problem.
371 if (nbits > bits_left) {
372 /* Uh-oh. Report corrupted data to user and stuff zeroes into
373 * the data stream, so that we can produce some kind of image.
374 * We use a nonvolatile flag to ensure that only one warning message
375 * appears per data segment.
377 if (! cinfo->entropy->insufficient_data) {
378 WARNMS(cinfo, JWRN_HIT_MARKER);
379 cinfo->entropy->insufficient_data = TRUE;
381 /* Fill the buffer with zero bits */
382 get_buffer <<= MIN_GET_BITS - bits_left;
383 bits_left = MIN_GET_BITS;
387 /* Unload the local registers */
388 state->next_input_byte = next_input_byte;
389 state->bytes_in_buffer = bytes_in_buffer;
390 state->get_buffer = get_buffer;
391 state->bits_left = bits_left;
393 return TRUE;
397 /* Macro version of the above, which performs much better but does not
398 handle markers. We have to hand off any blocks with markers to the
399 slower routines. */
401 #define GET_BYTE \
403 register int c0, c1; \
404 c0 = GETJOCTET(*buffer++); \
405 c1 = GETJOCTET(*buffer); \
406 /* Pre-execute most common case */ \
407 get_buffer = (get_buffer << 8) | c0; \
408 bits_left += 8; \
409 if (c0 == 0xFF) { \
410 /* Pre-execute case of FF/00, which represents an FF data byte */ \
411 buffer++; \
412 if (c1 != 0) { \
413 /* Oops, it's actually a marker indicating end of compressed data. */ \
414 cinfo->unread_marker = c1; \
415 /* Back out pre-execution and fill the buffer with zero bits */ \
416 buffer -= 2; \
417 get_buffer &= ~0xFF; \
422 #if __WORDSIZE == 64 || defined(_WIN64)
424 /* Pre-fetch 48 bytes, because the holding register is 64-bit */
425 #define FILL_BIT_BUFFER_FAST \
426 if (bits_left < 16) { \
427 GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
430 #else
432 /* Pre-fetch 16 bytes, because the holding register is 32-bit */
433 #define FILL_BIT_BUFFER_FAST \
434 if (bits_left < 16) { \
435 GET_BYTE GET_BYTE \
438 #endif
442 * Out-of-line code for Huffman code decoding.
443 * See jdhuff.h for info about usage.
446 GLOBAL(int)
447 jpeg_huff_decode (bitread_working_state * state,
448 register bit_buf_type get_buffer, register int bits_left,
449 d_derived_tbl * htbl, int min_bits)
451 register int l = min_bits;
452 register INT32 code;
454 /* HUFF_DECODE has determined that the code is at least min_bits */
455 /* bits long, so fetch that many bits in one swoop. */
457 CHECK_BIT_BUFFER(*state, l, return -1);
458 code = GET_BITS(l);
460 /* Collect the rest of the Huffman code one bit at a time. */
461 /* This is per Figure F.16 in the JPEG spec. */
463 while (code > htbl->maxcode[l]) {
464 code <<= 1;
465 CHECK_BIT_BUFFER(*state, 1, return -1);
466 code |= GET_BITS(1);
467 l++;
470 /* Unload the local registers */
471 state->get_buffer = get_buffer;
472 state->bits_left = bits_left;
474 /* With garbage input we may reach the sentinel value l = 17. */
476 if (l > 16) {
477 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
478 return 0; /* fake a zero as the safest result */
481 return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
486 * Figure F.12: extend sign bit.
487 * On some machines, a shift and add will be faster than a table lookup.
490 #define AVOID_TABLES
491 #ifdef AVOID_TABLES
493 #define HUFF_EXTEND(x,s) ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((-1)<<(s)) + 1)))
495 #else
497 #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
499 static const int extend_test[16] = /* entry n is 2**(n-1) */
500 { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
501 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
503 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
504 { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
505 ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
506 ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
507 ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
509 #endif /* AVOID_TABLES */
513 * Check for a restart marker & resynchronize decoder.
514 * Returns FALSE if must suspend.
517 LOCAL(boolean)
518 process_restart (j_decompress_ptr cinfo)
520 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
521 int ci;
523 /* Throw away any unused bits remaining in bit buffer; */
524 /* include any full bytes in next_marker's count of discarded bytes */
525 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
526 entropy->bitstate.bits_left = 0;
528 /* Advance past the RSTn marker */
529 if (! (*cinfo->marker->read_restart_marker) (cinfo))
530 return FALSE;
532 /* Re-initialize DC predictions to 0 */
533 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
534 entropy->saved.last_dc_val[ci] = 0;
536 /* Reset restart counter */
537 entropy->restarts_to_go = cinfo->restart_interval;
539 /* Reset out-of-data flag, unless read_restart_marker left us smack up
540 * against a marker. In that case we will end up treating the next data
541 * segment as empty, and we can avoid producing bogus output pixels by
542 * leaving the flag set.
544 if (cinfo->unread_marker == 0)
545 entropy->pub.insufficient_data = FALSE;
547 return TRUE;
551 LOCAL(boolean)
552 decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
554 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
555 BITREAD_STATE_VARS;
556 int blkn;
557 savable_state state;
558 /* Outer loop handles each block in the MCU */
560 /* Load up working state */
561 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
562 ASSIGN_STATE(state, entropy->saved);
564 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
565 JBLOCKROW block = MCU_data[blkn];
566 d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
567 d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
568 register int s, k, r;
570 /* Decode a single block's worth of coefficients */
572 /* Section F.2.2.1: decode the DC coefficient difference */
573 HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
574 if (s) {
575 CHECK_BIT_BUFFER(br_state, s, return FALSE);
576 r = GET_BITS(s);
577 s = HUFF_EXTEND(r, s);
580 if (entropy->dc_needed[blkn]) {
581 /* Convert DC difference to actual value, update last_dc_val */
582 int ci = cinfo->MCU_membership[blkn];
583 s += state.last_dc_val[ci];
584 state.last_dc_val[ci] = s;
585 /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
586 (*block)[0] = (JCOEF) s;
589 if (entropy->ac_needed[blkn]) {
591 /* Section F.2.2.2: decode the AC coefficients */
592 /* Since zeroes are skipped, output area must be cleared beforehand */
593 for (k = 1; k < DCTSIZE2; k++) {
594 HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
596 r = s >> 4;
597 s &= 15;
599 if (s) {
600 k += r;
601 CHECK_BIT_BUFFER(br_state, s, return FALSE);
602 r = GET_BITS(s);
603 s = HUFF_EXTEND(r, s);
604 /* Output coefficient in natural (dezigzagged) order.
605 * Note: the extra entries in jpeg_natural_order[] will save us
606 * if k >= DCTSIZE2, which could happen if the data is corrupted.
608 (*block)[jpeg_natural_order[k]] = (JCOEF) s;
609 } else {
610 if (r != 15)
611 break;
612 k += 15;
616 } else {
618 /* Section F.2.2.2: decode the AC coefficients */
619 /* In this path we just discard the values */
620 for (k = 1; k < DCTSIZE2; k++) {
621 HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
623 r = s >> 4;
624 s &= 15;
626 if (s) {
627 k += r;
628 CHECK_BIT_BUFFER(br_state, s, return FALSE);
629 DROP_BITS(s);
630 } else {
631 if (r != 15)
632 break;
633 k += 15;
639 /* Completed MCU, so update state */
640 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
641 ASSIGN_STATE(entropy->saved, state);
642 return TRUE;
646 LOCAL(boolean)
647 decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
649 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
650 BITREAD_STATE_VARS;
651 JOCTET *buffer;
652 int blkn;
653 savable_state state;
654 /* Outer loop handles each block in the MCU */
656 /* Load up working state */
657 BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
658 buffer = (JOCTET *) br_state.next_input_byte;
659 ASSIGN_STATE(state, entropy->saved);
661 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
662 JBLOCKROW block = MCU_data[blkn];
663 d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
664 d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
665 register int s, k, r, l;
667 HUFF_DECODE_FAST(s, l, dctbl);
668 if (s) {
669 FILL_BIT_BUFFER_FAST
670 r = GET_BITS(s);
671 s = HUFF_EXTEND(r, s);
674 if (entropy->dc_needed[blkn]) {
675 int ci = cinfo->MCU_membership[blkn];
676 s += state.last_dc_val[ci];
677 state.last_dc_val[ci] = s;
678 (*block)[0] = (JCOEF) s;
681 if (entropy->ac_needed[blkn]) {
683 for (k = 1; k < DCTSIZE2; k++) {
684 HUFF_DECODE_FAST(s, l, actbl);
685 r = s >> 4;
686 s &= 15;
688 if (s) {
689 k += r;
690 FILL_BIT_BUFFER_FAST
691 r = GET_BITS(s);
692 s = HUFF_EXTEND(r, s);
693 (*block)[jpeg_natural_order[k]] = (JCOEF) s;
694 } else {
695 if (r != 15) break;
696 k += 15;
700 } else {
702 for (k = 1; k < DCTSIZE2; k++) {
703 HUFF_DECODE_FAST(s, l, actbl);
704 r = s >> 4;
705 s &= 15;
707 if (s) {
708 k += r;
709 FILL_BIT_BUFFER_FAST
710 DROP_BITS(s);
711 } else {
712 if (r != 15) break;
713 k += 15;
719 if (cinfo->unread_marker != 0) {
720 cinfo->unread_marker = 0;
721 return FALSE;
724 br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
725 br_state.next_input_byte = buffer;
726 BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
727 ASSIGN_STATE(entropy->saved, state);
728 return TRUE;
733 * Decode and return one MCU's worth of Huffman-compressed coefficients.
734 * The coefficients are reordered from zigzag order into natural array order,
735 * but are not dequantized.
737 * The i'th block of the MCU is stored into the block pointed to by
738 * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
739 * (Wholesale zeroing is usually a little faster than retail...)
741 * Returns FALSE if data source requested suspension. In that case no
742 * changes have been made to permanent state. (Exception: some output
743 * coefficients may already have been assigned. This is harmless for
744 * this module, since we'll just re-assign them on the next call.)
747 #define BUFSIZE (DCTSIZE2 * 2)
749 METHODDEF(boolean)
750 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
752 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
753 int usefast = 1;
755 /* Process restart marker if needed; may have to suspend */
756 if (cinfo->restart_interval) {
757 if (entropy->restarts_to_go == 0)
758 if (! process_restart(cinfo))
759 return FALSE;
760 usefast = 0;
763 if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU
764 || cinfo->unread_marker != 0)
765 usefast = 0;
767 /* If we've run out of data, just leave the MCU set to zeroes.
768 * This way, we return uniform gray for the remainder of the segment.
770 if (! entropy->pub.insufficient_data) {
772 if (usefast) {
773 if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
775 else {
776 use_slow:
777 if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
782 /* Account for restart interval (no-op if not using restarts) */
783 entropy->restarts_to_go--;
785 return TRUE;
790 * Module initialization routine for Huffman entropy decoding.
793 GLOBAL(void)
794 jinit_huff_decoder (j_decompress_ptr cinfo)
796 huff_entropy_ptr entropy;
797 int i;
799 /* Motion JPEG frames typically do not include the Huffman tables if they
800 are the default tables. Thus, if the tables are not set by the time
801 the Huffman decoder is initialized (usually within the body of
802 jpeg_start_decompress()), we set them to default values. */
803 std_huff_tables((j_common_ptr) cinfo);
805 entropy = (huff_entropy_ptr)
806 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
807 SIZEOF(huff_entropy_decoder));
808 cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
809 entropy->pub.start_pass = start_pass_huff_decoder;
810 entropy->pub.decode_mcu = decode_mcu;
812 /* Mark tables unallocated */
813 for (i = 0; i < NUM_HUFF_TBLS; i++) {
814 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;