Merge autoland to mozilla-central. a=merge
[gecko.git] / third_party / jpeg-xl / lib / jpegli / adaptive_quantization.cc
blob11367ee66083f0747c192b16e5fed9274ec8693b
1 // Copyright (c) the JPEG XL Project Authors. All rights reserved.
2 //
3 // Use of this source code is governed by a BSD-style
4 // license that can be found in the LICENSE file.
6 #include "lib/jpegli/adaptive_quantization.h"
8 #include <jxl/types.h>
9 #include <stddef.h>
10 #include <stdlib.h>
12 #include <algorithm>
13 #include <cmath>
14 #include <limits>
15 #include <string>
16 #include <vector>
18 #undef HWY_TARGET_INCLUDE
19 #define HWY_TARGET_INCLUDE "lib/jpegli/adaptive_quantization.cc"
20 #include <hwy/foreach_target.h>
21 #include <hwy/highway.h>
23 #include "lib/jpegli/encode_internal.h"
24 #include "lib/jxl/base/compiler_specific.h"
25 #include "lib/jxl/base/status.h"
26 HWY_BEFORE_NAMESPACE();
27 namespace jpegli {
28 namespace HWY_NAMESPACE {
29 namespace {
31 // These templates are not found via ADL.
32 using hwy::HWY_NAMESPACE::AbsDiff;
33 using hwy::HWY_NAMESPACE::Add;
34 using hwy::HWY_NAMESPACE::And;
35 using hwy::HWY_NAMESPACE::Div;
36 using hwy::HWY_NAMESPACE::Floor;
37 using hwy::HWY_NAMESPACE::GetLane;
38 using hwy::HWY_NAMESPACE::Max;
39 using hwy::HWY_NAMESPACE::Min;
40 using hwy::HWY_NAMESPACE::Mul;
41 using hwy::HWY_NAMESPACE::MulAdd;
42 using hwy::HWY_NAMESPACE::NegMulAdd;
43 using hwy::HWY_NAMESPACE::Rebind;
44 using hwy::HWY_NAMESPACE::ShiftLeft;
45 using hwy::HWY_NAMESPACE::ShiftRight;
46 using hwy::HWY_NAMESPACE::Sqrt;
47 using hwy::HWY_NAMESPACE::Sub;
48 using hwy::HWY_NAMESPACE::ZeroIfNegative;
50 constexpr float kInputScaling = 1.0f / 255.0f;
52 // Primary template: default to actual division.
53 template <typename T, class V>
54 struct FastDivision {
55 HWY_INLINE V operator()(const V n, const V d) const { return n / d; }
57 // Partial specialization for float vectors.
58 template <class V>
59 struct FastDivision<float, V> {
60 // One Newton-Raphson iteration.
61 static HWY_INLINE V ReciprocalNR(const V x) {
62 const auto rcp = ApproximateReciprocal(x);
63 const auto sum = Add(rcp, rcp);
64 const auto x_rcp = Mul(x, rcp);
65 return NegMulAdd(x_rcp, rcp, sum);
68 V operator()(const V n, const V d) const {
69 #if JXL_TRUE // Faster on SKX
70 return Div(n, d);
71 #else
72 return n * ReciprocalNR(d);
73 #endif
77 // Approximates smooth functions via rational polynomials (i.e. dividing two
78 // polynomials). Evaluates polynomials via Horner's scheme, which is faster than
79 // Clenshaw recurrence for Chebyshev polynomials. LoadDup128 allows us to
80 // specify constants (replicated 4x) independently of the lane count.
81 template <size_t NP, size_t NQ, class D, class V, typename T>
82 HWY_INLINE HWY_MAYBE_UNUSED V EvalRationalPolynomial(const D d, const V x,
83 const T (&p)[NP],
84 const T (&q)[NQ]) {
85 constexpr size_t kDegP = NP / 4 - 1;
86 constexpr size_t kDegQ = NQ / 4 - 1;
87 auto yp = LoadDup128(d, &p[kDegP * 4]);
88 auto yq = LoadDup128(d, &q[kDegQ * 4]);
89 // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a
90 // compiler warning that the index is out of bounds since we are already
91 // checking that it is not out of bounds with (kDegP >= n) and the access
92 // will be optimized away. Similarly with q and kDegQ.
93 HWY_FENCE;
94 if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4)));
95 if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4)));
96 HWY_FENCE;
97 if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4)));
98 if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4)));
99 HWY_FENCE;
100 if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4)));
101 if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4)));
102 HWY_FENCE;
103 if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4)));
104 if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4)));
105 HWY_FENCE;
106 if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4)));
107 if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4)));
108 HWY_FENCE;
109 if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4)));
110 if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4)));
111 HWY_FENCE;
112 if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4)));
113 if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4)));
115 return FastDivision<T, V>()(yp, yq);
118 // Computes base-2 logarithm like std::log2. Undefined if negative / NaN.
119 // L1 error ~3.9E-6
120 template <class DF, class V>
121 V FastLog2f(const DF df, V x) {
122 // 2,2 rational polynomial approximation of std::log1p(x) / std::log(2).
123 HWY_ALIGN const float p[4 * (2 + 1)] = {HWY_REP4(-1.8503833400518310E-06f),
124 HWY_REP4(1.4287160470083755E+00f),
125 HWY_REP4(7.4245873327820566E-01f)};
126 HWY_ALIGN const float q[4 * (2 + 1)] = {HWY_REP4(9.9032814277590719E-01f),
127 HWY_REP4(1.0096718572241148E+00f),
128 HWY_REP4(1.7409343003366853E-01f)};
130 const Rebind<int32_t, DF> di;
131 const auto x_bits = BitCast(di, x);
133 // Range reduction to [-1/3, 1/3] - 3 integer, 2 float ops
134 const auto exp_bits = Sub(x_bits, Set(di, 0x3f2aaaab)); // = 2/3
135 // Shifted exponent = log2; also used to clear mantissa.
136 const auto exp_shifted = ShiftRight<23>(exp_bits);
137 const auto mantissa = BitCast(df, Sub(x_bits, ShiftLeft<23>(exp_shifted)));
138 const auto exp_val = ConvertTo(df, exp_shifted);
139 return Add(EvalRationalPolynomial(df, Sub(mantissa, Set(df, 1.0f)), p, q),
140 exp_val);
143 // max relative error ~3e-7
144 template <class DF, class V>
145 V FastPow2f(const DF df, V x) {
146 const Rebind<int32_t, DF> di;
147 auto floorx = Floor(x);
148 auto exp =
149 BitCast(df, ShiftLeft<23>(Add(ConvertTo(di, floorx), Set(di, 127))));
150 auto frac = Sub(x, floorx);
151 auto num = Add(frac, Set(df, 1.01749063e+01));
152 num = MulAdd(num, frac, Set(df, 4.88687798e+01));
153 num = MulAdd(num, frac, Set(df, 9.85506591e+01));
154 num = Mul(num, exp);
155 auto den = MulAdd(frac, Set(df, 2.10242958e-01), Set(df, -2.22328856e-02));
156 den = MulAdd(den, frac, Set(df, -1.94414990e+01));
157 den = MulAdd(den, frac, Set(df, 9.85506633e+01));
158 return Div(num, den);
161 inline float FastPow2f(float f) {
162 HWY_CAPPED(float, 1) D;
163 return GetLane(FastPow2f(D, Set(D, f)));
166 // The following functions modulate an exponent (out_val) and return the updated
167 // value. Their descriptor is limited to 8 lanes for 8x8 blocks.
169 template <class D, class V>
170 V ComputeMask(const D d, const V out_val) {
171 const auto kBase = Set(d, -0.74174993f);
172 const auto kMul4 = Set(d, 3.2353257320940401f);
173 const auto kMul2 = Set(d, 12.906028311180409f);
174 const auto kOffset2 = Set(d, 305.04035728311436f);
175 const auto kMul3 = Set(d, 5.0220313103171232f);
176 const auto kOffset3 = Set(d, 2.1925739705298404f);
177 const auto kOffset4 = Mul(Set(d, 0.25f), kOffset3);
178 const auto kMul0 = Set(d, 0.74760422233706747f);
179 const auto k1 = Set(d, 1.0f);
181 // Avoid division by zero.
182 const auto v1 = Max(Mul(out_val, kMul0), Set(d, 1e-3f));
183 const auto v2 = Div(k1, Add(v1, kOffset2));
184 const auto v3 = Div(k1, MulAdd(v1, v1, kOffset3));
185 const auto v4 = Div(k1, MulAdd(v1, v1, kOffset4));
186 // TODO(jyrki):
187 // A log or two here could make sense. In butteraugli we have effectively
188 // log(log(x + C)) for this kind of use, as a single log is used in
189 // saturating visual masking and here the modulation values are exponential,
190 // another log would counter that.
191 return Add(kBase, MulAdd(kMul4, v4, MulAdd(kMul2, v2, Mul(kMul3, v3))));
194 // mul and mul2 represent a scaling difference between jxl and butteraugli.
195 const float kSGmul = 226.0480446705883f;
196 const float kSGmul2 = 1.0f / 73.377132366608819f;
197 const float kLog2 = 0.693147181f;
198 // Includes correction factor for std::log -> log2.
199 const float kSGRetMul = kSGmul2 * 18.6580932135f * kLog2;
200 const float kSGVOffset = 7.14672470003f;
202 template <bool invert, typename D, typename V>
203 V RatioOfDerivativesOfCubicRootToSimpleGamma(const D d, V v) {
204 // The opsin space in jxl is the cubic root of photons, i.e., v * v * v
205 // is related to the number of photons.
207 // SimpleGamma(v * v * v) is the psychovisual space in butteraugli.
208 // This ratio allows quantization to move from jxl's opsin space to
209 // butteraugli's log-gamma space.
210 static const float kEpsilon = 1e-2;
211 static const float kNumOffset = kEpsilon / kInputScaling / kInputScaling;
212 static const float kNumMul = kSGRetMul * 3 * kSGmul;
213 static const float kVOffset = (kSGVOffset * kLog2 + kEpsilon) / kInputScaling;
214 static const float kDenMul = kLog2 * kSGmul * kInputScaling * kInputScaling;
216 v = ZeroIfNegative(v);
217 const auto num_mul = Set(d, kNumMul);
218 const auto num_offset = Set(d, kNumOffset);
219 const auto den_offset = Set(d, kVOffset);
220 const auto den_mul = Set(d, kDenMul);
222 const auto v2 = Mul(v, v);
224 const auto num = MulAdd(num_mul, v2, num_offset);
225 const auto den = MulAdd(Mul(den_mul, v), v2, den_offset);
226 return invert ? Div(num, den) : Div(den, num);
229 template <bool invert = false>
230 float RatioOfDerivativesOfCubicRootToSimpleGamma(float v) {
231 using DScalar = HWY_CAPPED(float, 1);
232 auto vscalar = Load(DScalar(), &v);
233 return GetLane(
234 RatioOfDerivativesOfCubicRootToSimpleGamma<invert>(DScalar(), vscalar));
237 // TODO(veluca): this function computes an approximation of the derivative of
238 // SimpleGamma with (f(x+eps)-f(x))/eps. Consider two-sided approximation or
239 // exact derivatives. For reference, SimpleGamma was:
241 template <typename D, typename V>
242 V SimpleGamma(const D d, V v) {
243 // A simple HDR compatible gamma function.
244 const auto mul = Set(d, kSGmul);
245 const auto kRetMul = Set(d, kSGRetMul);
246 const auto kRetAdd = Set(d, kSGmul2 * -20.2789020414f);
247 const auto kVOffset = Set(d, kSGVOffset);
249 v *= mul;
251 // This should happen rarely, but may lead to a NaN, which is rather
252 // undesirable. Since negative photons don't exist we solve the NaNs by
253 // clamping here.
254 // TODO(veluca): with FastLog2f, this no longer leads to NaNs.
255 v = ZeroIfNegative(v);
256 return kRetMul * FastLog2f(d, v + kVOffset) + kRetAdd;
260 template <class D, class V>
261 V GammaModulation(const D d, const size_t x, const size_t y,
262 const RowBuffer<float>& input, const V out_val) {
263 static const float kBias = 0.16f / kInputScaling;
264 static const float kScale = kInputScaling / 64.0f;
265 auto overall_ratio = Zero(d);
266 const auto bias = Set(d, kBias);
267 const auto scale = Set(d, kScale);
268 const float* const JXL_RESTRICT block_start = input.Row(y) + x;
269 for (size_t dy = 0; dy < 8; ++dy) {
270 const float* const JXL_RESTRICT row_in = block_start + dy * input.stride();
271 for (size_t dx = 0; dx < 8; dx += Lanes(d)) {
272 const auto iny = Add(Load(d, row_in + dx), bias);
273 const auto ratio_g =
274 RatioOfDerivativesOfCubicRootToSimpleGamma</*invert=*/true>(d, iny);
275 overall_ratio = Add(overall_ratio, ratio_g);
278 overall_ratio = Mul(SumOfLanes(d, overall_ratio), scale);
279 // ideally -1.0, but likely optimal correction adds some entropy, so slightly
280 // less than that.
281 // ln(2) constant folded in because we want std::log but have FastLog2f.
282 const auto kGamma = Set(d, -0.15526878023684174f * 0.693147180559945f);
283 return MulAdd(kGamma, FastLog2f(d, overall_ratio), out_val);
286 // Change precision in 8x8 blocks that have high frequency content.
287 template <class D, class V>
288 V HfModulation(const D d, const size_t x, const size_t y,
289 const RowBuffer<float>& input, const V out_val) {
290 // Zero out the invalid differences for the rightmost value per row.
291 const Rebind<uint32_t, D> du;
292 HWY_ALIGN constexpr uint32_t kMaskRight[8] = {~0u, ~0u, ~0u, ~0u,
293 ~0u, ~0u, ~0u, 0};
295 auto sum = Zero(d); // sum of absolute differences with right and below
296 static const float kSumCoeff = -2.0052193233688884f * kInputScaling / 112.0;
297 auto sumcoeff = Set(d, kSumCoeff);
299 const float* const JXL_RESTRICT block_start = input.Row(y) + x;
300 for (size_t dy = 0; dy < 8; ++dy) {
301 const float* JXL_RESTRICT row_in = block_start + dy * input.stride();
302 const float* JXL_RESTRICT row_in_next =
303 dy == 7 ? row_in : row_in + input.stride();
305 for (size_t dx = 0; dx < 8; dx += Lanes(d)) {
306 const auto p = Load(d, row_in + dx);
307 const auto pr = LoadU(d, row_in + dx + 1);
308 const auto mask = BitCast(d, Load(du, kMaskRight + dx));
309 sum = Add(sum, And(mask, AbsDiff(p, pr)));
310 const auto pd = Load(d, row_in_next + dx);
311 sum = Add(sum, AbsDiff(p, pd));
315 sum = SumOfLanes(d, sum);
316 return MulAdd(sum, sumcoeff, out_val);
319 void PerBlockModulations(const float y_quant_01, const RowBuffer<float>& input,
320 const size_t yb0, const size_t yblen,
321 RowBuffer<float>* aq_map) {
322 static const float kAcQuant = 0.841f;
323 float base_level = 0.48f * kAcQuant;
324 float kDampenRampStart = 9.0f;
325 float kDampenRampEnd = 65.0f;
326 float dampen = 1.0f;
327 if (y_quant_01 >= kDampenRampStart) {
328 dampen = 1.0f - ((y_quant_01 - kDampenRampStart) /
329 (kDampenRampEnd - kDampenRampStart));
330 if (dampen < 0) {
331 dampen = 0;
334 const float mul = kAcQuant * dampen;
335 const float add = (1.0f - dampen) * base_level;
336 for (size_t iy = 0; iy < yblen; iy++) {
337 const size_t yb = yb0 + iy;
338 const size_t y = yb * 8;
339 float* const JXL_RESTRICT row_out = aq_map->Row(yb);
340 const HWY_CAPPED(float, 8) df;
341 for (size_t ix = 0; ix < aq_map->xsize(); ix++) {
342 size_t x = ix * 8;
343 auto out_val = Set(df, row_out[ix]);
344 out_val = ComputeMask(df, out_val);
345 out_val = HfModulation(df, x, y, input, out_val);
346 out_val = GammaModulation(df, x, y, input, out_val);
347 // We want multiplicative quantization field, so everything
348 // until this point has been modulating the exponent.
349 row_out[ix] = FastPow2f(GetLane(out_val) * 1.442695041f) * mul + add;
354 template <typename D, typename V>
355 V MaskingSqrt(const D d, V v) {
356 static const float kLogOffset = 28;
357 static const float kMul = 211.50759899638012f;
358 const auto mul_v = Set(d, kMul * 1e8);
359 const auto offset_v = Set(d, kLogOffset);
360 return Mul(Set(d, 0.25f), Sqrt(MulAdd(v, Sqrt(mul_v), offset_v)));
363 template <typename V>
364 void Sort4(V& min0, V& min1, V& min2, V& min3) {
365 const auto tmp0 = Min(min0, min1);
366 const auto tmp1 = Max(min0, min1);
367 const auto tmp2 = Min(min2, min3);
368 const auto tmp3 = Max(min2, min3);
369 const auto tmp4 = Max(tmp0, tmp2);
370 const auto tmp5 = Min(tmp1, tmp3);
371 min0 = Min(tmp0, tmp2);
372 min1 = Min(tmp4, tmp5);
373 min2 = Max(tmp4, tmp5);
374 min3 = Max(tmp1, tmp3);
377 template <typename V>
378 void UpdateMin4(const V v, V& min0, V& min1, V& min2, V& min3) {
379 const auto tmp0 = Max(min0, v);
380 const auto tmp1 = Max(min1, tmp0);
381 const auto tmp2 = Max(min2, tmp1);
382 min0 = Min(min0, v);
383 min1 = Min(min1, tmp0);
384 min2 = Min(min2, tmp1);
385 min3 = Min(min3, tmp2);
388 // Computes a linear combination of the 4 lowest values of the 3x3 neighborhood
389 // of each pixel. Output is downsampled 2x.
390 void FuzzyErosion(const RowBuffer<float>& pre_erosion, const size_t yb0,
391 const size_t yblen, RowBuffer<float>* tmp,
392 RowBuffer<float>* aq_map) {
393 int xsize_blocks = aq_map->xsize();
394 int xsize = pre_erosion.xsize();
395 HWY_FULL(float) d;
396 const auto mul0 = Set(d, 0.125f);
397 const auto mul1 = Set(d, 0.075f);
398 const auto mul2 = Set(d, 0.06f);
399 const auto mul3 = Set(d, 0.05f);
400 for (size_t iy = 0; iy < 2 * yblen; ++iy) {
401 size_t y = 2 * yb0 + iy;
402 const float* JXL_RESTRICT rowt = pre_erosion.Row(y - 1);
403 const float* JXL_RESTRICT rowm = pre_erosion.Row(y);
404 const float* JXL_RESTRICT rowb = pre_erosion.Row(y + 1);
405 float* row_out = tmp->Row(y);
406 for (int x = 0; x < xsize; x += Lanes(d)) {
407 int xm1 = x - 1;
408 int xp1 = x + 1;
409 auto min0 = LoadU(d, rowm + x);
410 auto min1 = LoadU(d, rowm + xm1);
411 auto min2 = LoadU(d, rowm + xp1);
412 auto min3 = LoadU(d, rowt + xm1);
413 Sort4(min0, min1, min2, min3);
414 UpdateMin4(LoadU(d, rowt + x), min0, min1, min2, min3);
415 UpdateMin4(LoadU(d, rowt + xp1), min0, min1, min2, min3);
416 UpdateMin4(LoadU(d, rowb + xm1), min0, min1, min2, min3);
417 UpdateMin4(LoadU(d, rowb + x), min0, min1, min2, min3);
418 UpdateMin4(LoadU(d, rowb + xp1), min0, min1, min2, min3);
419 const auto v = Add(Add(Mul(mul0, min0), Mul(mul1, min1)),
420 Add(Mul(mul2, min2), Mul(mul3, min3)));
421 Store(v, d, row_out + x);
423 if (iy % 2 == 1) {
424 const float* JXL_RESTRICT row_out0 = tmp->Row(y - 1);
425 float* JXL_RESTRICT aq_out = aq_map->Row(yb0 + iy / 2);
426 for (int bx = 0, x = 0; bx < xsize_blocks; ++bx, x += 2) {
427 aq_out[bx] =
428 (row_out[x] + row_out[x + 1] + row_out0[x] + row_out0[x + 1]);
434 void ComputePreErosion(const RowBuffer<float>& input, const size_t xsize,
435 const size_t y0, const size_t ylen, int border,
436 float* diff_buffer, RowBuffer<float>* pre_erosion) {
437 const size_t xsize_out = xsize / 4;
438 const size_t y0_out = y0 / 4;
440 // The XYB gamma is 3.0 to be able to decode faster with two muls.
441 // Butteraugli's gamma is matching the gamma of human eye, around 2.6.
442 // We approximate the gamma difference by adding one cubic root into
443 // the adaptive quantization. This gives us a total gamma of 2.6666
444 // for quantization uses.
445 static const float match_gamma_offset = 0.019 / kInputScaling;
447 const HWY_CAPPED(float, 8) df;
449 static const float limit = 0.2f;
450 // Computes image (padded to multiple of 8x8) of local pixel differences.
451 // Subsample both directions by 4.
452 for (size_t iy = 0; iy < ylen; ++iy) {
453 size_t y = y0 + iy;
454 const float* row_in = input.Row(y);
455 const float* row_in1 = input.Row(y + 1);
456 const float* row_in2 = input.Row(y - 1);
457 float* JXL_RESTRICT row_out = diff_buffer;
458 const auto match_gamma_offset_v = Set(df, match_gamma_offset);
459 const auto quarter = Set(df, 0.25f);
460 for (size_t x = 0; x < xsize; x += Lanes(df)) {
461 const auto in = LoadU(df, row_in + x);
462 const auto in_r = LoadU(df, row_in + x + 1);
463 const auto in_l = LoadU(df, row_in + x - 1);
464 const auto in_t = LoadU(df, row_in2 + x);
465 const auto in_b = LoadU(df, row_in1 + x);
466 const auto base = Mul(quarter, Add(Add(in_r, in_l), Add(in_t, in_b)));
467 const auto gammacv =
468 RatioOfDerivativesOfCubicRootToSimpleGamma</*invert=*/false>(
469 df, Add(in, match_gamma_offset_v));
470 auto diff = Mul(gammacv, Sub(in, base));
471 diff = Mul(diff, diff);
472 diff = Min(diff, Set(df, limit));
473 diff = MaskingSqrt(df, diff);
474 if ((iy & 3) != 0) {
475 diff = Add(diff, LoadU(df, row_out + x));
477 StoreU(diff, df, row_out + x);
479 if (iy % 4 == 3) {
480 size_t y_out = y0_out + iy / 4;
481 float* row_d_out = pre_erosion->Row(y_out);
482 for (size_t x = 0; x < xsize_out; x++) {
483 row_d_out[x] = (row_out[x * 4] + row_out[x * 4 + 1] +
484 row_out[x * 4 + 2] + row_out[x * 4 + 3]) *
485 0.25f;
487 pre_erosion->PadRow(y_out, xsize_out, border);
492 } // namespace
494 // NOLINTNEXTLINE(google-readability-namespace-comments)
495 } // namespace HWY_NAMESPACE
496 } // namespace jpegli
497 HWY_AFTER_NAMESPACE();
499 #if HWY_ONCE
500 namespace jpegli {
501 HWY_EXPORT(ComputePreErosion);
502 HWY_EXPORT(FuzzyErosion);
503 HWY_EXPORT(PerBlockModulations);
505 namespace {
507 constexpr int kPreErosionBorder = 1;
509 } // namespace
511 void ComputeAdaptiveQuantField(j_compress_ptr cinfo) {
512 jpeg_comp_master* m = cinfo->master;
513 if (!m->use_adaptive_quantization) {
514 return;
516 int y_channel = cinfo->jpeg_color_space == JCS_RGB ? 1 : 0;
517 jpeg_component_info* y_comp = &cinfo->comp_info[y_channel];
518 int y_quant_01 = cinfo->quant_tbl_ptrs[y_comp->quant_tbl_no]->quantval[1];
519 if (m->next_iMCU_row == 0) {
520 m->input_buffer[y_channel].CopyRow(-1, 0, 1);
522 if (m->next_iMCU_row + 1 == cinfo->total_iMCU_rows) {
523 size_t last_row = m->ysize_blocks * DCTSIZE - 1;
524 m->input_buffer[y_channel].CopyRow(last_row + 1, last_row, 1);
526 const RowBuffer<float>& input = m->input_buffer[y_channel];
527 const size_t xsize_blocks = y_comp->width_in_blocks;
528 const size_t xsize = xsize_blocks * DCTSIZE;
529 const size_t yb0 = m->next_iMCU_row * cinfo->max_v_samp_factor;
530 const size_t yblen = cinfo->max_v_samp_factor;
531 size_t y0 = yb0 * DCTSIZE;
532 size_t ylen = cinfo->max_v_samp_factor * DCTSIZE;
533 if (y0 == 0) {
534 ylen += 4;
535 } else {
536 y0 += 4;
538 if (m->next_iMCU_row + 1 == cinfo->total_iMCU_rows) {
539 ylen -= 4;
541 HWY_DYNAMIC_DISPATCH(ComputePreErosion)
542 (input, xsize, y0, ylen, kPreErosionBorder, m->diff_buffer, &m->pre_erosion);
543 if (y0 == 0) {
544 m->pre_erosion.CopyRow(-1, 0, kPreErosionBorder);
546 if (m->next_iMCU_row + 1 == cinfo->total_iMCU_rows) {
547 size_t last_row = m->ysize_blocks * 2 - 1;
548 m->pre_erosion.CopyRow(last_row + 1, last_row, kPreErosionBorder);
550 HWY_DYNAMIC_DISPATCH(FuzzyErosion)
551 (m->pre_erosion, yb0, yblen, &m->fuzzy_erosion_tmp, &m->quant_field);
552 HWY_DYNAMIC_DISPATCH(PerBlockModulations)
553 (y_quant_01, input, yb0, yblen, &m->quant_field);
554 for (int y = 0; y < cinfo->max_v_samp_factor; ++y) {
555 float* row = m->quant_field.Row(yb0 + y);
556 for (size_t x = 0; x < xsize_blocks; ++x) {
557 row[x] = std::max(0.0f, (0.6f / row[x]) - 1.0f);
562 } // namespace jpegli
563 #endif // HWY_ONCE