Bug 1913305 - Add test. r=mtigley
[gecko.git] / media / libjpeg / jquant1.c
blob2e914b919c63d970e5825fc283ab70bc032c28d4
1 /*
2 * jquant1.c
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1996, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009, 2015, 2022-2023, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
11 * This file contains 1-pass color quantization (color mapping) routines.
12 * These routines provide mapping to a fixed color map using equally spaced
13 * color values. Optional Floyd-Steinberg or ordered dithering is available.
16 #define JPEG_INTERNALS
17 #include "jinclude.h"
18 #include "jpeglib.h"
19 #include "jsamplecomp.h"
21 #if defined(QUANT_1PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16
25 * The main purpose of 1-pass quantization is to provide a fast, if not very
26 * high quality, colormapped output capability. A 2-pass quantizer usually
27 * gives better visual quality; however, for quantized grayscale output this
28 * quantizer is perfectly adequate. Dithering is highly recommended with this
29 * quantizer, though you can turn it off if you really want to.
31 * In 1-pass quantization the colormap must be chosen in advance of seeing the
32 * image. We use a map consisting of all combinations of Ncolors[i] color
33 * values for the i'th component. The Ncolors[] values are chosen so that
34 * their product, the total number of colors, is no more than that requested.
35 * (In most cases, the product will be somewhat less.)
37 * Since the colormap is orthogonal, the representative value for each color
38 * component can be determined without considering the other components;
39 * then these indexes can be combined into a colormap index by a standard
40 * N-dimensional-array-subscript calculation. Most of the arithmetic involved
41 * can be precalculated and stored in the lookup table colorindex[].
42 * colorindex[i][j] maps pixel value j in component i to the nearest
43 * representative value (grid plane) for that component; this index is
44 * multiplied by the array stride for component i, so that the
45 * index of the colormap entry closest to a given pixel value is just
46 * sum( colorindex[component-number][pixel-component-value] )
47 * Aside from being fast, this scheme allows for variable spacing between
48 * representative values with no additional lookup cost.
50 * If gamma correction has been applied in color conversion, it might be wise
51 * to adjust the color grid spacing so that the representative colors are
52 * equidistant in linear space. At this writing, gamma correction is not
53 * implemented by jdcolor, so nothing is done here.
57 /* Declarations for ordered dithering.
59 * We use a standard 16x16 ordered dither array. The basic concept of ordered
60 * dithering is described in many references, for instance Dale Schumacher's
61 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
62 * In place of Schumacher's comparisons against a "threshold" value, we add a
63 * "dither" value to the input pixel and then round the result to the nearest
64 * output value. The dither value is equivalent to (0.5 - threshold) times
65 * the distance between output values. For ordered dithering, we assume that
66 * the output colors are equally spaced; if not, results will probably be
67 * worse, since the dither may be too much or too little at a given point.
69 * The normal calculation would be to form pixel value + dither, range-limit
70 * this to 0.._MAXJSAMPLE, and then index into the colorindex table as usual.
71 * We can skip the separate range-limiting step by extending the colorindex
72 * table in both directions.
75 #define ODITHER_SIZE 16 /* dimension of dither matrix */
76 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
77 #define ODITHER_CELLS (ODITHER_SIZE * ODITHER_SIZE) /* # cells in matrix */
78 #define ODITHER_MASK (ODITHER_SIZE - 1) /* mask for wrapping around
79 counters */
81 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
82 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
84 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
85 /* Bayer's order-4 dither array. Generated by the code given in
86 * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
87 * The values in this array must range from 0 to ODITHER_CELLS-1.
89 { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
90 { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
91 { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
92 { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
93 { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
94 { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
95 { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
96 { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
97 { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
98 { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
99 { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
100 { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
101 { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
102 { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
103 { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
104 { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
108 /* Declarations for Floyd-Steinberg dithering.
110 * Errors are accumulated into the array fserrors[], at a resolution of
111 * 1/16th of a pixel count. The error at a given pixel is propagated
112 * to its not-yet-processed neighbors using the standard F-S fractions,
113 * ... (here) 7/16
114 * 3/16 5/16 1/16
115 * We work left-to-right on even rows, right-to-left on odd rows.
117 * We can get away with a single array (holding one row's worth of errors)
118 * by using it to store the current row's errors at pixel columns not yet
119 * processed, but the next row's errors at columns already processed. We
120 * need only a few extra variables to hold the errors immediately around the
121 * current column. (If we are lucky, those variables are in registers, but
122 * even if not, they're probably cheaper to access than array elements are.)
124 * The fserrors[] array is indexed [component#][position].
125 * We provide (#columns + 2) entries per component; the extra entry at each
126 * end saves us from special-casing the first and last pixels.
129 #if BITS_IN_JSAMPLE == 8
130 typedef INT16 FSERROR; /* 16 bits should be enough */
131 typedef int LOCFSERROR; /* use 'int' for calculation temps */
132 #else
133 typedef JLONG FSERROR; /* may need more than 16 bits */
134 typedef JLONG LOCFSERROR; /* be sure calculation temps are big enough */
135 #endif
137 typedef FSERROR *FSERRPTR; /* pointer to error array */
140 /* Private subobject */
142 #define MAX_Q_COMPS 4 /* max components I can handle */
144 typedef struct {
145 struct jpeg_color_quantizer pub; /* public fields */
147 /* Initially allocated colormap is saved here */
148 _JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
149 int sv_actual; /* number of entries in use */
151 _JSAMPARRAY colorindex; /* Precomputed mapping for speed */
152 /* colorindex[i][j] = index of color closest to pixel value j in component i,
153 * premultiplied as described above. Since colormap indexes must fit into
154 * _JSAMPLEs, the entries of this array will too.
156 boolean is_padded; /* is the colorindex padded for odither? */
158 int Ncolors[MAX_Q_COMPS]; /* # of values allocated to each component */
160 /* Variables for ordered dithering */
161 int row_index; /* cur row's vertical index in dither matrix */
162 ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
164 /* Variables for Floyd-Steinberg dithering */
165 FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
166 boolean on_odd_row; /* flag to remember which row we are on */
167 } my_cquantizer;
169 typedef my_cquantizer *my_cquantize_ptr;
173 * Policy-making subroutines for create_colormap and create_colorindex.
174 * These routines determine the colormap to be used. The rest of the module
175 * only assumes that the colormap is orthogonal.
177 * * select_ncolors decides how to divvy up the available colors
178 * among the components.
179 * * output_value defines the set of representative values for a component.
180 * * largest_input_value defines the mapping from input values to
181 * representative values for a component.
182 * Note that the latter two routines may impose different policies for
183 * different components, though this is not currently done.
187 LOCAL(int)
188 select_ncolors(j_decompress_ptr cinfo, int Ncolors[])
189 /* Determine allocation of desired colors to components, */
190 /* and fill in Ncolors[] array to indicate choice. */
191 /* Return value is total number of colors (product of Ncolors[] values). */
193 int nc = cinfo->out_color_components; /* number of color components */
194 int max_colors = cinfo->desired_number_of_colors;
195 int total_colors, iroot, i, j;
196 boolean changed;
197 long temp;
198 int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
199 RGB_order[0] = rgb_green[cinfo->out_color_space];
200 RGB_order[1] = rgb_red[cinfo->out_color_space];
201 RGB_order[2] = rgb_blue[cinfo->out_color_space];
203 /* We can allocate at least the nc'th root of max_colors per component. */
204 /* Compute floor(nc'th root of max_colors). */
205 iroot = 1;
206 do {
207 iroot++;
208 temp = iroot; /* set temp = iroot ** nc */
209 for (i = 1; i < nc; i++)
210 temp *= iroot;
211 } while (temp <= (long)max_colors); /* repeat till iroot exceeds root */
212 iroot--; /* now iroot = floor(root) */
214 /* Must have at least 2 color values per component */
215 if (iroot < 2)
216 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int)temp);
218 /* Initialize to iroot color values for each component */
219 total_colors = 1;
220 for (i = 0; i < nc; i++) {
221 Ncolors[i] = iroot;
222 total_colors *= iroot;
224 /* We may be able to increment the count for one or more components without
225 * exceeding max_colors, though we know not all can be incremented.
226 * Sometimes, the first component can be incremented more than once!
227 * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
228 * In RGB colorspace, try to increment G first, then R, then B.
230 do {
231 changed = FALSE;
232 for (i = 0; i < nc; i++) {
233 j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
234 /* calculate new total_colors if Ncolors[j] is incremented */
235 temp = total_colors / Ncolors[j];
236 temp *= Ncolors[j] + 1; /* done in long arith to avoid oflo */
237 if (temp > (long)max_colors)
238 break; /* won't fit, done with this pass */
239 Ncolors[j]++; /* OK, apply the increment */
240 total_colors = (int)temp;
241 changed = TRUE;
243 } while (changed);
245 return total_colors;
249 LOCAL(int)
250 output_value(j_decompress_ptr cinfo, int ci, int j, int maxj)
251 /* Return j'th output value, where j will range from 0 to maxj */
252 /* The output values must fall in 0.._MAXJSAMPLE in increasing order */
254 /* We always provide values 0 and _MAXJSAMPLE for each component;
255 * any additional values are equally spaced between these limits.
256 * (Forcing the upper and lower values to the limits ensures that
257 * dithering can't produce a color outside the selected gamut.)
259 return (int)(((JLONG)j * _MAXJSAMPLE + maxj / 2) / maxj);
263 LOCAL(int)
264 largest_input_value(j_decompress_ptr cinfo, int ci, int j, int maxj)
265 /* Return largest input value that should map to j'th output value */
266 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= _MAXJSAMPLE */
268 /* Breakpoints are halfway between values returned by output_value */
269 return (int)(((JLONG)(2 * j + 1) * _MAXJSAMPLE + maxj) / (2 * maxj));
274 * Create the colormap.
277 LOCAL(void)
278 create_colormap(j_decompress_ptr cinfo)
280 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
281 _JSAMPARRAY colormap; /* Created colormap */
282 int total_colors; /* Number of distinct output colors */
283 int i, j, k, nci, blksize, blkdist, ptr, val;
285 /* Select number of colors for each component */
286 total_colors = select_ncolors(cinfo, cquantize->Ncolors);
288 /* Report selected color counts */
289 if (cinfo->out_color_components == 3)
290 TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, total_colors,
291 cquantize->Ncolors[0], cquantize->Ncolors[1],
292 cquantize->Ncolors[2]);
293 else
294 TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
296 /* Allocate and fill in the colormap. */
297 /* The colors are ordered in the map in standard row-major order, */
298 /* i.e. rightmost (highest-indexed) color changes most rapidly. */
300 colormap = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
301 ((j_common_ptr)cinfo, JPOOL_IMAGE,
302 (JDIMENSION)total_colors, (JDIMENSION)cinfo->out_color_components);
304 /* blksize is number of adjacent repeated entries for a component */
305 /* blkdist is distance between groups of identical entries for a component */
306 blkdist = total_colors;
308 for (i = 0; i < cinfo->out_color_components; i++) {
309 /* fill in colormap entries for i'th color component */
310 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
311 blksize = blkdist / nci;
312 for (j = 0; j < nci; j++) {
313 /* Compute j'th output value (out of nci) for component */
314 val = output_value(cinfo, i, j, nci - 1);
315 /* Fill in all colormap entries that have this value of this component */
316 for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
317 /* fill in blksize entries beginning at ptr */
318 for (k = 0; k < blksize; k++)
319 colormap[i][ptr + k] = (_JSAMPLE)val;
322 blkdist = blksize; /* blksize of this color is blkdist of next */
325 /* Save the colormap in private storage,
326 * where it will survive color quantization mode changes.
328 cquantize->sv_colormap = colormap;
329 cquantize->sv_actual = total_colors;
334 * Create the color index table.
337 LOCAL(void)
338 create_colorindex(j_decompress_ptr cinfo)
340 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
341 _JSAMPROW indexptr;
342 int i, j, k, nci, blksize, val, pad;
344 /* For ordered dither, we pad the color index tables by _MAXJSAMPLE in
345 * each direction (input index values can be -_MAXJSAMPLE .. 2*_MAXJSAMPLE).
346 * This is not necessary in the other dithering modes. However, we
347 * flag whether it was done in case user changes dithering mode.
349 if (cinfo->dither_mode == JDITHER_ORDERED) {
350 pad = _MAXJSAMPLE * 2;
351 cquantize->is_padded = TRUE;
352 } else {
353 pad = 0;
354 cquantize->is_padded = FALSE;
357 cquantize->colorindex = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
358 ((j_common_ptr)cinfo, JPOOL_IMAGE,
359 (JDIMENSION)(_MAXJSAMPLE + 1 + pad),
360 (JDIMENSION)cinfo->out_color_components);
362 /* blksize is number of adjacent repeated entries for a component */
363 blksize = cquantize->sv_actual;
365 for (i = 0; i < cinfo->out_color_components; i++) {
366 /* fill in colorindex entries for i'th color component */
367 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
368 blksize = blksize / nci;
370 /* adjust colorindex pointers to provide padding at negative indexes. */
371 if (pad)
372 cquantize->colorindex[i] += _MAXJSAMPLE;
374 /* in loop, val = index of current output value, */
375 /* and k = largest j that maps to current val */
376 indexptr = cquantize->colorindex[i];
377 val = 0;
378 k = largest_input_value(cinfo, i, 0, nci - 1);
379 for (j = 0; j <= _MAXJSAMPLE; j++) {
380 while (j > k) /* advance val if past boundary */
381 k = largest_input_value(cinfo, i, ++val, nci - 1);
382 /* premultiply so that no multiplication needed in main processing */
383 indexptr[j] = (_JSAMPLE)(val * blksize);
385 /* Pad at both ends if necessary */
386 if (pad)
387 for (j = 1; j <= _MAXJSAMPLE; j++) {
388 indexptr[-j] = indexptr[0];
389 indexptr[_MAXJSAMPLE + j] = indexptr[_MAXJSAMPLE];
396 * Create an ordered-dither array for a component having ncolors
397 * distinct output values.
400 LOCAL(ODITHER_MATRIX_PTR)
401 make_odither_array(j_decompress_ptr cinfo, int ncolors)
403 ODITHER_MATRIX_PTR odither;
404 int j, k;
405 JLONG num, den;
407 odither = (ODITHER_MATRIX_PTR)
408 (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
409 sizeof(ODITHER_MATRIX));
410 /* The inter-value distance for this color is _MAXJSAMPLE/(ncolors-1).
411 * Hence the dither value for the matrix cell with fill order f
412 * (f=0..N-1) should be (N-1-2*f)/(2*N) * _MAXJSAMPLE/(ncolors-1).
413 * On 16-bit-int machine, be careful to avoid overflow.
415 den = 2 * ODITHER_CELLS * ((JLONG)(ncolors - 1));
416 for (j = 0; j < ODITHER_SIZE; j++) {
417 for (k = 0; k < ODITHER_SIZE; k++) {
418 num = ((JLONG)(ODITHER_CELLS - 1 -
419 2 * ((int)base_dither_matrix[j][k]))) * _MAXJSAMPLE;
420 /* Ensure round towards zero despite C's lack of consistency
421 * about rounding negative values in integer division...
423 odither[j][k] = (int)(num < 0 ? -((-num) / den) : num / den);
426 return odither;
431 * Create the ordered-dither tables.
432 * Components having the same number of representative colors may
433 * share a dither table.
436 LOCAL(void)
437 create_odither_tables(j_decompress_ptr cinfo)
439 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
440 ODITHER_MATRIX_PTR odither;
441 int i, j, nci;
443 for (i = 0; i < cinfo->out_color_components; i++) {
444 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
445 odither = NULL; /* search for matching prior component */
446 for (j = 0; j < i; j++) {
447 if (nci == cquantize->Ncolors[j]) {
448 odither = cquantize->odither[j];
449 break;
452 if (odither == NULL) /* need a new table? */
453 odither = make_odither_array(cinfo, nci);
454 cquantize->odither[i] = odither;
460 * Map some rows of pixels to the output colormapped representation.
463 METHODDEF(void)
464 color_quantize(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
465 _JSAMPARRAY output_buf, int num_rows)
466 /* General case, no dithering */
468 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
469 _JSAMPARRAY colorindex = cquantize->colorindex;
470 register int pixcode, ci;
471 register _JSAMPROW ptrin, ptrout;
472 int row;
473 JDIMENSION col;
474 JDIMENSION width = cinfo->output_width;
475 register int nc = cinfo->out_color_components;
477 for (row = 0; row < num_rows; row++) {
478 ptrin = input_buf[row];
479 ptrout = output_buf[row];
480 for (col = width; col > 0; col--) {
481 pixcode = 0;
482 for (ci = 0; ci < nc; ci++) {
483 pixcode += colorindex[ci][*ptrin++];
485 *ptrout++ = (_JSAMPLE)pixcode;
491 METHODDEF(void)
492 color_quantize3(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
493 _JSAMPARRAY output_buf, int num_rows)
494 /* Fast path for out_color_components==3, no dithering */
496 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
497 register int pixcode;
498 register _JSAMPROW ptrin, ptrout;
499 _JSAMPROW colorindex0 = cquantize->colorindex[0];
500 _JSAMPROW colorindex1 = cquantize->colorindex[1];
501 _JSAMPROW colorindex2 = cquantize->colorindex[2];
502 int row;
503 JDIMENSION col;
504 JDIMENSION width = cinfo->output_width;
506 for (row = 0; row < num_rows; row++) {
507 ptrin = input_buf[row];
508 ptrout = output_buf[row];
509 for (col = width; col > 0; col--) {
510 pixcode = colorindex0[*ptrin++];
511 pixcode += colorindex1[*ptrin++];
512 pixcode += colorindex2[*ptrin++];
513 *ptrout++ = (_JSAMPLE)pixcode;
519 METHODDEF(void)
520 quantize_ord_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
521 _JSAMPARRAY output_buf, int num_rows)
522 /* General case, with ordered dithering */
524 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
525 register _JSAMPROW input_ptr;
526 register _JSAMPROW output_ptr;
527 _JSAMPROW colorindex_ci;
528 int *dither; /* points to active row of dither matrix */
529 int row_index, col_index; /* current indexes into dither matrix */
530 int nc = cinfo->out_color_components;
531 int ci;
532 int row;
533 JDIMENSION col;
534 JDIMENSION width = cinfo->output_width;
536 for (row = 0; row < num_rows; row++) {
537 /* Initialize output values to 0 so can process components separately */
538 jzero_far((void *)output_buf[row], (size_t)(width * sizeof(_JSAMPLE)));
539 row_index = cquantize->row_index;
540 for (ci = 0; ci < nc; ci++) {
541 input_ptr = input_buf[row] + ci;
542 output_ptr = output_buf[row];
543 colorindex_ci = cquantize->colorindex[ci];
544 dither = cquantize->odither[ci][row_index];
545 col_index = 0;
547 for (col = width; col > 0; col--) {
548 /* Form pixel value + dither, range-limit to 0.._MAXJSAMPLE,
549 * select output value, accumulate into output code for this pixel.
550 * Range-limiting need not be done explicitly, as we have extended
551 * the colorindex table to produce the right answers for out-of-range
552 * inputs. The maximum dither is +- _MAXJSAMPLE; this sets the
553 * required amount of padding.
555 *output_ptr +=
556 colorindex_ci[*input_ptr + dither[col_index]];
557 input_ptr += nc;
558 output_ptr++;
559 col_index = (col_index + 1) & ODITHER_MASK;
562 /* Advance row index for next row */
563 row_index = (row_index + 1) & ODITHER_MASK;
564 cquantize->row_index = row_index;
569 METHODDEF(void)
570 quantize3_ord_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
571 _JSAMPARRAY output_buf, int num_rows)
572 /* Fast path for out_color_components==3, with ordered dithering */
574 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
575 register int pixcode;
576 register _JSAMPROW input_ptr;
577 register _JSAMPROW output_ptr;
578 _JSAMPROW colorindex0 = cquantize->colorindex[0];
579 _JSAMPROW colorindex1 = cquantize->colorindex[1];
580 _JSAMPROW colorindex2 = cquantize->colorindex[2];
581 int *dither0; /* points to active row of dither matrix */
582 int *dither1;
583 int *dither2;
584 int row_index, col_index; /* current indexes into dither matrix */
585 int row;
586 JDIMENSION col;
587 JDIMENSION width = cinfo->output_width;
589 for (row = 0; row < num_rows; row++) {
590 row_index = cquantize->row_index;
591 input_ptr = input_buf[row];
592 output_ptr = output_buf[row];
593 dither0 = cquantize->odither[0][row_index];
594 dither1 = cquantize->odither[1][row_index];
595 dither2 = cquantize->odither[2][row_index];
596 col_index = 0;
598 for (col = width; col > 0; col--) {
599 pixcode = colorindex0[(*input_ptr++) + dither0[col_index]];
600 pixcode += colorindex1[(*input_ptr++) + dither1[col_index]];
601 pixcode += colorindex2[(*input_ptr++) + dither2[col_index]];
602 *output_ptr++ = (_JSAMPLE)pixcode;
603 col_index = (col_index + 1) & ODITHER_MASK;
605 row_index = (row_index + 1) & ODITHER_MASK;
606 cquantize->row_index = row_index;
611 METHODDEF(void)
612 quantize_fs_dither(j_decompress_ptr cinfo, _JSAMPARRAY input_buf,
613 _JSAMPARRAY output_buf, int num_rows)
614 /* General case, with Floyd-Steinberg dithering */
616 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
617 register LOCFSERROR cur; /* current error or pixel value */
618 LOCFSERROR belowerr; /* error for pixel below cur */
619 LOCFSERROR bpreverr; /* error for below/prev col */
620 LOCFSERROR bnexterr; /* error for below/next col */
621 LOCFSERROR delta;
622 register FSERRPTR errorptr; /* => fserrors[] at column before current */
623 register _JSAMPROW input_ptr;
624 register _JSAMPROW output_ptr;
625 _JSAMPROW colorindex_ci;
626 _JSAMPROW colormap_ci;
627 int pixcode;
628 int nc = cinfo->out_color_components;
629 int dir; /* 1 for left-to-right, -1 for right-to-left */
630 int dirnc; /* dir * nc */
631 int ci;
632 int row;
633 JDIMENSION col;
634 JDIMENSION width = cinfo->output_width;
635 _JSAMPLE *range_limit = (_JSAMPLE *)cinfo->sample_range_limit;
636 SHIFT_TEMPS
638 for (row = 0; row < num_rows; row++) {
639 /* Initialize output values to 0 so can process components separately */
640 jzero_far((void *)output_buf[row], (size_t)(width * sizeof(_JSAMPLE)));
641 for (ci = 0; ci < nc; ci++) {
642 input_ptr = input_buf[row] + ci;
643 output_ptr = output_buf[row];
644 if (cquantize->on_odd_row) {
645 /* work right to left in this row */
646 input_ptr += (width - 1) * nc; /* so point to rightmost pixel */
647 output_ptr += width - 1;
648 dir = -1;
649 dirnc = -nc;
650 errorptr = cquantize->fserrors[ci] + (width + 1); /* => entry after last column */
651 } else {
652 /* work left to right in this row */
653 dir = 1;
654 dirnc = nc;
655 errorptr = cquantize->fserrors[ci]; /* => entry before first column */
657 colorindex_ci = cquantize->colorindex[ci];
658 colormap_ci = cquantize->sv_colormap[ci];
659 /* Preset error values: no error propagated to first pixel from left */
660 cur = 0;
661 /* and no error propagated to row below yet */
662 belowerr = bpreverr = 0;
664 for (col = width; col > 0; col--) {
665 /* cur holds the error propagated from the previous pixel on the
666 * current line. Add the error propagated from the previous line
667 * to form the complete error correction term for this pixel, and
668 * round the error term (which is expressed * 16) to an integer.
669 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
670 * for either sign of the error value.
671 * Note: errorptr points to *previous* column's array entry.
673 cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
674 /* Form pixel value + error, and range-limit to 0.._MAXJSAMPLE.
675 * The maximum error is +- _MAXJSAMPLE; this sets the required size
676 * of the range_limit array.
678 cur += *input_ptr;
679 cur = range_limit[cur];
680 /* Select output value, accumulate into output code for this pixel */
681 pixcode = colorindex_ci[cur];
682 *output_ptr += (_JSAMPLE)pixcode;
683 /* Compute actual representation error at this pixel */
684 /* Note: we can do this even though we don't have the final */
685 /* pixel code, because the colormap is orthogonal. */
686 cur -= colormap_ci[pixcode];
687 /* Compute error fractions to be propagated to adjacent pixels.
688 * Add these into the running sums, and simultaneously shift the
689 * next-line error sums left by 1 column.
691 bnexterr = cur;
692 delta = cur * 2;
693 cur += delta; /* form error * 3 */
694 errorptr[0] = (FSERROR)(bpreverr + cur);
695 cur += delta; /* form error * 5 */
696 bpreverr = belowerr + cur;
697 belowerr = bnexterr;
698 cur += delta; /* form error * 7 */
699 /* At this point cur contains the 7/16 error value to be propagated
700 * to the next pixel on the current line, and all the errors for the
701 * next line have been shifted over. We are therefore ready to move on.
703 input_ptr += dirnc; /* advance input ptr to next column */
704 output_ptr += dir; /* advance output ptr to next column */
705 errorptr += dir; /* advance errorptr to current column */
707 /* Post-loop cleanup: we must unload the final error value into the
708 * final fserrors[] entry. Note we need not unload belowerr because
709 * it is for the dummy column before or after the actual array.
711 errorptr[0] = (FSERROR)bpreverr; /* unload prev err into array */
713 cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
719 * Allocate workspace for Floyd-Steinberg errors.
722 LOCAL(void)
723 alloc_fs_workspace(j_decompress_ptr cinfo)
725 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
726 size_t arraysize;
727 int i;
729 arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR));
730 for (i = 0; i < cinfo->out_color_components; i++) {
731 cquantize->fserrors[i] = (FSERRPTR)
732 (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize);
738 * Initialize for one-pass color quantization.
741 METHODDEF(void)
742 start_pass_1_quant(j_decompress_ptr cinfo, boolean is_pre_scan)
744 my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
745 size_t arraysize;
746 int i;
748 /* Install my colormap. */
749 cinfo->colormap = (JSAMPARRAY)cquantize->sv_colormap;
750 cinfo->actual_number_of_colors = cquantize->sv_actual;
752 /* Initialize for desired dithering mode. */
753 switch (cinfo->dither_mode) {
754 case JDITHER_NONE:
755 if (cinfo->out_color_components == 3)
756 cquantize->pub._color_quantize = color_quantize3;
757 else
758 cquantize->pub._color_quantize = color_quantize;
759 break;
760 case JDITHER_ORDERED:
761 if (cinfo->out_color_components == 3)
762 cquantize->pub._color_quantize = quantize3_ord_dither;
763 else
764 cquantize->pub._color_quantize = quantize_ord_dither;
765 cquantize->row_index = 0; /* initialize state for ordered dither */
766 /* If user changed to ordered dither from another mode,
767 * we must recreate the color index table with padding.
768 * This will cost extra space, but probably isn't very likely.
770 if (!cquantize->is_padded)
771 create_colorindex(cinfo);
772 /* Create ordered-dither tables if we didn't already. */
773 if (cquantize->odither[0] == NULL)
774 create_odither_tables(cinfo);
775 break;
776 case JDITHER_FS:
777 cquantize->pub._color_quantize = quantize_fs_dither;
778 cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
779 /* Allocate Floyd-Steinberg workspace if didn't already. */
780 if (cquantize->fserrors[0] == NULL)
781 alloc_fs_workspace(cinfo);
782 /* Initialize the propagated errors to zero. */
783 arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR));
784 for (i = 0; i < cinfo->out_color_components; i++)
785 jzero_far((void *)cquantize->fserrors[i], arraysize);
786 break;
787 default:
788 ERREXIT(cinfo, JERR_NOT_COMPILED);
789 break;
795 * Finish up at the end of the pass.
798 METHODDEF(void)
799 finish_pass_1_quant(j_decompress_ptr cinfo)
801 /* no work in 1-pass case */
806 * Switch to a new external colormap between output passes.
807 * Shouldn't get to this module!
810 METHODDEF(void)
811 new_color_map_1_quant(j_decompress_ptr cinfo)
813 ERREXIT(cinfo, JERR_MODE_CHANGE);
818 * Module initialization routine for 1-pass color quantization.
821 GLOBAL(void)
822 _jinit_1pass_quantizer(j_decompress_ptr cinfo)
824 my_cquantize_ptr cquantize;
826 if (cinfo->data_precision != BITS_IN_JSAMPLE)
827 ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
829 /* Color quantization is not supported with lossless JPEG images */
830 if (cinfo->master->lossless)
831 ERREXIT(cinfo, JERR_NOTIMPL);
833 cquantize = (my_cquantize_ptr)
834 (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
835 sizeof(my_cquantizer));
836 cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize;
837 cquantize->pub.start_pass = start_pass_1_quant;
838 cquantize->pub.finish_pass = finish_pass_1_quant;
839 cquantize->pub.new_color_map = new_color_map_1_quant;
840 cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
841 cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
843 /* Make sure my internal arrays won't overflow */
844 if (cinfo->out_color_components > MAX_Q_COMPS)
845 ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
846 /* Make sure colormap indexes can be represented by _JSAMPLEs */
847 if (cinfo->desired_number_of_colors > (_MAXJSAMPLE + 1))
848 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, _MAXJSAMPLE + 1);
850 /* Create the colormap and color index table. */
851 create_colormap(cinfo);
852 create_colorindex(cinfo);
854 /* Allocate Floyd-Steinberg workspace now if requested.
855 * We do this now since it may affect the memory manager's space
856 * calculations. If the user changes to FS dither mode in a later pass, we
857 * will allocate the space then, and will possibly overrun the
858 * max_memory_to_use setting.
860 if (cinfo->dither_mode == JDITHER_FS)
861 alloc_fs_workspace(cinfo);
864 #endif /* defined(QUANT_1PASS_SUPPORTED) && BITS_IN_JSAMPLE != 16 */