Bug 1444940 [wpt PR 9917] - Writable streams: test changes to abort() under error...
[gecko.git] / gfx / 2d / FilterNodeD2D1.cpp
bloba708a859d22b056f62e99e28270cdfb3bdaf55cd
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 #include "FilterNodeD2D1.h"
9 #include "Logging.h"
11 #include "SourceSurfaceD2D1.h"
12 #include "DrawTargetD2D1.h"
13 #include "ExtendInputEffectD2D1.h"
15 namespace mozilla {
16 namespace gfx {
18 D2D1_COLORMATRIX_ALPHA_MODE D2DAlphaMode(uint32_t aMode)
20 switch (aMode) {
21 case ALPHA_MODE_PREMULTIPLIED:
22 return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED;
23 case ALPHA_MODE_STRAIGHT:
24 return D2D1_COLORMATRIX_ALPHA_MODE_STRAIGHT;
25 default:
26 MOZ_CRASH("GFX: Unknown enum value D2DAlphaMode!");
29 return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED;
32 D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE D2DAffineTransformInterpolationMode(SamplingFilter aSamplingFilter)
34 switch (aSamplingFilter) {
35 case SamplingFilter::GOOD:
36 return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
37 case SamplingFilter::LINEAR:
38 return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
39 case SamplingFilter::POINT:
40 return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_NEAREST_NEIGHBOR;
41 default:
42 MOZ_CRASH("GFX: Unknown enum value D2DAffineTIM!");
45 return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
48 D2D1_BLEND_MODE D2DBlendMode(uint32_t aMode)
50 switch (aMode) {
51 case BLEND_MODE_DARKEN:
52 return D2D1_BLEND_MODE_DARKEN;
53 case BLEND_MODE_LIGHTEN:
54 return D2D1_BLEND_MODE_LIGHTEN;
55 case BLEND_MODE_MULTIPLY:
56 return D2D1_BLEND_MODE_MULTIPLY;
57 case BLEND_MODE_SCREEN:
58 return D2D1_BLEND_MODE_SCREEN;
59 case BLEND_MODE_OVERLAY:
60 return D2D1_BLEND_MODE_OVERLAY;
61 case BLEND_MODE_COLOR_DODGE:
62 return D2D1_BLEND_MODE_COLOR_DODGE;
63 case BLEND_MODE_COLOR_BURN:
64 return D2D1_BLEND_MODE_COLOR_BURN;
65 case BLEND_MODE_HARD_LIGHT:
66 return D2D1_BLEND_MODE_HARD_LIGHT;
67 case BLEND_MODE_SOFT_LIGHT:
68 return D2D1_BLEND_MODE_SOFT_LIGHT;
69 case BLEND_MODE_DIFFERENCE:
70 return D2D1_BLEND_MODE_DIFFERENCE;
71 case BLEND_MODE_EXCLUSION:
72 return D2D1_BLEND_MODE_EXCLUSION;
73 case BLEND_MODE_HUE:
74 return D2D1_BLEND_MODE_HUE;
75 case BLEND_MODE_SATURATION:
76 return D2D1_BLEND_MODE_SATURATION;
77 case BLEND_MODE_COLOR:
78 return D2D1_BLEND_MODE_COLOR;
79 case BLEND_MODE_LUMINOSITY:
80 return D2D1_BLEND_MODE_LUMINOSITY;
82 default:
83 MOZ_CRASH("GFX: Unknown enum value D2DBlendMode!");
86 return D2D1_BLEND_MODE_DARKEN;
89 D2D1_MORPHOLOGY_MODE D2DMorphologyMode(uint32_t aMode)
91 switch (aMode) {
92 case MORPHOLOGY_OPERATOR_DILATE:
93 return D2D1_MORPHOLOGY_MODE_DILATE;
94 case MORPHOLOGY_OPERATOR_ERODE:
95 return D2D1_MORPHOLOGY_MODE_ERODE;
98 MOZ_CRASH("GFX: Unknown enum value D2DMorphologyMode!");
99 return D2D1_MORPHOLOGY_MODE_DILATE;
102 D2D1_TURBULENCE_NOISE D2DTurbulenceNoise(uint32_t aMode)
104 switch (aMode) {
105 case TURBULENCE_TYPE_FRACTAL_NOISE:
106 return D2D1_TURBULENCE_NOISE_FRACTAL_SUM;
107 case TURBULENCE_TYPE_TURBULENCE:
108 return D2D1_TURBULENCE_NOISE_TURBULENCE;
111 MOZ_CRASH("GFX: Unknown enum value D2DTurbulenceNoise!");
112 return D2D1_TURBULENCE_NOISE_TURBULENCE;
115 D2D1_COMPOSITE_MODE D2DFilterCompositionMode(uint32_t aMode)
117 switch (aMode) {
118 case COMPOSITE_OPERATOR_OVER:
119 return D2D1_COMPOSITE_MODE_SOURCE_OVER;
120 case COMPOSITE_OPERATOR_IN:
121 return D2D1_COMPOSITE_MODE_SOURCE_IN;
122 case COMPOSITE_OPERATOR_OUT:
123 return D2D1_COMPOSITE_MODE_SOURCE_OUT;
124 case COMPOSITE_OPERATOR_ATOP:
125 return D2D1_COMPOSITE_MODE_SOURCE_ATOP;
126 case COMPOSITE_OPERATOR_XOR:
127 return D2D1_COMPOSITE_MODE_XOR;
130 MOZ_CRASH("GFX: Unknown enum value D2DFilterCompositionMode!");
131 return D2D1_COMPOSITE_MODE_SOURCE_OVER;
134 D2D1_CHANNEL_SELECTOR D2DChannelSelector(uint32_t aMode)
136 switch (aMode) {
137 case COLOR_CHANNEL_R:
138 return D2D1_CHANNEL_SELECTOR_R;
139 case COLOR_CHANNEL_G:
140 return D2D1_CHANNEL_SELECTOR_G;
141 case COLOR_CHANNEL_B:
142 return D2D1_CHANNEL_SELECTOR_B;
143 case COLOR_CHANNEL_A:
144 return D2D1_CHANNEL_SELECTOR_A;
147 MOZ_CRASH("GFX: Unknown enum value D2DChannelSelector!");
148 return D2D1_CHANNEL_SELECTOR_R;
151 already_AddRefed<ID2D1Image> GetImageForSourceSurface(DrawTarget *aDT, SourceSurface *aSurface)
153 if (aDT->IsTiledDrawTarget() || aDT->IsDualDrawTarget() || aDT->IsCaptureDT()) {
154 gfxDevCrash(LogReason::FilterNodeD2D1Target) << "Incompatible draw target type! " << (int)aDT->IsTiledDrawTarget() << " " << (int)aDT->IsDualDrawTarget();
155 return nullptr;
157 switch (aDT->GetBackendType()) {
158 case BackendType::DIRECT2D1_1:
159 return static_cast<DrawTargetD2D1*>(aDT)->GetImageForSurface(aSurface, ExtendMode::CLAMP);
160 default:
161 gfxDevCrash(LogReason::FilterNodeD2D1Backend) << "Unknown draw target type! " << (int)aDT->GetBackendType();
162 return nullptr;
166 uint32_t ConvertValue(FilterType aType, uint32_t aAttribute, uint32_t aValue)
168 switch (aType) {
169 case FilterType::COLOR_MATRIX:
170 if (aAttribute == ATT_COLOR_MATRIX_ALPHA_MODE) {
171 aValue = D2DAlphaMode(aValue);
173 break;
174 case FilterType::TRANSFORM:
175 if (aAttribute == ATT_TRANSFORM_FILTER) {
176 aValue = D2DAffineTransformInterpolationMode(SamplingFilter(aValue));
178 break;
179 case FilterType::BLEND:
180 if (aAttribute == ATT_BLEND_BLENDMODE) {
181 aValue = D2DBlendMode(aValue);
183 break;
184 case FilterType::MORPHOLOGY:
185 if (aAttribute == ATT_MORPHOLOGY_OPERATOR) {
186 aValue = D2DMorphologyMode(aValue);
188 break;
189 case FilterType::DISPLACEMENT_MAP:
190 if (aAttribute == ATT_DISPLACEMENT_MAP_X_CHANNEL ||
191 aAttribute == ATT_DISPLACEMENT_MAP_Y_CHANNEL) {
192 aValue = D2DChannelSelector(aValue);
194 break;
195 case FilterType::TURBULENCE:
196 if (aAttribute == ATT_TURBULENCE_TYPE) {
197 aValue = D2DTurbulenceNoise(aValue);
199 break;
200 case FilterType::COMPOSITE:
201 if (aAttribute == ATT_COMPOSITE_OPERATOR) {
202 aValue = D2DFilterCompositionMode(aValue);
204 break;
205 default:
206 break;
209 return aValue;
212 void ConvertValue(FilterType aType, uint32_t aAttribute, IntSize &aValue)
214 switch (aType) {
215 case FilterType::MORPHOLOGY:
216 if (aAttribute == ATT_MORPHOLOGY_RADII) {
217 aValue.width *= 2;
218 aValue.width += 1;
219 aValue.height *= 2;
220 aValue.height += 1;
222 break;
223 default:
224 break;
228 UINT32
229 GetD2D1InputForInput(FilterType aType, uint32_t aIndex)
231 return aIndex;
234 #define CONVERT_PROP(moz2dname, d2dname) \
235 case ATT_##moz2dname: \
236 return D2D1_##d2dname
238 UINT32
239 GetD2D1PropForAttribute(FilterType aType, uint32_t aIndex)
241 switch (aType) {
242 case FilterType::COLOR_MATRIX:
243 switch (aIndex) {
244 CONVERT_PROP(COLOR_MATRIX_MATRIX, COLORMATRIX_PROP_COLOR_MATRIX);
245 CONVERT_PROP(COLOR_MATRIX_ALPHA_MODE, COLORMATRIX_PROP_ALPHA_MODE);
247 break;
248 case FilterType::TRANSFORM:
249 switch (aIndex) {
250 CONVERT_PROP(TRANSFORM_MATRIX, 2DAFFINETRANSFORM_PROP_TRANSFORM_MATRIX);
251 CONVERT_PROP(TRANSFORM_FILTER, 2DAFFINETRANSFORM_PROP_INTERPOLATION_MODE);
253 case FilterType::BLEND:
254 switch (aIndex) {
255 CONVERT_PROP(BLEND_BLENDMODE, BLEND_PROP_MODE);
257 break;
258 case FilterType::MORPHOLOGY:
259 switch (aIndex) {
260 CONVERT_PROP(MORPHOLOGY_OPERATOR, MORPHOLOGY_PROP_MODE);
262 break;
263 case FilterType::FLOOD:
264 switch (aIndex) {
265 CONVERT_PROP(FLOOD_COLOR, FLOOD_PROP_COLOR);
267 break;
268 case FilterType::TILE:
269 switch (aIndex) {
270 CONVERT_PROP(TILE_SOURCE_RECT, TILE_PROP_RECT);
272 break;
273 case FilterType::TABLE_TRANSFER:
274 switch (aIndex) {
275 CONVERT_PROP(TABLE_TRANSFER_DISABLE_R, TABLETRANSFER_PROP_RED_DISABLE);
276 CONVERT_PROP(TABLE_TRANSFER_DISABLE_G, TABLETRANSFER_PROP_GREEN_DISABLE);
277 CONVERT_PROP(TABLE_TRANSFER_DISABLE_B, TABLETRANSFER_PROP_BLUE_DISABLE);
278 CONVERT_PROP(TABLE_TRANSFER_DISABLE_A, TABLETRANSFER_PROP_ALPHA_DISABLE);
279 CONVERT_PROP(TABLE_TRANSFER_TABLE_R, TABLETRANSFER_PROP_RED_TABLE);
280 CONVERT_PROP(TABLE_TRANSFER_TABLE_G, TABLETRANSFER_PROP_GREEN_TABLE);
281 CONVERT_PROP(TABLE_TRANSFER_TABLE_B, TABLETRANSFER_PROP_BLUE_TABLE);
282 CONVERT_PROP(TABLE_TRANSFER_TABLE_A, TABLETRANSFER_PROP_ALPHA_TABLE);
284 break;
285 case FilterType::DISCRETE_TRANSFER:
286 switch (aIndex) {
287 CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_R, DISCRETETRANSFER_PROP_RED_DISABLE);
288 CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_G, DISCRETETRANSFER_PROP_GREEN_DISABLE);
289 CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_B, DISCRETETRANSFER_PROP_BLUE_DISABLE);
290 CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_A, DISCRETETRANSFER_PROP_ALPHA_DISABLE);
291 CONVERT_PROP(DISCRETE_TRANSFER_TABLE_R, DISCRETETRANSFER_PROP_RED_TABLE);
292 CONVERT_PROP(DISCRETE_TRANSFER_TABLE_G, DISCRETETRANSFER_PROP_GREEN_TABLE);
293 CONVERT_PROP(DISCRETE_TRANSFER_TABLE_B, DISCRETETRANSFER_PROP_BLUE_TABLE);
294 CONVERT_PROP(DISCRETE_TRANSFER_TABLE_A, DISCRETETRANSFER_PROP_ALPHA_TABLE);
296 break;
297 case FilterType::LINEAR_TRANSFER:
298 switch (aIndex) {
299 CONVERT_PROP(LINEAR_TRANSFER_DISABLE_R, LINEARTRANSFER_PROP_RED_DISABLE);
300 CONVERT_PROP(LINEAR_TRANSFER_DISABLE_G, LINEARTRANSFER_PROP_GREEN_DISABLE);
301 CONVERT_PROP(LINEAR_TRANSFER_DISABLE_B, LINEARTRANSFER_PROP_BLUE_DISABLE);
302 CONVERT_PROP(LINEAR_TRANSFER_DISABLE_A, LINEARTRANSFER_PROP_ALPHA_DISABLE);
303 CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_R, LINEARTRANSFER_PROP_RED_Y_INTERCEPT);
304 CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_G, LINEARTRANSFER_PROP_GREEN_Y_INTERCEPT);
305 CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_B, LINEARTRANSFER_PROP_BLUE_Y_INTERCEPT);
306 CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_A, LINEARTRANSFER_PROP_ALPHA_Y_INTERCEPT);
307 CONVERT_PROP(LINEAR_TRANSFER_SLOPE_R, LINEARTRANSFER_PROP_RED_SLOPE);
308 CONVERT_PROP(LINEAR_TRANSFER_SLOPE_G, LINEARTRANSFER_PROP_GREEN_SLOPE);
309 CONVERT_PROP(LINEAR_TRANSFER_SLOPE_B, LINEARTRANSFER_PROP_BLUE_SLOPE);
310 CONVERT_PROP(LINEAR_TRANSFER_SLOPE_A, LINEARTRANSFER_PROP_ALPHA_SLOPE);
312 break;
313 case FilterType::GAMMA_TRANSFER:
314 switch (aIndex) {
315 CONVERT_PROP(GAMMA_TRANSFER_DISABLE_R, GAMMATRANSFER_PROP_RED_DISABLE);
316 CONVERT_PROP(GAMMA_TRANSFER_DISABLE_G, GAMMATRANSFER_PROP_GREEN_DISABLE);
317 CONVERT_PROP(GAMMA_TRANSFER_DISABLE_B, GAMMATRANSFER_PROP_BLUE_DISABLE);
318 CONVERT_PROP(GAMMA_TRANSFER_DISABLE_A, GAMMATRANSFER_PROP_ALPHA_DISABLE);
319 CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_R, GAMMATRANSFER_PROP_RED_AMPLITUDE);
320 CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_G, GAMMATRANSFER_PROP_GREEN_AMPLITUDE);
321 CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_B, GAMMATRANSFER_PROP_BLUE_AMPLITUDE);
322 CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_A, GAMMATRANSFER_PROP_ALPHA_AMPLITUDE);
323 CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_R, GAMMATRANSFER_PROP_RED_EXPONENT);
324 CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_G, GAMMATRANSFER_PROP_GREEN_EXPONENT);
325 CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_B, GAMMATRANSFER_PROP_BLUE_EXPONENT);
326 CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_A, GAMMATRANSFER_PROP_ALPHA_EXPONENT);
327 CONVERT_PROP(GAMMA_TRANSFER_OFFSET_R, GAMMATRANSFER_PROP_RED_OFFSET);
328 CONVERT_PROP(GAMMA_TRANSFER_OFFSET_G, GAMMATRANSFER_PROP_GREEN_OFFSET);
329 CONVERT_PROP(GAMMA_TRANSFER_OFFSET_B, GAMMATRANSFER_PROP_BLUE_OFFSET);
330 CONVERT_PROP(GAMMA_TRANSFER_OFFSET_A, GAMMATRANSFER_PROP_ALPHA_OFFSET);
332 break;
333 case FilterType::CONVOLVE_MATRIX:
334 switch (aIndex) {
335 CONVERT_PROP(CONVOLVE_MATRIX_BIAS, CONVOLVEMATRIX_PROP_BIAS);
336 CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_MATRIX, CONVOLVEMATRIX_PROP_KERNEL_MATRIX);
337 CONVERT_PROP(CONVOLVE_MATRIX_DIVISOR, CONVOLVEMATRIX_PROP_DIVISOR);
338 CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_UNIT_LENGTH, CONVOLVEMATRIX_PROP_KERNEL_UNIT_LENGTH);
339 CONVERT_PROP(CONVOLVE_MATRIX_PRESERVE_ALPHA, CONVOLVEMATRIX_PROP_PRESERVE_ALPHA);
341 case FilterType::DISPLACEMENT_MAP:
342 switch (aIndex) {
343 CONVERT_PROP(DISPLACEMENT_MAP_SCALE, DISPLACEMENTMAP_PROP_SCALE);
344 CONVERT_PROP(DISPLACEMENT_MAP_X_CHANNEL, DISPLACEMENTMAP_PROP_X_CHANNEL_SELECT);
345 CONVERT_PROP(DISPLACEMENT_MAP_Y_CHANNEL, DISPLACEMENTMAP_PROP_Y_CHANNEL_SELECT);
347 break;
348 case FilterType::TURBULENCE:
349 switch (aIndex) {
350 CONVERT_PROP(TURBULENCE_BASE_FREQUENCY, TURBULENCE_PROP_BASE_FREQUENCY);
351 CONVERT_PROP(TURBULENCE_NUM_OCTAVES, TURBULENCE_PROP_NUM_OCTAVES);
352 CONVERT_PROP(TURBULENCE_SEED, TURBULENCE_PROP_SEED);
353 CONVERT_PROP(TURBULENCE_STITCHABLE, TURBULENCE_PROP_STITCHABLE);
354 CONVERT_PROP(TURBULENCE_TYPE, TURBULENCE_PROP_NOISE);
356 break;
357 case FilterType::ARITHMETIC_COMBINE:
358 switch (aIndex) {
359 CONVERT_PROP(ARITHMETIC_COMBINE_COEFFICIENTS, ARITHMETICCOMPOSITE_PROP_COEFFICIENTS);
361 break;
362 case FilterType::COMPOSITE:
363 switch (aIndex) {
364 CONVERT_PROP(COMPOSITE_OPERATOR, COMPOSITE_PROP_MODE);
366 break;
367 case FilterType::GAUSSIAN_BLUR:
368 switch (aIndex) {
369 CONVERT_PROP(GAUSSIAN_BLUR_STD_DEVIATION, GAUSSIANBLUR_PROP_STANDARD_DEVIATION);
371 break;
372 case FilterType::DIRECTIONAL_BLUR:
373 switch (aIndex) {
374 CONVERT_PROP(DIRECTIONAL_BLUR_STD_DEVIATION, DIRECTIONALBLUR_PROP_STANDARD_DEVIATION);
375 CONVERT_PROP(DIRECTIONAL_BLUR_DIRECTION, DIRECTIONALBLUR_PROP_ANGLE);
377 break;
378 case FilterType::POINT_DIFFUSE:
379 switch (aIndex) {
380 CONVERT_PROP(POINT_DIFFUSE_DIFFUSE_CONSTANT, POINTDIFFUSE_PROP_DIFFUSE_CONSTANT);
381 CONVERT_PROP(POINT_DIFFUSE_POSITION, POINTDIFFUSE_PROP_LIGHT_POSITION);
382 CONVERT_PROP(POINT_DIFFUSE_COLOR, POINTDIFFUSE_PROP_COLOR);
383 CONVERT_PROP(POINT_DIFFUSE_SURFACE_SCALE, POINTDIFFUSE_PROP_SURFACE_SCALE);
384 CONVERT_PROP(POINT_DIFFUSE_KERNEL_UNIT_LENGTH, POINTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
386 break;
387 case FilterType::SPOT_DIFFUSE:
388 switch (aIndex) {
389 CONVERT_PROP(SPOT_DIFFUSE_DIFFUSE_CONSTANT, SPOTDIFFUSE_PROP_DIFFUSE_CONSTANT);
390 CONVERT_PROP(SPOT_DIFFUSE_POINTS_AT, SPOTDIFFUSE_PROP_POINTS_AT);
391 CONVERT_PROP(SPOT_DIFFUSE_FOCUS, SPOTDIFFUSE_PROP_FOCUS);
392 CONVERT_PROP(SPOT_DIFFUSE_LIMITING_CONE_ANGLE, SPOTDIFFUSE_PROP_LIMITING_CONE_ANGLE);
393 CONVERT_PROP(SPOT_DIFFUSE_POSITION, SPOTDIFFUSE_PROP_LIGHT_POSITION);
394 CONVERT_PROP(SPOT_DIFFUSE_COLOR, SPOTDIFFUSE_PROP_COLOR);
395 CONVERT_PROP(SPOT_DIFFUSE_SURFACE_SCALE, SPOTDIFFUSE_PROP_SURFACE_SCALE);
396 CONVERT_PROP(SPOT_DIFFUSE_KERNEL_UNIT_LENGTH, SPOTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
398 break;
399 case FilterType::DISTANT_DIFFUSE:
400 switch (aIndex) {
401 CONVERT_PROP(DISTANT_DIFFUSE_DIFFUSE_CONSTANT, DISTANTDIFFUSE_PROP_DIFFUSE_CONSTANT);
402 CONVERT_PROP(DISTANT_DIFFUSE_AZIMUTH, DISTANTDIFFUSE_PROP_AZIMUTH);
403 CONVERT_PROP(DISTANT_DIFFUSE_ELEVATION, DISTANTDIFFUSE_PROP_ELEVATION);
404 CONVERT_PROP(DISTANT_DIFFUSE_COLOR, DISTANTDIFFUSE_PROP_COLOR);
405 CONVERT_PROP(DISTANT_DIFFUSE_SURFACE_SCALE, DISTANTDIFFUSE_PROP_SURFACE_SCALE);
406 CONVERT_PROP(DISTANT_DIFFUSE_KERNEL_UNIT_LENGTH, DISTANTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
408 break;
409 case FilterType::POINT_SPECULAR:
410 switch (aIndex) {
411 CONVERT_PROP(POINT_SPECULAR_SPECULAR_CONSTANT, POINTSPECULAR_PROP_SPECULAR_CONSTANT);
412 CONVERT_PROP(POINT_SPECULAR_SPECULAR_EXPONENT, POINTSPECULAR_PROP_SPECULAR_EXPONENT);
413 CONVERT_PROP(POINT_SPECULAR_POSITION, POINTSPECULAR_PROP_LIGHT_POSITION);
414 CONVERT_PROP(POINT_SPECULAR_COLOR, POINTSPECULAR_PROP_COLOR);
415 CONVERT_PROP(POINT_SPECULAR_SURFACE_SCALE, POINTSPECULAR_PROP_SURFACE_SCALE);
416 CONVERT_PROP(POINT_SPECULAR_KERNEL_UNIT_LENGTH, POINTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
418 break;
419 case FilterType::SPOT_SPECULAR:
420 switch (aIndex) {
421 CONVERT_PROP(SPOT_SPECULAR_SPECULAR_CONSTANT, SPOTSPECULAR_PROP_SPECULAR_CONSTANT);
422 CONVERT_PROP(SPOT_SPECULAR_SPECULAR_EXPONENT, SPOTSPECULAR_PROP_SPECULAR_EXPONENT);
423 CONVERT_PROP(SPOT_SPECULAR_POINTS_AT, SPOTSPECULAR_PROP_POINTS_AT);
424 CONVERT_PROP(SPOT_SPECULAR_FOCUS, SPOTSPECULAR_PROP_FOCUS);
425 CONVERT_PROP(SPOT_SPECULAR_LIMITING_CONE_ANGLE, SPOTSPECULAR_PROP_LIMITING_CONE_ANGLE);
426 CONVERT_PROP(SPOT_SPECULAR_POSITION, SPOTSPECULAR_PROP_LIGHT_POSITION);
427 CONVERT_PROP(SPOT_SPECULAR_COLOR, SPOTSPECULAR_PROP_COLOR);
428 CONVERT_PROP(SPOT_SPECULAR_SURFACE_SCALE, SPOTSPECULAR_PROP_SURFACE_SCALE);
429 CONVERT_PROP(SPOT_SPECULAR_KERNEL_UNIT_LENGTH, SPOTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
431 break;
432 case FilterType::DISTANT_SPECULAR:
433 switch (aIndex) {
434 CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_CONSTANT, DISTANTSPECULAR_PROP_SPECULAR_CONSTANT);
435 CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_EXPONENT, DISTANTSPECULAR_PROP_SPECULAR_EXPONENT);
436 CONVERT_PROP(DISTANT_SPECULAR_AZIMUTH, DISTANTSPECULAR_PROP_AZIMUTH);
437 CONVERT_PROP(DISTANT_SPECULAR_ELEVATION, DISTANTSPECULAR_PROP_ELEVATION);
438 CONVERT_PROP(DISTANT_SPECULAR_COLOR, DISTANTSPECULAR_PROP_COLOR);
439 CONVERT_PROP(DISTANT_SPECULAR_SURFACE_SCALE, DISTANTSPECULAR_PROP_SURFACE_SCALE);
440 CONVERT_PROP(DISTANT_SPECULAR_KERNEL_UNIT_LENGTH, DISTANTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
442 break;
443 case FilterType::CROP:
444 switch (aIndex) {
445 CONVERT_PROP(CROP_RECT, CROP_PROP_RECT);
447 break;
448 default:
449 break;
452 return UINT32_MAX;
455 bool
456 GetD2D1PropsForIntSize(FilterType aType, uint32_t aIndex, UINT32 *aPropWidth, UINT32 *aPropHeight)
458 switch (aType) {
459 case FilterType::MORPHOLOGY:
460 if (aIndex == ATT_MORPHOLOGY_RADII) {
461 *aPropWidth = D2D1_MORPHOLOGY_PROP_WIDTH;
462 *aPropHeight = D2D1_MORPHOLOGY_PROP_HEIGHT;
463 return true;
465 break;
466 default:
467 break;
469 return false;
472 static inline REFCLSID GetCLDIDForFilterType(FilterType aType)
474 switch (aType) {
475 case FilterType::COLOR_MATRIX:
476 return CLSID_D2D1ColorMatrix;
477 case FilterType::TRANSFORM:
478 return CLSID_D2D12DAffineTransform;
479 case FilterType::BLEND:
480 return CLSID_D2D1Blend;
481 case FilterType::MORPHOLOGY:
482 return CLSID_D2D1Morphology;
483 case FilterType::FLOOD:
484 return CLSID_D2D1Flood;
485 case FilterType::TILE:
486 return CLSID_D2D1Tile;
487 case FilterType::TABLE_TRANSFER:
488 return CLSID_D2D1TableTransfer;
489 case FilterType::LINEAR_TRANSFER:
490 return CLSID_D2D1LinearTransfer;
491 case FilterType::DISCRETE_TRANSFER:
492 return CLSID_D2D1DiscreteTransfer;
493 case FilterType::GAMMA_TRANSFER:
494 return CLSID_D2D1GammaTransfer;
495 case FilterType::DISPLACEMENT_MAP:
496 return CLSID_D2D1DisplacementMap;
497 case FilterType::TURBULENCE:
498 return CLSID_D2D1Turbulence;
499 case FilterType::ARITHMETIC_COMBINE:
500 return CLSID_D2D1ArithmeticComposite;
501 case FilterType::COMPOSITE:
502 return CLSID_D2D1Composite;
503 case FilterType::GAUSSIAN_BLUR:
504 return CLSID_D2D1GaussianBlur;
505 case FilterType::DIRECTIONAL_BLUR:
506 return CLSID_D2D1DirectionalBlur;
507 case FilterType::POINT_DIFFUSE:
508 return CLSID_D2D1PointDiffuse;
509 case FilterType::POINT_SPECULAR:
510 return CLSID_D2D1PointSpecular;
511 case FilterType::SPOT_DIFFUSE:
512 return CLSID_D2D1SpotDiffuse;
513 case FilterType::SPOT_SPECULAR:
514 return CLSID_D2D1SpotSpecular;
515 case FilterType::DISTANT_DIFFUSE:
516 return CLSID_D2D1DistantDiffuse;
517 case FilterType::DISTANT_SPECULAR:
518 return CLSID_D2D1DistantSpecular;
519 case FilterType::CROP:
520 return CLSID_D2D1Crop;
521 case FilterType::PREMULTIPLY:
522 return CLSID_D2D1Premultiply;
523 case FilterType::UNPREMULTIPLY:
524 return CLSID_D2D1UnPremultiply;
525 default:
526 break;
528 return GUID_NULL;
531 static bool
532 IsTransferFilterType(FilterType aType)
534 switch (aType) {
535 case FilterType::LINEAR_TRANSFER:
536 case FilterType::GAMMA_TRANSFER:
537 case FilterType::TABLE_TRANSFER:
538 case FilterType::DISCRETE_TRANSFER:
539 return true;
540 default:
541 return false;
545 static bool
546 HasUnboundedOutputRegion(FilterType aType)
548 if (IsTransferFilterType(aType)) {
549 return true;
552 switch (aType) {
553 case FilterType::COLOR_MATRIX:
554 case FilterType::POINT_DIFFUSE:
555 case FilterType::SPOT_DIFFUSE:
556 case FilterType::DISTANT_DIFFUSE:
557 case FilterType::POINT_SPECULAR:
558 case FilterType::SPOT_SPECULAR:
559 case FilterType::DISTANT_SPECULAR:
560 return true;
561 default:
562 return false;
566 /* static */
567 already_AddRefed<FilterNode>
568 FilterNodeD2D1::Create(ID2D1DeviceContext *aDC, FilterType aType)
570 if (aType == FilterType::CONVOLVE_MATRIX) {
571 return MakeAndAddRef<FilterNodeConvolveD2D1>(aDC);
574 RefPtr<ID2D1Effect> effect;
575 HRESULT hr;
577 hr = aDC->CreateEffect(GetCLDIDForFilterType(aType), getter_AddRefs(effect));
579 if (FAILED(hr) || !effect) {
580 gfxCriticalErrorOnce() << "Failed to create effect for FilterType: " << hexa(hr);
581 return nullptr;
584 if (aType == FilterType::ARITHMETIC_COMBINE) {
585 effect->SetValue(D2D1_ARITHMETICCOMPOSITE_PROP_CLAMP_OUTPUT, TRUE);
588 RefPtr<FilterNodeD2D1> filter = new FilterNodeD2D1(effect, aType);
590 if (HasUnboundedOutputRegion(aType)) {
591 // These filters can produce non-transparent output from transparent
592 // input pixels, and we want them to have an unbounded output region.
593 filter = new FilterNodeExtendInputAdapterD2D1(aDC, filter, aType);
596 if (IsTransferFilterType(aType)) {
597 // Component transfer filters should appear to apply on unpremultiplied
598 // colors, but the D2D1 effects apply on premultiplied colors.
599 filter = new FilterNodePremultiplyAdapterD2D1(aDC, filter, aType);
602 return filter.forget();
605 void
606 FilterNodeD2D1::InitUnmappedProperties()
608 switch (mType) {
609 case FilterType::TRANSFORM:
610 mEffect->SetValue(D2D1_2DAFFINETRANSFORM_PROP_BORDER_MODE, D2D1_BORDER_MODE_HARD);
611 break;
612 default:
613 break;
617 void
618 FilterNodeD2D1::SetInput(uint32_t aIndex, SourceSurface *aSurface)
620 UINT32 input = GetD2D1InputForInput(mType, aIndex);
621 ID2D1Effect* effect = InputEffect();
622 MOZ_ASSERT(input < effect->GetInputCount());
624 if (mType == FilterType::COMPOSITE) {
625 UINT32 inputCount = effect->GetInputCount();
627 if (aIndex == inputCount - 1 && aSurface == nullptr) {
628 effect->SetInputCount(inputCount - 1);
629 } else if (aIndex >= inputCount && aSurface) {
630 effect->SetInputCount(aIndex + 1);
634 MOZ_ASSERT(input < effect->GetInputCount());
636 mInputSurfaces.resize(effect->GetInputCount());
637 mInputFilters.resize(effect->GetInputCount());
639 // In order to convert aSurface into an ID2D1Image, we need to know what
640 // DrawTarget we paint into. However, the same FilterNode object can be
641 // used on different DrawTargets, so we need to hold on to the SourceSurface
642 // objects and delay the conversion until we're actually painted and know
643 // our target DrawTarget.
644 // The conversion happens in WillDraw().
646 mInputSurfaces[input] = aSurface;
647 mInputFilters[input] = nullptr;
649 // Clear the existing image from the effect.
650 effect->SetInput(input, nullptr);
653 void
654 FilterNodeD2D1::SetInput(uint32_t aIndex, FilterNode *aFilter)
656 UINT32 input = GetD2D1InputForInput(mType, aIndex);
657 ID2D1Effect* effect = InputEffect();
659 if (mType == FilterType::COMPOSITE) {
660 UINT32 inputCount = effect->GetInputCount();
662 if (aIndex == inputCount - 1 && aFilter == nullptr) {
663 effect->SetInputCount(inputCount - 1);
664 } else if (aIndex >= inputCount && aFilter) {
665 effect->SetInputCount(aIndex + 1);
669 MOZ_ASSERT(input < effect->GetInputCount());
671 if (aFilter && aFilter->GetBackendType() != FILTER_BACKEND_DIRECT2D1_1) {
672 gfxWarning() << "Unknown input FilterNode set on effect.";
673 MOZ_ASSERT(0);
674 return;
677 FilterNodeD2D1* filter = static_cast<FilterNodeD2D1*>(aFilter);
679 mInputSurfaces.resize(effect->GetInputCount());
680 mInputFilters.resize(effect->GetInputCount());
682 // We hold on to the FilterNode object so that we can call WillDraw() on it.
683 mInputSurfaces[input] = nullptr;
684 mInputFilters[input] = filter;
686 if (filter) {
687 effect->SetInputEffect(input, filter->OutputEffect());
691 void
692 FilterNodeD2D1::WillDraw(DrawTarget *aDT)
694 // Convert input SourceSurfaces into ID2D1Images and set them on the effect.
695 for (size_t inputIndex = 0; inputIndex < mInputSurfaces.size(); inputIndex++) {
696 if (mInputSurfaces[inputIndex]) {
697 ID2D1Effect* effect = InputEffect();
698 RefPtr<ID2D1Image> image = GetImageForSourceSurface(aDT, mInputSurfaces[inputIndex]);
699 effect->SetInput(inputIndex, image);
703 // Call WillDraw() on our input filters.
704 for (std::vector<RefPtr<FilterNodeD2D1>>::iterator it = mInputFilters.begin();
705 it != mInputFilters.end(); it++) {
706 if (*it) {
707 (*it)->WillDraw(aDT);
712 void
713 FilterNodeD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue)
715 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
716 MOZ_ASSERT(input < mEffect->GetPropertyCount());
718 if (mType == FilterType::TURBULENCE && aIndex == ATT_TURBULENCE_BASE_FREQUENCY) {
719 mEffect->SetValue(input, D2D1::Vector2F(FLOAT(aValue), FLOAT(aValue)));
720 return;
721 } else if (mType == FilterType::DIRECTIONAL_BLUR && aIndex == ATT_DIRECTIONAL_BLUR_DIRECTION) {
722 mEffect->SetValue(input, aValue == BLUR_DIRECTION_X ? 0 : 90.0f);
723 return;
726 mEffect->SetValue(input, ConvertValue(mType, aIndex, aValue));
729 void
730 FilterNodeD2D1::SetAttribute(uint32_t aIndex, Float aValue)
732 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
733 MOZ_ASSERT(input < mEffect->GetPropertyCount());
735 mEffect->SetValue(input, aValue);
738 void
739 FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point &aValue)
741 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
742 MOZ_ASSERT(input < mEffect->GetPropertyCount());
744 mEffect->SetValue(input, D2DPoint(aValue));
747 void
748 FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix5x4 &aValue)
750 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
751 MOZ_ASSERT(input < mEffect->GetPropertyCount());
753 mEffect->SetValue(input, D2DMatrix5x4(aValue));
756 void
757 FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point3D &aValue)
759 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
760 MOZ_ASSERT(input < mEffect->GetPropertyCount());
762 mEffect->SetValue(input, D2DVector3D(aValue));
765 void
766 FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Size &aValue)
768 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
769 MOZ_ASSERT(input < mEffect->GetPropertyCount());
771 mEffect->SetValue(input, D2D1::Vector2F(aValue.width, aValue.height));
774 void
775 FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntSize &aValue)
777 UINT32 widthProp, heightProp;
779 if (!GetD2D1PropsForIntSize(mType, aIndex, &widthProp, &heightProp)) {
780 return;
783 IntSize value = aValue;
784 ConvertValue(mType, aIndex, value);
786 mEffect->SetValue(widthProp, (UINT)value.width);
787 mEffect->SetValue(heightProp, (UINT)value.height);
790 void
791 FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Color &aValue)
793 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
794 MOZ_ASSERT(input < mEffect->GetPropertyCount());
796 switch (mType) {
797 case FilterType::POINT_DIFFUSE:
798 case FilterType::SPOT_DIFFUSE:
799 case FilterType::DISTANT_DIFFUSE:
800 case FilterType::POINT_SPECULAR:
801 case FilterType::SPOT_SPECULAR:
802 case FilterType::DISTANT_SPECULAR:
803 mEffect->SetValue(input, D2D1::Vector3F(aValue.r, aValue.g, aValue.b));
804 break;
805 default:
806 mEffect->SetValue(input, D2D1::Vector4F(aValue.r * aValue.a, aValue.g * aValue.a, aValue.b * aValue.a, aValue.a));
810 void
811 FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Rect &aValue)
813 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
814 MOZ_ASSERT(input < mEffect->GetPropertyCount());
816 mEffect->SetValue(input, D2DRect(aValue));
819 void
820 FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntRect &aValue)
822 if (mType == FilterType::TURBULENCE) {
823 MOZ_ASSERT(aIndex == ATT_TURBULENCE_RECT);
825 mEffect->SetValue(D2D1_TURBULENCE_PROP_OFFSET, D2D1::Vector2F(Float(aValue.X()), Float(aValue.Y())));
826 mEffect->SetValue(D2D1_TURBULENCE_PROP_SIZE, D2D1::Vector2F(Float(aValue.Width()), Float(aValue.Height())));
827 return;
830 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
831 MOZ_ASSERT(input < mEffect->GetPropertyCount());
833 mEffect->SetValue(input, D2D1::RectF(Float(aValue.X()), Float(aValue.Y()),
834 Float(aValue.XMost()), Float(aValue.YMost())));
837 void
838 FilterNodeD2D1::SetAttribute(uint32_t aIndex, bool aValue)
840 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
841 MOZ_ASSERT(input < mEffect->GetPropertyCount());
843 mEffect->SetValue(input, (BOOL)aValue);
846 void
847 FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Float *aValues, uint32_t aSize)
849 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
850 MOZ_ASSERT(input < mEffect->GetPropertyCount());
852 mEffect->SetValue(input, (BYTE*)aValues, sizeof(Float) * aSize);
855 void
856 FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntPoint &aValue)
858 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
859 MOZ_ASSERT(input < mEffect->GetPropertyCount());
861 mEffect->SetValue(input, D2DPoint(aValue));
864 void
865 FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix &aMatrix)
867 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
868 MOZ_ASSERT(input < mEffect->GetPropertyCount());
870 mEffect->SetValue(input, D2DMatrix(aMatrix));
873 FilterNodeConvolveD2D1::FilterNodeConvolveD2D1(ID2D1DeviceContext *aDC)
874 : FilterNodeD2D1(nullptr, FilterType::CONVOLVE_MATRIX)
875 , mEdgeMode(EDGE_MODE_DUPLICATE)
877 // Correctly handling the interaction of edge mode and source rect is a bit
878 // tricky with D2D1 effects. We want the edge mode to only apply outside of
879 // the source rect (as specified by the ATT_CONVOLVE_MATRIX_SOURCE_RECT
880 // attribute). So if our input surface or filter is smaller than the source
881 // rect, we need to add transparency around it until we reach the edges of
882 // the source rect, and only then do any repeating or edge duplicating.
883 // Unfortunately, the border effect does not have a source rect attribute -
884 // it only looks at the output rect of its input filter or surface. So we use
885 // our custom ExtendInput effect to adjust the output rect of our input.
886 // All of this is only necessary when our edge mode is not EDGE_MODE_NONE, so
887 // we update the filter chain dynamically in UpdateChain().
889 HRESULT hr;
891 hr = aDC->CreateEffect(CLSID_D2D1ConvolveMatrix, getter_AddRefs(mEffect));
893 if (FAILED(hr) || !mEffect) {
894 gfxWarning() << "Failed to create ConvolveMatrix filter!";
895 return;
898 mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_BORDER_MODE, D2D1_BORDER_MODE_SOFT);
900 hr = aDC->CreateEffect(CLSID_ExtendInputEffect, getter_AddRefs(mExtendInputEffect));
902 if (FAILED(hr) || !mExtendInputEffect) {
903 gfxWarning() << "Failed to create ConvolveMatrix filter!";
904 return;
907 hr = aDC->CreateEffect(CLSID_D2D1Border, getter_AddRefs(mBorderEffect));
909 if (FAILED(hr) || !mBorderEffect) {
910 gfxWarning() << "Failed to create ConvolveMatrix filter!";
911 return;
914 mBorderEffect->SetInputEffect(0, mExtendInputEffect.get());
916 UpdateChain();
917 UpdateSourceRect();
920 void
921 FilterNodeConvolveD2D1::SetInput(uint32_t aIndex, FilterNode *aFilter)
923 FilterNodeD2D1::SetInput(aIndex, aFilter);
925 UpdateChain();
928 void
929 FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue)
931 if (aIndex != ATT_CONVOLVE_MATRIX_EDGE_MODE) {
932 return FilterNodeD2D1::SetAttribute(aIndex, aValue);
935 mEdgeMode = (ConvolveMatrixEdgeMode)aValue;
937 UpdateChain();
940 ID2D1Effect*
941 FilterNodeConvolveD2D1::InputEffect()
943 return mEdgeMode == EDGE_MODE_NONE ? mEffect.get() : mExtendInputEffect.get();
946 void
947 FilterNodeConvolveD2D1::UpdateChain()
949 // The shape of the filter graph:
951 // EDGE_MODE_NONE:
952 // input --> convolvematrix
954 // EDGE_MODE_DUPLICATE or EDGE_MODE_WRAP:
955 // input --> extendinput --> border --> convolvematrix
957 // mEffect is convolvematrix.
959 if (mEdgeMode != EDGE_MODE_NONE) {
960 mEffect->SetInputEffect(0, mBorderEffect.get());
963 RefPtr<ID2D1Effect> inputEffect;
964 if (mInputFilters.size() > 0 && mInputFilters[0]) {
965 inputEffect = mInputFilters[0]->OutputEffect();
967 InputEffect()->SetInputEffect(0, inputEffect);
969 if (mEdgeMode == EDGE_MODE_DUPLICATE) {
970 mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X, D2D1_BORDER_EDGE_MODE_CLAMP);
971 mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y, D2D1_BORDER_EDGE_MODE_CLAMP);
972 } else if (mEdgeMode == EDGE_MODE_WRAP) {
973 mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X, D2D1_BORDER_EDGE_MODE_WRAP);
974 mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y, D2D1_BORDER_EDGE_MODE_WRAP);
978 void
979 FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, const IntSize &aValue)
981 if (aIndex != ATT_CONVOLVE_MATRIX_KERNEL_SIZE) {
982 MOZ_ASSERT(false);
983 return;
986 mKernelSize = aValue;
988 mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_X, aValue.width);
989 mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_Y, aValue.height);
991 UpdateOffset();
994 void
995 FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, const IntPoint &aValue)
997 if (aIndex != ATT_CONVOLVE_MATRIX_TARGET) {
998 MOZ_ASSERT(false);
999 return;
1002 mTarget = aValue;
1004 UpdateOffset();
1007 void
1008 FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, const IntRect &aValue)
1010 if (aIndex != ATT_CONVOLVE_MATRIX_SOURCE_RECT) {
1011 MOZ_ASSERT(false);
1012 return;
1015 mSourceRect = aValue;
1017 UpdateSourceRect();
1020 void
1021 FilterNodeConvolveD2D1::UpdateOffset()
1023 D2D1_VECTOR_2F vector =
1024 D2D1::Vector2F((Float(mKernelSize.width) - 1.0f) / 2.0f - Float(mTarget.x),
1025 (Float(mKernelSize.height) - 1.0f) / 2.0f - Float(mTarget.y));
1027 mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_OFFSET, vector);
1030 void
1031 FilterNodeConvolveD2D1::UpdateSourceRect()
1033 mExtendInputEffect->SetValue(EXTENDINPUT_PROP_OUTPUT_RECT,
1034 D2D1::Vector4F(Float(mSourceRect.X()), Float(mSourceRect.Y()),
1035 Float(mSourceRect.XMost()), Float(mSourceRect.YMost())));
1038 FilterNodeExtendInputAdapterD2D1::FilterNodeExtendInputAdapterD2D1(ID2D1DeviceContext *aDC,
1039 FilterNodeD2D1 *aFilterNode, FilterType aType)
1040 : FilterNodeD2D1(aFilterNode->MainEffect(), aType)
1041 , mWrappedFilterNode(aFilterNode)
1043 // We have an mEffect that looks at the bounds of the input effect, and we
1044 // want mEffect to regard its input as unbounded. So we take the input,
1045 // pipe it through an ExtendInput effect (which has an infinite output rect
1046 // by default), and feed the resulting unbounded composition into mEffect.
1048 HRESULT hr;
1050 hr = aDC->CreateEffect(CLSID_ExtendInputEffect, getter_AddRefs(mExtendInputEffect));
1052 if (FAILED(hr) || !mExtendInputEffect) {
1053 gfxWarning() << "Failed to create extend input effect for filter: " << hexa(hr);
1054 return;
1057 aFilterNode->InputEffect()->SetInputEffect(0, mExtendInputEffect.get());
1060 FilterNodePremultiplyAdapterD2D1::FilterNodePremultiplyAdapterD2D1(ID2D1DeviceContext *aDC,
1061 FilterNodeD2D1 *aFilterNode, FilterType aType)
1062 : FilterNodeD2D1(aFilterNode->MainEffect(), aType)
1064 // D2D1 component transfer effects do strange things when it comes to
1065 // premultiplication.
1066 // For our purposes we only need the transfer filters to apply straight to
1067 // unpremultiplied source channels and output unpremultiplied results.
1068 // However, the D2D1 effects are designed differently: They can apply to both
1069 // premultiplied and unpremultiplied inputs, and they always premultiply
1070 // their result - at least in those color channels that have not been
1071 // disabled.
1072 // In order to determine whether the input needs to be unpremultiplied as
1073 // part of the transfer, the effect consults the alpha mode metadata of the
1074 // input surface or the input effect. We don't have such a concept in Moz2D,
1075 // and giving Moz2D users different results based on something that cannot be
1076 // influenced through Moz2D APIs seems like a bad idea.
1077 // We solve this by applying a premultiply effect to the input before feeding
1078 // it into the transfer effect. The premultiply effect always premultiplies
1079 // regardless of any alpha mode metadata on inputs, and it always marks its
1080 // output as premultiplied so that the transfer effect will unpremultiply
1081 // consistently. Feeding always-premultiplied input into the transfer effect
1082 // also avoids another problem that would appear when individual color
1083 // channels disable the transfer: In that case, the disabled channels would
1084 // pass through unchanged in their unpremultiplied form and the other
1085 // channels would be premultiplied, giving a mixed result.
1086 // But since we now ensure that the input is premultiplied, disabled channels
1087 // will pass premultiplied values through to the result, which is consistent
1088 // with the enabled channels.
1089 // We also add an unpremultiply effect that postprocesses the result of the
1090 // transfer effect because getting unpremultiplied results from the transfer
1091 // filters is part of the FilterNode API.
1092 HRESULT hr;
1094 hr = aDC->CreateEffect(CLSID_D2D1Premultiply, getter_AddRefs(mPrePremultiplyEffect));
1096 if (FAILED(hr) || !mPrePremultiplyEffect) {
1097 gfxWarning() << "Failed to create ComponentTransfer filter!";
1098 return;
1101 hr = aDC->CreateEffect(CLSID_D2D1UnPremultiply, getter_AddRefs(mPostUnpremultiplyEffect));
1103 if (FAILED(hr) || !mPostUnpremultiplyEffect) {
1104 gfxWarning() << "Failed to create ComponentTransfer filter!";
1105 return;
1108 aFilterNode->InputEffect()->SetInputEffect(0, mPrePremultiplyEffect.get());
1109 mPostUnpremultiplyEffect->SetInputEffect(0, aFilterNode->OutputEffect());