1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 * vim: set ts=8 sts=2 et sw=2 tw=80:
3 * This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* A type suitable for returning either a value or an error from a function. */
9 #ifndef mozilla_Result_h
10 #define mozilla_Result_h
15 #include <type_traits>
16 #include "mozilla/Assertions.h"
17 #include "mozilla/Attributes.h"
18 #include "mozilla/CompactPair.h"
19 #include "mozilla/MaybeStorageBase.h"
24 * Empty struct, indicating success for operations that have no return value.
25 * For example, if you declare another empty struct `struct OutOfMemory {};`,
26 * then `Result<Ok, OutOfMemory>` represents either success or OOM.
31 * A tag used to differentiate between GenericErrorResult created by the Err
32 * function (completely new error) and GenericErrorResult created by the
33 * Result::propagateErr function (propagated error). This can be used to track
34 * error propagation and eventually produce error stacks for logging/debugging
37 struct ErrorPropagationTag
{};
40 class GenericErrorResult
;
41 template <typename V
, typename E
>
46 enum class PackingStrategy
{
57 template <typename V
, typename E
, PackingStrategy Strategy
>
58 class ResultImplementation
;
61 struct EmptyWrapper
: V
{
62 constexpr EmptyWrapper() = default;
63 explicit constexpr EmptyWrapper(const V
&) {}
64 explicit constexpr EmptyWrapper(std::in_place_t
) {}
66 constexpr V
* addr() { return this; }
67 constexpr const V
* addr() const { return this; }
70 // The purpose of AlignedStorageOrEmpty is to make an empty class look like
71 // std::aligned_storage_t for the purposes of the PackingStrategy::NullIsOk
72 // specializations of ResultImplementation below. We can't use
73 // std::aligned_storage_t itself with an empty class, since it would no longer
76 using AlignedStorageOrEmpty
=
77 std::conditional_t
<std::is_empty_v
<V
>, EmptyWrapper
<V
>,
80 template <typename V
, typename E
>
81 class ResultImplementationNullIsOkBase
{
83 using ErrorStorageType
= typename UnusedZero
<E
>::StorageType
;
85 static constexpr auto kNullValue
= UnusedZero
<E
>::nullValue
;
87 static_assert(std::is_trivially_copyable_v
<ErrorStorageType
>);
89 // XXX This can't be statically asserted in general, if ErrorStorageType is
90 // not a basic type. With C++20 bit_cast, we could probably re-add such as
91 // assertion. static_assert(kNullValue == decltype(kNullValue)(0));
93 CompactPair
<AlignedStorageOrEmpty
<V
>, ErrorStorageType
> mValue
;
96 explicit constexpr ResultImplementationNullIsOkBase(const V
& aSuccessValue
)
97 : mValue(aSuccessValue
, kNullValue
) {}
98 explicit constexpr ResultImplementationNullIsOkBase(V
&& aSuccessValue
)
99 : mValue(std::move(aSuccessValue
), kNullValue
) {}
100 template <typename
... Args
>
101 explicit constexpr ResultImplementationNullIsOkBase(std::in_place_t
,
103 : mValue(std::piecewise_construct
,
104 std::tuple(std::in_place
, std::forward
<Args
>(aArgs
)...),
105 std::tuple(kNullValue
)) {}
106 explicit constexpr ResultImplementationNullIsOkBase(E aErrorValue
)
107 : mValue(std::piecewise_construct
, std::tuple
<>(),
108 std::tuple(UnusedZero
<E
>::Store(std::move(aErrorValue
)))) {
109 MOZ_ASSERT(mValue
.second() != kNullValue
);
112 constexpr ResultImplementationNullIsOkBase(
113 ResultImplementationNullIsOkBase
&& aOther
)
114 : mValue(std::piecewise_construct
, std::tuple
<>(),
115 std::tuple(aOther
.mValue
.second())) {
116 if constexpr (!std::is_empty_v
<V
>) {
118 new (mValue
.first().addr()) V(std::move(*aOther
.mValue
.first().addr()));
122 ResultImplementationNullIsOkBase
& operator=(
123 ResultImplementationNullIsOkBase
&& aOther
) {
124 if constexpr (!std::is_empty_v
<V
>) {
126 mValue
.first().addr()->~V();
129 mValue
.second() = std::move(aOther
.mValue
.second());
130 if constexpr (!std::is_empty_v
<V
>) {
132 new (mValue
.first().addr()) V(std::move(*aOther
.mValue
.first().addr()));
138 constexpr bool isOk() const { return mValue
.second() == kNullValue
; }
140 constexpr const V
& inspect() const { return *mValue
.first().addr(); }
141 constexpr V
unwrap() { return std::move(*mValue
.first().addr()); }
142 constexpr void updateAfterTracing(V
&& aValue
) {
144 if (!std::is_empty_v
<V
>) {
145 mValue
.first().addr()->~V();
146 new (mValue
.first().addr()) V(std::move(aValue
));
150 constexpr decltype(auto) inspectErr() const {
151 return UnusedZero
<E
>::Inspect(mValue
.second());
153 constexpr E
unwrapErr() { return UnusedZero
<E
>::Unwrap(mValue
.second()); }
154 constexpr void updateErrorAfterTracing(E
&& aErrorValue
) {
155 mValue
.second() = UnusedZero
<E
>::Store(std::move(aErrorValue
));
159 template <typename V
, typename E
,
160 bool IsVTriviallyDestructible
= std::is_trivially_destructible_v
<V
>>
161 class ResultImplementationNullIsOk
;
163 template <typename V
, typename E
>
164 class ResultImplementationNullIsOk
<V
, E
, true>
165 : public ResultImplementationNullIsOkBase
<V
, E
> {
167 using ResultImplementationNullIsOkBase
<V
,
168 E
>::ResultImplementationNullIsOkBase
;
171 template <typename V
, typename E
>
172 class ResultImplementationNullIsOk
<V
, E
, false>
173 : public ResultImplementationNullIsOkBase
<V
, E
> {
175 using ResultImplementationNullIsOkBase
<V
,
176 E
>::ResultImplementationNullIsOkBase
;
178 ResultImplementationNullIsOk(ResultImplementationNullIsOk
&&) = default;
179 ResultImplementationNullIsOk
& operator=(ResultImplementationNullIsOk
&&) =
182 ~ResultImplementationNullIsOk() {
184 this->mValue
.first().addr()->~V();
190 * Specialization for when the success type is one of integral, pointer, or
191 * enum, where 0 is unused, and the error type is an empty struct.
193 template <typename V
, typename E
>
194 class ResultImplementation
<V
, E
, PackingStrategy::ZeroIsEmptyError
> {
195 static_assert(std::is_integral_v
<V
> || std::is_pointer_v
<V
> ||
197 static_assert(std::is_empty_v
<E
>);
202 static constexpr PackingStrategy Strategy
= PackingStrategy::ZeroIsEmptyError
;
204 explicit constexpr ResultImplementation(V aValue
) : mValue(aValue
) {}
205 explicit constexpr ResultImplementation(E aErrorValue
) : mValue(V(0)) {}
207 constexpr bool isOk() const { return mValue
!= V(0); }
209 constexpr V
inspect() const { return mValue
; }
210 constexpr V
unwrap() { return inspect(); }
212 constexpr E
inspectErr() const { return E(); }
213 constexpr E
unwrapErr() { return inspectErr(); }
215 constexpr void updateAfterTracing(V
&& aValue
) {
216 this->~ResultImplementation();
217 new (this) ResultImplementation(std::move(aValue
));
219 constexpr void updateErrorAfterTracing(E
&& aErrorValue
) {
220 this->~ResultImplementation();
221 new (this) ResultImplementation(std::move(aErrorValue
));
226 * Specialization for when the success type is default-constructible and the
227 * error type is a value type which can never have the value 0 (as determined by
230 template <typename V
, typename E
>
231 class ResultImplementation
<V
, E
, PackingStrategy::NullIsOk
>
232 : public ResultImplementationNullIsOk
<V
, E
> {
234 static constexpr PackingStrategy Strategy
= PackingStrategy::NullIsOk
;
235 using ResultImplementationNullIsOk
<V
, E
>::ResultImplementationNullIsOk
;
239 using UnsignedIntType
= std::conditional_t
<
240 S
== 1, std::uint8_t,
242 S
== 2, std::uint16_t,
243 std::conditional_t
<S
== 3 || S
== 4, std::uint32_t,
244 std::conditional_t
<S
<= 8, std::uint64_t, void>>>>;
247 * Specialization for when alignment permits using the least significant bit
250 template <typename V
, typename E
>
251 class ResultImplementation
<V
, E
, PackingStrategy::LowBitTagIsError
> {
252 static_assert(std::is_trivially_copyable_v
<V
> &&
253 std::is_trivially_destructible_v
<V
>);
254 static_assert(std::is_trivially_copyable_v
<E
> &&
255 std::is_trivially_destructible_v
<E
>);
257 static constexpr size_t kRequiredSize
= std::max(sizeof(V
), sizeof(E
));
259 using StorageType
= UnsignedIntType
<kRequiredSize
>;
261 #if defined(__clang__)
262 alignas(std::max(alignof(V
), alignof(E
))) StorageType mBits
;
264 // Some gcc versions choke on using std::max with alignas, see
265 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94929 (and this seems to have
266 // regressed in some gcc 9.x version before being fixed again) Keeping the
267 // code above since we would eventually drop this when we no longer support
268 // gcc versions with the bug.
269 alignas(alignof(V
) > alignof(E
) ? alignof(V
) : alignof(E
)) StorageType mBits
;
273 static constexpr PackingStrategy Strategy
= PackingStrategy::LowBitTagIsError
;
275 explicit constexpr ResultImplementation(V aValue
) : mBits(0) {
276 if constexpr (!std::is_empty_v
<V
>) {
277 std::memcpy(&mBits
, &aValue
, sizeof(V
));
278 MOZ_ASSERT((mBits
& 1) == 0);
283 explicit constexpr ResultImplementation(E aErrorValue
) : mBits(1) {
284 if constexpr (!std::is_empty_v
<E
>) {
285 std::memcpy(&mBits
, &aErrorValue
, sizeof(E
));
286 MOZ_ASSERT((mBits
& 1) == 0);
293 constexpr bool isOk() const { return (mBits
& 1) == 0; }
295 constexpr V
inspect() const {
297 std::memcpy(&res
, &mBits
, sizeof(V
));
300 constexpr V
unwrap() { return inspect(); }
302 constexpr E
inspectErr() const {
303 const auto bits
= mBits
^ 1;
305 std::memcpy(&res
, &bits
, sizeof(E
));
308 constexpr E
unwrapErr() { return inspectErr(); }
310 constexpr void updateAfterTracing(V
&& aValue
) {
311 this->~ResultImplementation();
312 new (this) ResultImplementation(std::move(aValue
));
314 constexpr void updateErrorAfterTracing(E
&& aErrorValue
) {
315 this->~ResultImplementation();
316 new (this) ResultImplementation(std::move(aErrorValue
));
320 // Return true if any of the struct can fit in a word.
321 template <typename V
, typename E
>
322 struct IsPackableVariant
{
324 explicit constexpr VEbool(V
&& aValue
) : v(std::move(aValue
)), ok(true) {}
325 explicit constexpr VEbool(E
&& aErrorValue
)
326 : e(std::move(aErrorValue
)), ok(false) {}
332 explicit constexpr EVbool(V
&& aValue
) : v(std::move(aValue
)), ok(true) {}
333 explicit constexpr EVbool(E
&& aErrorValue
)
334 : e(std::move(aErrorValue
)), ok(false) {}
341 std::conditional_t
<sizeof(VEbool
) <= sizeof(EVbool
), VEbool
, EVbool
>;
343 static const bool value
= sizeof(Impl
) <= sizeof(uintptr_t);
347 * Specialization for when both type are not using all the bytes, in order to
348 * use one byte as a tag.
350 template <typename V
, typename E
>
351 class ResultImplementation
<V
, E
, PackingStrategy::PackedVariant
> {
352 using Impl
= typename IsPackableVariant
<V
, E
>::Impl
;
356 static constexpr PackingStrategy Strategy
= PackingStrategy::PackedVariant
;
358 explicit constexpr ResultImplementation(V aValue
) : data(std::move(aValue
)) {}
359 explicit constexpr ResultImplementation(E aErrorValue
)
360 : data(std::move(aErrorValue
)) {}
362 constexpr bool isOk() const { return data
.ok
; }
364 constexpr const V
& inspect() const { return data
.v
; }
365 constexpr V
unwrap() { return std::move(data
.v
); }
367 constexpr const E
& inspectErr() const { return data
.e
; }
368 constexpr E
unwrapErr() { return std::move(data
.e
); }
370 constexpr void updateAfterTracing(V
&& aValue
) {
372 this->~ResultImplementation();
373 new (this) ResultImplementation(std::move(aValue
));
375 constexpr void updateErrorAfterTracing(E
&& aErrorValue
) {
376 MOZ_ASSERT(!data
.ok
);
377 this->~ResultImplementation();
378 new (this) ResultImplementation(std::move(aErrorValue
));
382 // To use nullptr as a special value, we need the counter part to exclude zero
383 // from its range of valid representations.
385 // By default assume that zero can be represented.
386 template <typename T
>
388 static const bool value
= false;
391 // This template can be used as a helper for specializing UnusedZero for scoped
392 // enum types which never use 0 as an error value, e.g.
394 // namespace mozilla::detail {
397 // struct UnusedZero<MyEnumType> : UnusedZeroEnum<MyEnumType> {};
399 // } // namespace mozilla::detail
401 template <typename T
>
402 struct UnusedZeroEnum
{
403 using StorageType
= std::underlying_type_t
<T
>;
405 static constexpr bool value
= true;
406 static constexpr StorageType nullValue
= 0;
408 static constexpr T
Inspect(const StorageType
& aValue
) {
409 return static_cast<T
>(aValue
);
411 static constexpr T
Unwrap(StorageType aValue
) {
412 return static_cast<T
>(aValue
);
414 static constexpr StorageType
Store(T aValue
) {
415 return static_cast<StorageType
>(aValue
);
419 // A bit of help figuring out which of the above specializations to use.
421 // We begin by safely assuming types don't have a spare bit, unless they are
423 template <typename T
>
425 static const bool value
= std::is_empty_v
<T
>;
428 // As an incomplete type, void* does not have a spare bit.
430 struct HasFreeLSB
<void*> {
431 static const bool value
= false;
434 // The lowest bit of a properly-aligned pointer is always zero if the pointee
435 // type is greater than byte-aligned. That bit is free to use if it's masked
436 // out of such pointers before they're dereferenced.
437 template <typename T
>
438 struct HasFreeLSB
<T
*> {
439 static const bool value
= (alignof(T
) & 1) == 0;
442 // Select one of the previous result implementation based on the properties of
443 // the V and E types.
444 template <typename V
, typename E
>
445 struct SelectResultImpl
{
446 static const PackingStrategy value
=
447 (UnusedZero
<V
>::value
&& std::is_empty_v
<E
>)
448 ? PackingStrategy::ZeroIsEmptyError
449 : (HasFreeLSB
<V
>::value
&& HasFreeLSB
<E
>::value
)
450 ? PackingStrategy::LowBitTagIsError
451 : (UnusedZero
<E
>::value
&& sizeof(E
) <= sizeof(uintptr_t))
452 ? PackingStrategy::NullIsOk
453 : (std::is_default_constructible_v
<V
> &&
454 std::is_default_constructible_v
<E
> && IsPackableVariant
<V
, E
>::value
)
455 ? PackingStrategy::PackedVariant
456 : PackingStrategy::Variant
;
458 using Type
= ResultImplementation
<V
, E
, value
>;
461 template <typename T
>
462 struct IsResult
: std::false_type
{};
464 template <typename V
, typename E
>
465 struct IsResult
<Result
<V
, E
>> : std::true_type
{};
467 } // namespace detail
469 template <typename V
, typename E
>
470 constexpr auto ToResult(Result
<V
, E
>&& aValue
)
471 -> decltype(std::forward
<Result
<V
, E
>>(aValue
)) {
472 return std::forward
<Result
<V
, E
>>(aValue
);
476 * Result<V, E> represents the outcome of an operation that can either succeed
477 * or fail. It contains either a success value of type V or an error value of
480 * All Result methods are const, so results are basically immutable.
481 * This is just like Variant<V, E> but with a slightly different API, and the
482 * following cases are optimized so Result can be stored more efficiently:
484 * - If both the success and error types do not use their least significant bit,
485 * are trivially copyable and destructible, Result<V, E> is guaranteed to be as
486 * large as the larger type. This is determined via the HasFreeLSB trait. By
487 * default, empty classes (in particular Ok) and aligned pointer types are
488 * assumed to have a free LSB, but you can specialize this trait for other
489 * types. If the success type is empty, the representation is guaranteed to be
490 * all zero bits on success. Do not change this representation! There is JIT
491 * code that depends on it. (Implementation note: The lowest bit is used as a
492 * tag bit: 0 to indicate the Result's bits are a success value, 1 to indicate
493 * the Result's bits (with the 1 masked out) encode an error value)
495 * - Else, if the error type can't have a all-zero bits representation and is
496 * not larger than a pointer, a CompactPair is used to represent this rather
497 * than a Variant. This has shown to be better optimizable, and the template
498 * code is much simpler than that of Variant, so it should also compile faster.
499 * Whether an error type can't be all-zero bits, is determined via the
500 * UnusedZero trait. MFBT doesn't declare any public type UnusedZero, but
501 * nsresult is declared UnusedZero in XPCOM.
503 * The purpose of Result is to reduce the screwups caused by using `false` or
504 * `nullptr` to indicate errors.
505 * What screwups? See <https://bugzilla.mozilla.org/show_bug.cgi?id=912928> for
508 * Result<const V, E> or Result<V, const E> are not meaningful. The success or
509 * error values in a Result instance are non-modifiable in-place anyway. This
510 * guarantee must also be maintained when evolving Result. They can be
511 * unwrap()ped, but this loses const qualification. However, Result<const V, E>
512 * or Result<V, const E> may be misleading and prevent movability. Just use
513 * Result<V, E>. (Result<const V*, E> may make sense though, just Result<const
514 * V* const, E> is not possible.)
516 template <typename V
, typename E
>
517 class [[nodiscard
]] Result final
{
518 // See class comment on Result<const V, E> and Result<V, const E>.
519 static_assert(!std::is_const_v
<V
>);
520 static_assert(!std::is_const_v
<E
>);
521 static_assert(!std::is_reference_v
<V
>);
522 static_assert(!std::is_reference_v
<E
>);
524 using Impl
= typename
detail::SelectResultImpl
<V
, E
>::Type
;
527 // Are you getting this error?
528 // > error: implicit instantiation of undefined template
529 // > 'mozilla::detail::ResultImplementation<$V,$E,
530 // > mozilla::detail::PackingStrategy::Variant>'
531 // You need to include "ResultVariant.h"!
534 static constexpr detail::PackingStrategy Strategy
= Impl::Strategy
;
538 /** Create a success result. */
539 MOZ_IMPLICIT
constexpr Result(V
&& aValue
) : mImpl(std::move(aValue
)) {
543 /** Create a success result. */
544 MOZ_IMPLICIT
constexpr Result(const V
& aValue
) : mImpl(aValue
) {
548 /** Create a success result in-place. */
549 template <typename
... Args
>
550 explicit constexpr Result(std::in_place_t
, Args
&&... aArgs
)
551 : mImpl(std::in_place
, std::forward
<Args
>(aArgs
)...) {
555 /** Create an error result. */
556 explicit constexpr Result(const E
& aErrorValue
) : mImpl(aErrorValue
) {
559 explicit constexpr Result(E
&& aErrorValue
) : mImpl(std::move(aErrorValue
)) {
564 * Create a (success/error) result from another (success/error) result with
565 * different but convertible value and error types.
567 template <typename V2
, typename E2
,
568 typename
= std::enable_if_t
<std::is_convertible_v
<V2
, V
> &&
569 std::is_convertible_v
<E2
, E
>>>
570 MOZ_IMPLICIT
constexpr Result(Result
<V2
, E2
>&& aOther
)
571 : mImpl(aOther
.isOk() ? Impl
{aOther
.unwrap()}
572 : Impl
{aOther
.unwrapErr()}) {}
575 * Implementation detail of MOZ_TRY().
576 * Create an error result from another error result.
578 template <typename E2
>
579 MOZ_IMPLICIT
constexpr Result(GenericErrorResult
<E2
>&& aErrorResult
)
580 : mImpl(std::move(aErrorResult
.mErrorValue
)) {
581 static_assert(std::is_convertible_v
<E2
, E
>, "E2 must be convertible to E");
586 * Implementation detail of MOZ_TRY().
587 * Create an error result from another error result.
589 template <typename E2
>
590 MOZ_IMPLICIT
constexpr Result(const GenericErrorResult
<E2
>& aErrorResult
)
591 : mImpl(aErrorResult
.mErrorValue
) {
592 static_assert(std::is_convertible_v
<E2
, E
>, "E2 must be convertible to E");
596 Result(const Result
&) = delete;
597 Result(Result
&&) = default;
598 Result
& operator=(const Result
&) = delete;
599 Result
& operator=(Result
&&) = default;
601 /** True if this Result is a success result. */
602 constexpr bool isOk() const { return mImpl
.isOk(); }
604 /** True if this Result is an error result. */
605 constexpr bool isErr() const { return !mImpl
.isOk(); }
607 /** Take the success value from this Result, which must be a success result.
609 constexpr V
unwrap() {
611 return mImpl
.unwrap();
615 * Take the success value from this Result, which must be a success result.
616 * If it is an error result, then return the aValue.
618 constexpr V
unwrapOr(V aValue
) {
619 return MOZ_LIKELY(isOk()) ? mImpl
.unwrap() : std::move(aValue
);
622 /** Take the error value from this Result, which must be an error result. */
623 constexpr E
unwrapErr() {
625 return mImpl
.unwrapErr();
628 /** Used only for GC tracing. If used in Rooted<Result<...>>, V must have a
629 * GCPolicy for tracing it. */
630 constexpr void updateAfterTracing(V
&& aValue
) {
631 mImpl
.updateAfterTracing(std::move(aValue
));
634 /** Used only for GC tracing. If used in Rooted<Result<...>>, E must have a
635 * GCPolicy for tracing it. */
636 constexpr void updateErrorAfterTracing(E
&& aErrorValue
) {
637 mImpl
.updateErrorAfterTracing(std::move(aErrorValue
));
640 /** See the success value from this Result, which must be a success result. */
641 constexpr decltype(auto) inspect() const {
642 static_assert(!std::is_reference_v
<
643 std::invoke_result_t
<decltype(&Impl::inspect
), Impl
>> ||
644 std::is_const_v
<std::remove_reference_t
<
645 std::invoke_result_t
<decltype(&Impl::inspect
), Impl
>>>);
647 return mImpl
.inspect();
650 /** See the error value from this Result, which must be an error result. */
651 constexpr decltype(auto) inspectErr() const {
653 !std::is_reference_v
<
654 std::invoke_result_t
<decltype(&Impl::inspectErr
), Impl
>> ||
655 std::is_const_v
<std::remove_reference_t
<
656 std::invoke_result_t
<decltype(&Impl::inspectErr
), Impl
>>>);
658 return mImpl
.inspectErr();
661 /** Propagate the error value from this Result, which must be an error result.
663 * This can be used to propagate an error from a function call to the caller
664 * with a different value type, but the same error type:
666 * Result<T1, E> Func1() {
667 * Result<T2, E> res = Func2();
668 * if (res.isErr()) { return res.propagateErr(); }
671 constexpr GenericErrorResult
<E
> propagateErr() {
673 return GenericErrorResult
<E
>{mImpl
.unwrapErr(), ErrorPropagationTag
{}};
677 * Map a function V -> V2 over this result's success variant. If this result
678 * is an error, do not invoke the function and propagate the error.
680 * Mapping over success values invokes the function to produce a new success
683 * // Map Result<int, E> to another Result<int, E>
684 * Result<int, E> res(5);
685 * Result<int, E> res2 = res.map([](int x) { return x * x; });
686 * MOZ_ASSERT(res.isOk());
687 * MOZ_ASSERT(res2.unwrap() == 25);
689 * // Map Result<const char*, E> to Result<size_t, E>
690 * Result<const char*, E> res("hello, map!");
691 * Result<size_t, E> res2 = res.map(strlen);
692 * MOZ_ASSERT(res.isOk());
693 * MOZ_ASSERT(res2.unwrap() == 11);
695 * Mapping over an error does not invoke the function and propagates the
698 * Result<V, int> res(5);
699 * MOZ_ASSERT(res.isErr());
700 * Result<V2, int> res2 = res.map([](V v) { ... });
701 * MOZ_ASSERT(res2.isErr());
702 * MOZ_ASSERT(res2.unwrapErr() == 5);
704 template <typename F
>
705 constexpr auto map(F f
) -> Result
<std::invoke_result_t
<F
, V
>, E
> {
706 using RetResult
= Result
<std::invoke_result_t
<F
, V
>, E
>;
707 return MOZ_LIKELY(isOk()) ? RetResult(f(unwrap())) : RetResult(unwrapErr());
711 * Map a function E -> E2 over this result's error variant. If this result is
712 * a success, do not invoke the function and move the success over.
714 * Mapping over error values invokes the function to produce a new error
717 * // Map Result<V, int> to another Result<V, int>
718 * Result<V, int> res(5);
719 * Result<V, int> res2 = res.mapErr([](int x) { return x * x; });
720 * MOZ_ASSERT(res2.isErr());
721 * MOZ_ASSERT(res2.unwrapErr() == 25);
723 * // Map Result<V, const char*> to Result<V, size_t>
724 * Result<V, const char*> res("hello, mapErr!");
725 * Result<V, size_t> res2 = res.mapErr(strlen);
726 * MOZ_ASSERT(res2.isErr());
727 * MOZ_ASSERT(res2.unwrapErr() == 14);
729 * Mapping over a success does not invoke the function and moves the success:
731 * Result<int, E> res(5);
732 * MOZ_ASSERT(res.isOk());
733 * Result<int, E2> res2 = res.mapErr([](E e) { ... });
734 * MOZ_ASSERT(res2.isOk());
735 * MOZ_ASSERT(res2.unwrap() == 5);
737 template <typename F
>
738 constexpr auto mapErr(F f
) {
739 using RetResult
= Result
<V
, std::invoke_result_t
<F
, E
>>;
740 return MOZ_UNLIKELY(isErr()) ? RetResult(f(unwrapErr()))
741 : RetResult(unwrap());
745 * Map a function E -> Result<V, E2> over this result's error variant. If
746 * this result is a success, do not invoke the function and move the success
749 * `orElse`ing over error values invokes the function to produce a new
752 * // `orElse` Result<V, int> error variant to another Result<V, int>
753 * // error variant or Result<V, int> success variant
754 * auto orElse = [](int x) -> Result<V, int> {
761 * Result<V, int> res(5);
762 * auto res2 = res.orElse(orElse);
763 * MOZ_ASSERT(res2.isErr());
764 * MOZ_ASSERT(res2.unwrapErr() == 25);
766 * Result<V, int> res3(6);
767 * auto res4 = res3.orElse(orElse);
768 * MOZ_ASSERT(res4.isOk());
769 * MOZ_ASSERT(res4.unwrap() == ...);
771 * // `orElse` Result<V, const char*> error variant to Result<V, size_t>
772 * // error variant or Result<V, size_t> success variant
773 * auto orElse = [](const char* s) -> Result<V, size_t> {
774 * if (strcmp(s, "foo")) {
775 * return Err(strlen(s));
780 * Result<V, const char*> res("hello, orElse!");
781 * auto res2 = res.orElse(orElse);
782 * MOZ_ASSERT(res2.isErr());
783 * MOZ_ASSERT(res2.unwrapErr() == 14);
785 * Result<V, const char*> res3("foo");
786 * auto res4 = ress.orElse(orElse);
787 * MOZ_ASSERT(res4.isOk());
788 * MOZ_ASSERT(res4.unwrap() == ...);
790 * `orElse`ing over a success does not invoke the function and moves the
793 * Result<int, E> res(5);
794 * MOZ_ASSERT(res.isOk());
795 * Result<int, E2> res2 = res.orElse([](E e) { ... });
796 * MOZ_ASSERT(res2.isOk());
797 * MOZ_ASSERT(res2.unwrap() == 5);
799 template <typename F
>
800 auto orElse(F f
) -> Result
<V
, typename
std::invoke_result_t
<F
, E
>::err_type
> {
801 return MOZ_UNLIKELY(isErr()) ? f(unwrapErr()) : unwrap();
805 * Given a function V -> Result<V2, E>, apply it to this result's success
806 * value and return its result. If this result is an error value, it is
809 * This is sometimes called "flatMap" or ">>=" in other contexts.
811 * `andThen`ing over success values invokes the function to produce a new
814 * Result<const char*, Error> res("hello, andThen!");
815 * Result<HtmlFreeString, Error> res2 = res.andThen([](const char* s) {
816 * return containsHtmlTag(s)
817 * ? Result<HtmlFreeString, Error>(Error("Invalid: contains HTML"))
818 * : Result<HtmlFreeString, Error>(HtmlFreeString(s));
821 * MOZ_ASSERT(res2.isOk());
822 * MOZ_ASSERT(res2.unwrap() == HtmlFreeString("hello, andThen!");
824 * `andThen`ing over error results does not invoke the function, and just
825 * propagates the error result:
827 * Result<int, const char*> res("some error");
828 * auto res2 = res.andThen([](int x) { ... });
829 * MOZ_ASSERT(res2.isErr());
830 * MOZ_ASSERT(res.unwrapErr() == res2.unwrapErr());
832 template <typename F
, typename
= std::enable_if_t
<detail::IsResult
<
833 std::invoke_result_t
<F
, V
&&>>::value
>>
834 constexpr auto andThen(F f
) -> std::invoke_result_t
<F
, V
&&> {
835 return MOZ_LIKELY(isOk()) ? f(unwrap()) : propagateErr();
840 * A type that auto-converts to an error Result. This is like a Result without
841 * a success type. It's the best return type for functions that always return
842 * an error--functions designed to build and populate error objects. It's also
843 * useful in error-handling macros; see MOZ_TRY for an example.
845 template <typename E
>
846 class [[nodiscard
]] GenericErrorResult
{
849 template <typename V
, typename E2
>
853 explicit constexpr GenericErrorResult(const E
& aErrorValue
)
854 : mErrorValue(aErrorValue
) {}
856 explicit constexpr GenericErrorResult(E
&& aErrorValue
)
857 : mErrorValue(std::move(aErrorValue
)) {}
859 constexpr GenericErrorResult(const E
& aErrorValue
, const ErrorPropagationTag
&)
860 : GenericErrorResult(aErrorValue
) {}
862 constexpr GenericErrorResult(E
&& aErrorValue
, const ErrorPropagationTag
&)
863 : GenericErrorResult(std::move(aErrorValue
)) {}
866 template <typename E
>
867 inline constexpr auto Err(E
&& aErrorValue
) {
868 return GenericErrorResult
<std::decay_t
<E
>>(std::forward
<E
>(aErrorValue
));
871 } // namespace mozilla
873 #endif // mozilla_Result_h