1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* This Source Code Form is subject to the terms of the Mozilla Public
3 * License, v. 2.0. If a copy of the MPL was not distributed with this
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 * SurfaceCache is a service for caching temporary surfaces in imagelib.
10 #include "SurfaceCache.h"
15 #include "ISurfaceProvider.h"
17 #include "LookupResult.h"
18 #include "ShutdownTracker.h"
19 #include "gfx2DGlue.h"
20 #include "gfxPlatform.h"
22 #include "mozilla/AppShutdown.h"
23 #include "mozilla/Assertions.h"
24 #include "mozilla/Attributes.h"
25 #include "mozilla/CheckedInt.h"
26 #include "mozilla/DebugOnly.h"
27 #include "mozilla/Likely.h"
28 #include "mozilla/RefPtr.h"
29 #include "mozilla/StaticMutex.h"
30 #include "mozilla/StaticPrefs_image.h"
31 #include "mozilla/StaticPtr.h"
32 #include "mozilla/Tuple.h"
33 #include "nsExpirationTracker.h"
34 #include "nsHashKeys.h"
35 #include "nsIMemoryReporter.h"
36 #include "nsRefPtrHashtable.h"
39 #include "Orientation.h"
51 MOZ_DEFINE_MALLOC_SIZE_OF(SurfaceCacheMallocSizeOf
)
54 class SurfaceCacheImpl
;
56 ///////////////////////////////////////////////////////////////////////////////
58 ///////////////////////////////////////////////////////////////////////////////
60 // The single surface cache instance.
61 static StaticRefPtr
<SurfaceCacheImpl
> sInstance
;
63 // The mutex protecting the surface cache.
64 static StaticMutex sInstanceMutex MOZ_UNANNOTATED
;
66 ///////////////////////////////////////////////////////////////////////////////
67 // SurfaceCache Implementation
68 ///////////////////////////////////////////////////////////////////////////////
71 * Cost models the cost of storing a surface in the cache. Right now, this is
72 * simply an estimate of the size of the surface in bytes, but in the future it
73 * may be worth taking into account the cost of rematerializing the surface as
78 static Cost
ComputeCost(const IntSize
& aSize
, uint32_t aBytesPerPixel
) {
79 MOZ_ASSERT(aBytesPerPixel
== 1 || aBytesPerPixel
== 4);
80 return aSize
.width
* aSize
.height
* aBytesPerPixel
;
84 * Since we want to be able to make eviction decisions based on cost, we need to
85 * be able to look up the CachedSurface which has a certain cost as well as the
86 * cost associated with a certain CachedSurface. To make this possible, in data
87 * structures we actually store a CostEntry, which contains a weak pointer to
88 * its associated surface.
90 * To make usage of the weak pointer safe, SurfaceCacheImpl always calls
91 * StartTracking after a surface is stored in the cache and StopTracking before
96 CostEntry(NotNull
<CachedSurface
*> aSurface
, Cost aCost
)
97 : mSurface(aSurface
), mCost(aCost
) {}
99 NotNull
<CachedSurface
*> Surface() const { return mSurface
; }
100 Cost
GetCost() const { return mCost
; }
102 bool operator==(const CostEntry
& aOther
) const {
103 return mSurface
== aOther
.mSurface
&& mCost
== aOther
.mCost
;
106 bool operator<(const CostEntry
& aOther
) const {
107 return mCost
< aOther
.mCost
||
108 (mCost
== aOther
.mCost
&& mSurface
< aOther
.mSurface
);
112 NotNull
<CachedSurface
*> mSurface
;
117 * A CachedSurface associates a surface with a key that uniquely identifies that
120 class CachedSurface
{
124 MOZ_DECLARE_REFCOUNTED_TYPENAME(CachedSurface
)
125 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(CachedSurface
)
127 explicit CachedSurface(NotNull
<ISurfaceProvider
*> aProvider
)
128 : mProvider(aProvider
), mIsLocked(false) {}
130 DrawableSurface
GetDrawableSurface() const {
131 if (MOZ_UNLIKELY(IsPlaceholder())) {
132 MOZ_ASSERT_UNREACHABLE("Called GetDrawableSurface() on a placeholder");
133 return DrawableSurface();
136 return mProvider
->Surface();
139 DrawableSurface
GetDrawableSurfaceEvenIfPlaceholder() const {
140 return mProvider
->Surface();
143 void SetLocked(bool aLocked
) {
144 if (IsPlaceholder()) {
145 return; // Can't lock a placeholder.
148 // Update both our state and our provider's state. Some surface providers
149 // are permanently locked; maintaining our own locking state enables us to
150 // respect SetLocked() even when it's meaningless from the provider's
153 mProvider
->SetLocked(aLocked
);
156 bool IsLocked() const {
157 return !IsPlaceholder() && mIsLocked
&& mProvider
->IsLocked();
160 void SetCannotSubstitute() {
161 mProvider
->Availability().SetCannotSubstitute();
163 bool CannotSubstitute() const {
164 return mProvider
->Availability().CannotSubstitute();
167 bool IsPlaceholder() const {
168 return mProvider
->Availability().IsPlaceholder();
170 bool IsDecoded() const { return !IsPlaceholder() && mProvider
->IsFinished(); }
172 ImageKey
GetImageKey() const { return mProvider
->GetImageKey(); }
173 const SurfaceKey
& GetSurfaceKey() const { return mProvider
->GetSurfaceKey(); }
174 nsExpirationState
* GetExpirationState() { return &mExpirationState
; }
176 CostEntry
GetCostEntry() {
177 return image::CostEntry(WrapNotNull(this), mProvider
->LogicalSizeInBytes());
180 size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
181 return aMallocSizeOf(this) + aMallocSizeOf(mProvider
.get());
184 void InvalidateRecording() { mProvider
->InvalidateRecording(); }
186 // A helper type used by SurfaceCacheImpl::CollectSizeOfSurfaces.
187 struct MOZ_STACK_CLASS SurfaceMemoryReport
{
188 SurfaceMemoryReport(nsTArray
<SurfaceMemoryCounter
>& aCounters
,
189 MallocSizeOf aMallocSizeOf
)
190 : mCounters(aCounters
), mMallocSizeOf(aMallocSizeOf
) {}
192 void Add(NotNull
<CachedSurface
*> aCachedSurface
, bool aIsFactor2
) {
193 if (aCachedSurface
->IsPlaceholder()) {
197 // Record the memory used by the ISurfaceProvider. This may not have a
198 // straightforward relationship to the size of the surface that
199 // DrawableRef() returns if the surface is generated dynamically. (i.e.,
200 // for surfaces with PlaybackType::eAnimated.)
201 aCachedSurface
->mProvider
->AddSizeOfExcludingThis(
202 mMallocSizeOf
, [&](ISurfaceProvider::AddSizeOfCbData
& aMetadata
) {
203 SurfaceMemoryCounter
counter(aCachedSurface
->GetSurfaceKey(),
204 aCachedSurface
->IsLocked(),
205 aCachedSurface
->CannotSubstitute(),
206 aIsFactor2
, aMetadata
.mFinished
);
208 counter
.Values().SetDecodedHeap(aMetadata
.mHeapBytes
);
209 counter
.Values().SetDecodedNonHeap(aMetadata
.mNonHeapBytes
);
210 counter
.Values().SetDecodedUnknown(aMetadata
.mUnknownBytes
);
211 counter
.Values().SetExternalHandles(aMetadata
.mExternalHandles
);
212 counter
.Values().SetFrameIndex(aMetadata
.mIndex
);
213 counter
.Values().SetExternalId(aMetadata
.mExternalId
);
214 counter
.Values().SetSurfaceTypes(aMetadata
.mTypes
);
216 mCounters
.AppendElement(counter
);
221 nsTArray
<SurfaceMemoryCounter
>& mCounters
;
222 MallocSizeOf mMallocSizeOf
;
226 nsExpirationState mExpirationState
;
227 NotNull
<RefPtr
<ISurfaceProvider
>> mProvider
;
231 static int64_t AreaOfIntSize(const IntSize
& aSize
) {
232 return static_cast<int64_t>(aSize
.width
) * static_cast<int64_t>(aSize
.height
);
236 * An ImageSurfaceCache is a per-image surface cache. For correctness we must be
237 * able to remove all surfaces associated with an image when the image is
238 * destroyed or invalidated. Since this will happen frequently, it makes sense
239 * to make it cheap by storing the surfaces for each image separately.
241 * ImageSurfaceCache also keeps track of whether its associated image is locked
244 * The cache may also enter "factor of 2" mode which occurs when the number of
245 * surfaces in the cache exceeds the "image.cache.factor2.threshold-surfaces"
246 * pref plus the number of native sizes of the image. When in "factor of 2"
247 * mode, the cache will strongly favour sizes which are a factor of 2 of the
248 * largest native size. It accomplishes this by suggesting a factor of 2 size
249 * when lookups fail and substituting the nearest factor of 2 surface to the
250 * ideal size as the "best" available (as opposed to substitution but not
251 * found). This allows us to minimize memory consumption and CPU time spent
252 * decoding when a website requires many variants of the same surface.
254 class ImageSurfaceCache
{
255 ~ImageSurfaceCache() {}
258 explicit ImageSurfaceCache(const ImageKey aImageKey
)
261 mFactor2Pruned(false),
262 mIsVectorImage(aImageKey
->GetType() == imgIContainer::TYPE_VECTOR
) {}
264 MOZ_DECLARE_REFCOUNTED_TYPENAME(ImageSurfaceCache
)
265 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageSurfaceCache
)
267 typedef nsRefPtrHashtable
<nsGenericHashKey
<SurfaceKey
>, CachedSurface
>
270 auto Values() const { return mSurfaces
.Values(); }
271 uint32_t Count() const { return mSurfaces
.Count(); }
272 bool IsEmpty() const { return mSurfaces
.Count() == 0; }
274 size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
275 size_t bytes
= aMallocSizeOf(this) +
276 mSurfaces
.ShallowSizeOfExcludingThis(aMallocSizeOf
);
277 for (const auto& value
: Values()) {
278 bytes
+= value
->ShallowSizeOfIncludingThis(aMallocSizeOf
);
283 [[nodiscard
]] bool Insert(NotNull
<CachedSurface
*> aSurface
) {
284 MOZ_ASSERT(!mLocked
|| aSurface
->IsPlaceholder() || aSurface
->IsLocked(),
285 "Inserting an unlocked surface for a locked image");
286 const auto& surfaceKey
= aSurface
->GetSurfaceKey();
287 if (surfaceKey
.Region()) {
288 // We don't allow substitutes for surfaces with regions, so we don't want
289 // to allow factor of 2 mode pruning to release these surfaces.
290 aSurface
->SetCannotSubstitute();
292 return mSurfaces
.InsertOrUpdate(surfaceKey
, RefPtr
<CachedSurface
>{aSurface
},
296 already_AddRefed
<CachedSurface
> Remove(NotNull
<CachedSurface
*> aSurface
) {
297 MOZ_ASSERT(mSurfaces
.GetWeak(aSurface
->GetSurfaceKey()),
298 "Should not be removing a surface we don't have");
300 RefPtr
<CachedSurface
> surface
;
301 mSurfaces
.Remove(aSurface
->GetSurfaceKey(), getter_AddRefs(surface
));
303 return surface
.forget();
306 already_AddRefed
<CachedSurface
> Lookup(const SurfaceKey
& aSurfaceKey
,
308 RefPtr
<CachedSurface
> surface
;
309 mSurfaces
.Get(aSurfaceKey
, getter_AddRefs(surface
));
313 // We don't want to allow factor of 2 mode pruning to release surfaces
314 // for which the callers will accept no substitute.
315 surface
->SetCannotSubstitute();
316 } else if (!mFactor2Mode
) {
317 // If no exact match is found, and this is for use rather than internal
318 // accounting (i.e. insert and removal), we know this will trigger a
319 // decode. Make sure we switch now to factor of 2 mode if necessary.
320 MaybeSetFactor2Mode();
324 return surface
.forget();
328 * @returns A tuple containing the best matching CachedSurface if available,
329 * a MatchType describing how the CachedSurface was selected, and
330 * an IntSize which is the size the caller should choose to decode
331 * at should it attempt to do so.
333 Tuple
<already_AddRefed
<CachedSurface
>, MatchType
, IntSize
> LookupBestMatch(
334 const SurfaceKey
& aIdealKey
) {
335 // Try for an exact match first.
336 RefPtr
<CachedSurface
> exactMatch
;
337 mSurfaces
.Get(aIdealKey
, getter_AddRefs(exactMatch
));
339 if (exactMatch
->IsDecoded()) {
340 return MakeTuple(exactMatch
.forget(), MatchType::EXACT
, IntSize());
342 } else if (aIdealKey
.Region()) {
343 // We cannot substitute if we have a region. Allow it to create an exact
345 return MakeTuple(exactMatch
.forget(), MatchType::NOT_FOUND
, IntSize());
346 } else if (!mFactor2Mode
) {
347 // If no exact match is found, and we are not in factor of 2 mode, then
348 // we know that we will trigger a decode because at best we will provide
349 // a substitute. Make sure we switch now to factor of 2 mode if necessary.
350 MaybeSetFactor2Mode();
353 // Try for a best match second, if using compact.
354 IntSize suggestedSize
= SuggestedSize(aIdealKey
.Size());
355 if (suggestedSize
!= aIdealKey
.Size()) {
357 SurfaceKey compactKey
= aIdealKey
.CloneWithSize(suggestedSize
);
358 mSurfaces
.Get(compactKey
, getter_AddRefs(exactMatch
));
359 if (exactMatch
&& exactMatch
->IsDecoded()) {
360 MOZ_ASSERT(suggestedSize
!= aIdealKey
.Size());
361 return MakeTuple(exactMatch
.forget(),
362 MatchType::SUBSTITUTE_BECAUSE_BEST
, suggestedSize
);
367 // There's no perfect match, so find the best match we can.
368 RefPtr
<CachedSurface
> bestMatch
;
369 for (const auto& value
: Values()) {
370 NotNull
<CachedSurface
*> current
= WrapNotNull(value
);
371 const SurfaceKey
& currentKey
= current
->GetSurfaceKey();
373 // We never match a placeholder or a surface with a region.
374 if (current
->IsPlaceholder() || currentKey
.Region()) {
377 // Matching the playback type and SVG context is required.
378 if (currentKey
.Playback() != aIdealKey
.Playback() ||
379 currentKey
.SVGContext() != aIdealKey
.SVGContext()) {
382 // Matching the flags is required.
383 if (currentKey
.Flags() != aIdealKey
.Flags()) {
386 // Anything is better than nothing! (Within the constraints we just
387 // checked, of course.)
393 MOZ_ASSERT(bestMatch
, "Should have a current best match");
395 // Always prefer completely decoded surfaces.
396 bool bestMatchIsDecoded
= bestMatch
->IsDecoded();
397 if (bestMatchIsDecoded
&& !current
->IsDecoded()) {
400 if (!bestMatchIsDecoded
&& current
->IsDecoded()) {
405 SurfaceKey bestMatchKey
= bestMatch
->GetSurfaceKey();
406 if (CompareArea(aIdealKey
.Size(), bestMatchKey
.Size(),
407 currentKey
.Size())) {
415 // No exact match, neither ideal nor factor of 2.
416 MOZ_ASSERT(suggestedSize
!= bestMatch
->GetSurfaceKey().Size(),
417 "No exact match despite the fact the sizes match!");
418 matchType
= MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND
;
419 } else if (exactMatch
!= bestMatch
) {
420 // The exact match is still decoding, but we found a substitute.
421 matchType
= MatchType::SUBSTITUTE_BECAUSE_PENDING
;
422 } else if (aIdealKey
.Size() != bestMatch
->GetSurfaceKey().Size()) {
423 // The best factor of 2 match is still decoding, but the best we've got.
424 MOZ_ASSERT(suggestedSize
!= aIdealKey
.Size());
425 MOZ_ASSERT(mFactor2Mode
|| mIsVectorImage
);
426 matchType
= MatchType::SUBSTITUTE_BECAUSE_BEST
;
428 // The exact match is still decoding, but it's the best we've got.
429 matchType
= MatchType::EXACT
;
433 // We found an "exact match"; it must have been a placeholder.
434 MOZ_ASSERT(exactMatch
->IsPlaceholder());
435 matchType
= MatchType::PENDING
;
437 // We couldn't find an exact match *or* a substitute.
438 matchType
= MatchType::NOT_FOUND
;
442 return MakeTuple(bestMatch
.forget(), matchType
, suggestedSize
);
445 void MaybeSetFactor2Mode() {
446 MOZ_ASSERT(!mFactor2Mode
);
448 // Typically an image cache will not have too many size-varying surfaces, so
449 // if we exceed the given threshold, we should consider using a subset.
450 int32_t thresholdSurfaces
=
451 StaticPrefs::image_cache_factor2_threshold_surfaces();
452 if (thresholdSurfaces
< 0 ||
453 mSurfaces
.Count() <= static_cast<uint32_t>(thresholdSurfaces
)) {
457 // Determine how many native surfaces this image has. If it is zero, and it
458 // is a vector image, then we should impute a single native size. Otherwise,
459 // it may be zero because we don't know yet, or the image has an error, or
460 // it isn't supported.
461 NotNull
<CachedSurface
*> current
=
462 WrapNotNull(mSurfaces
.ConstIter().UserData());
463 Image
* image
= static_cast<Image
*>(current
->GetImageKey());
464 size_t nativeSizes
= image
->GetNativeSizesLength();
465 if (mIsVectorImage
) {
466 MOZ_ASSERT(nativeSizes
== 0);
468 } else if (nativeSizes
== 0) {
472 // Increase the threshold by the number of native sizes. This ensures that
473 // we do not prevent decoding of the image at all its native sizes. It does
474 // not guarantee we will provide a surface at that size however (i.e. many
475 // other sized surfaces are requested, in addition to the native sizes).
476 thresholdSurfaces
+= nativeSizes
;
477 if (mSurfaces
.Count() <= static_cast<uint32_t>(thresholdSurfaces
)) {
481 // We have a valid size, we can change modes.
485 template <typename Function
>
486 void Prune(Function
&& aRemoveCallback
) {
487 if (!mFactor2Mode
|| mFactor2Pruned
) {
491 // Attempt to discard any surfaces which are not factor of 2 and the best
492 // factor of 2 match exists.
493 bool hasNotFactorSize
= false;
494 for (auto iter
= mSurfaces
.Iter(); !iter
.Done(); iter
.Next()) {
495 NotNull
<CachedSurface
*> current
= WrapNotNull(iter
.UserData());
496 const SurfaceKey
& currentKey
= current
->GetSurfaceKey();
497 const IntSize
& currentSize
= currentKey
.Size();
499 // First we check if someone requested this size and would not accept
500 // an alternatively sized surface.
501 if (current
->CannotSubstitute()) {
505 // Next we find the best factor of 2 size for this surface. If this
506 // surface is a factor of 2 size, then we want to keep it.
507 IntSize bestSize
= SuggestedSize(currentSize
);
508 if (bestSize
== currentSize
) {
512 // Check the cache for a surface with the same parameters except for the
513 // size which uses the closest factor of 2 size.
514 SurfaceKey compactKey
= currentKey
.CloneWithSize(bestSize
);
515 RefPtr
<CachedSurface
> compactMatch
;
516 mSurfaces
.Get(compactKey
, getter_AddRefs(compactMatch
));
517 if (compactMatch
&& compactMatch
->IsDecoded()) {
518 aRemoveCallback(current
);
521 hasNotFactorSize
= true;
525 // We have no surfaces that are not factor of 2 sized, so we can stop
526 // pruning henceforth, because we avoid the insertion of new surfaces that
527 // don't match our sizing set (unless the caller won't accept a
529 if (!hasNotFactorSize
) {
530 mFactor2Pruned
= true;
533 // We should never leave factor of 2 mode due to pruning in of itself, but
534 // if we discarded surfaces due to the volatile buffers getting released,
539 template <typename Function
>
540 bool Invalidate(Function
&& aRemoveCallback
) {
541 // Remove all non-blob recordings from the cache. Invalidate any blob
543 bool foundRecording
= false;
544 for (auto iter
= mSurfaces
.Iter(); !iter
.Done(); iter
.Next()) {
545 NotNull
<CachedSurface
*> current
= WrapNotNull(iter
.UserData());
547 if (current
->GetSurfaceKey().Flags() & SurfaceFlags::RECORD_BLOB
) {
548 foundRecording
= true;
549 current
->InvalidateRecording();
553 aRemoveCallback(current
);
558 return foundRecording
;
561 IntSize
SuggestedSize(const IntSize
& aSize
) const {
562 IntSize suggestedSize
= SuggestedSizeInternal(aSize
);
563 if (mIsVectorImage
) {
564 suggestedSize
= SurfaceCache::ClampVectorSize(suggestedSize
);
566 return suggestedSize
;
569 IntSize
SuggestedSizeInternal(const IntSize
& aSize
) const {
570 // When not in factor of 2 mode, we can always decode at the given size.
575 // We cannot enter factor of 2 mode unless we have a minimum number of
576 // surfaces, and we should have left it if the cache was emptied.
577 if (MOZ_UNLIKELY(IsEmpty())) {
578 MOZ_ASSERT_UNREACHABLE("Should not be empty and in factor of 2 mode!");
582 // This bit of awkwardness gets the largest native size of the image.
583 NotNull
<CachedSurface
*> firstSurface
=
584 WrapNotNull(mSurfaces
.ConstIter().UserData());
585 Image
* image
= static_cast<Image
*>(firstSurface
->GetImageKey());
587 if (NS_FAILED(image
->GetWidth(&factorSize
.width
)) ||
588 NS_FAILED(image
->GetHeight(&factorSize
.height
)) ||
589 factorSize
.IsEmpty()) {
590 // Valid vector images may have a default size of 0x0. In that case, just
591 // assume a default size of 100x100 and apply the intrinsic ratio if
592 // available. If our guess was too small, don't use factor-of-scaling.
593 MOZ_ASSERT(mIsVectorImage
);
594 factorSize
= IntSize(100, 100);
595 Maybe
<AspectRatio
> aspectRatio
= image
->GetIntrinsicRatio();
596 if (aspectRatio
&& *aspectRatio
) {
598 NSToIntRound(aspectRatio
->ApplyToFloat(float(factorSize
.height
)));
599 if (factorSize
.IsEmpty()) {
605 if (mIsVectorImage
) {
606 // Ensure the aspect ratio matches the native size before forcing the
607 // caller to accept a factor of 2 size. The difference between the aspect
610 // delta = nativeWidth/nativeHeight - desiredWidth/desiredHeight
612 // delta*nativeHeight*desiredHeight = nativeWidth*desiredHeight
613 // - desiredWidth*nativeHeight
615 // Using the maximum accepted delta as a constant, we can avoid the
616 // floating point division and just compare after some integer ops.
618 factorSize
.width
* aSize
.height
- aSize
.width
* factorSize
.height
;
619 int32_t maxDelta
= (factorSize
.height
* aSize
.height
) >> 4;
620 if (delta
> maxDelta
|| delta
< -maxDelta
) {
624 // If the requested size is bigger than the native size, we actually need
625 // to grow the native size instead of shrinking it.
626 if (factorSize
.width
< aSize
.width
) {
628 IntSize
candidate(factorSize
.width
* 2, factorSize
.height
* 2);
629 if (!SurfaceCache::IsLegalSize(candidate
)) {
633 factorSize
= candidate
;
634 } while (factorSize
.width
< aSize
.width
);
639 // Otherwise we can find the best fit as normal.
642 // Start with the native size as the best first guess.
643 IntSize bestSize
= factorSize
;
644 factorSize
.width
/= 2;
645 factorSize
.height
/= 2;
647 while (!factorSize
.IsEmpty()) {
648 if (!CompareArea(aSize
, bestSize
, factorSize
)) {
649 // This size is not better than the last. Since we proceed from largest
650 // to smallest, we know that the next size will not be better if the
651 // previous size was rejected. Break early.
655 // The current factor of 2 size is better than the last selected size.
656 bestSize
= factorSize
;
657 factorSize
.width
/= 2;
658 factorSize
.height
/= 2;
664 bool CompareArea(const IntSize
& aIdealSize
, const IntSize
& aBestSize
,
665 const IntSize
& aSize
) const {
666 // Compare sizes. We use an area-based heuristic here instead of computing a
667 // truly optimal answer, since it seems very unlikely to make a difference
668 // for realistic sizes.
669 int64_t idealArea
= AreaOfIntSize(aIdealSize
);
670 int64_t currentArea
= AreaOfIntSize(aSize
);
671 int64_t bestMatchArea
= AreaOfIntSize(aBestSize
);
673 // If the best match is smaller than the ideal size, prefer bigger sizes.
674 if (bestMatchArea
< idealArea
) {
675 if (currentArea
> bestMatchArea
) {
681 // Other, prefer sizes closer to the ideal size, but still not smaller.
682 if (idealArea
<= currentArea
&& currentArea
< bestMatchArea
) {
686 // This surface isn't an improvement over the current best match.
690 template <typename Function
>
691 void CollectSizeOfSurfaces(nsTArray
<SurfaceMemoryCounter
>& aCounters
,
692 MallocSizeOf aMallocSizeOf
,
693 Function
&& aRemoveCallback
) {
694 CachedSurface::SurfaceMemoryReport
report(aCounters
, aMallocSizeOf
);
695 for (auto iter
= mSurfaces
.Iter(); !iter
.Done(); iter
.Next()) {
696 NotNull
<CachedSurface
*> surface
= WrapNotNull(iter
.UserData());
698 // We don't need the drawable surface for ourselves, but adding a surface
699 // to the report will trigger this indirectly. If the surface was
700 // discarded by the OS because it was in volatile memory, we should remove
701 // it from the cache immediately rather than include it in the report.
702 DrawableSurface drawableSurface
;
703 if (!surface
->IsPlaceholder()) {
704 drawableSurface
= surface
->GetDrawableSurface();
705 if (!drawableSurface
) {
706 aRemoveCallback(surface
);
712 const IntSize
& size
= surface
->GetSurfaceKey().Size();
713 bool factor2Size
= false;
715 factor2Size
= (size
== SuggestedSize(size
));
717 report
.Add(surface
, factor2Size
);
723 void SetLocked(bool aLocked
) { mLocked
= aLocked
; }
724 bool IsLocked() const { return mLocked
; }
727 void AfterMaybeRemove() {
728 if (IsEmpty() && mFactor2Mode
) {
729 // The last surface for this cache was removed. This can happen if the
730 // surface was stored in a volatile buffer and got purged, or the surface
731 // expired from the cache. If the cache itself lingers for some reason
732 // (e.g. in the process of performing a lookup, the cache itself is
733 // locked), then we need to reset the factor of 2 state because it
734 // requires at least one surface present to get the native size
735 // information from the image.
736 mFactor2Mode
= mFactor2Pruned
= false;
740 SurfaceTable mSurfaces
;
744 // True in "factor of 2" mode.
747 // True if all non-factor of 2 surfaces have been removed from the cache. Note
748 // that this excludes unsubstitutable sizes.
751 // True if the surfaces are produced from a vector image. If so, it must match
752 // the aspect ratio when using factor of 2 mode.
757 * SurfaceCacheImpl is responsible for determining which surfaces will be cached
758 * and managing the surface cache data structures. Rather than interact with
759 * SurfaceCacheImpl directly, client code interacts with SurfaceCache, which
760 * maintains high-level invariants and encapsulates the details of the surface
761 * cache's implementation.
763 class SurfaceCacheImpl final
: public nsIMemoryReporter
{
767 SurfaceCacheImpl(uint32_t aSurfaceCacheExpirationTimeMS
,
768 uint32_t aSurfaceCacheDiscardFactor
,
769 uint32_t aSurfaceCacheSize
)
770 : mExpirationTracker(aSurfaceCacheExpirationTimeMS
),
771 mMemoryPressureObserver(new MemoryPressureObserver
),
772 mDiscardFactor(aSurfaceCacheDiscardFactor
),
773 mMaxCost(aSurfaceCacheSize
),
774 mAvailableCost(aSurfaceCacheSize
),
777 mAlreadyPresentCount(0),
778 mTableFailureCount(0),
779 mTrackingFailureCount(0) {
780 nsCOMPtr
<nsIObserverService
> os
= services::GetObserverService();
782 os
->AddObserver(mMemoryPressureObserver
, "memory-pressure", false);
787 virtual ~SurfaceCacheImpl() {
788 nsCOMPtr
<nsIObserverService
> os
= services::GetObserverService();
790 os
->RemoveObserver(mMemoryPressureObserver
, "memory-pressure");
793 UnregisterWeakMemoryReporter(this);
797 void InitMemoryReporter() { RegisterWeakMemoryReporter(this); }
799 InsertOutcome
Insert(NotNull
<ISurfaceProvider
*> aProvider
, bool aSetAvailable
,
800 const StaticMutexAutoLock
& aAutoLock
) {
801 // If this is a duplicate surface, refuse to replace the original.
802 // XXX(seth): Calling Lookup() and then RemoveEntry() does the lookup
803 // twice. We'll make this more efficient in bug 1185137.
804 LookupResult result
=
805 Lookup(aProvider
->GetImageKey(), aProvider
->GetSurfaceKey(), aAutoLock
,
806 /* aMarkUsed = */ false);
807 if (MOZ_UNLIKELY(result
)) {
808 mAlreadyPresentCount
++;
809 return InsertOutcome::FAILURE_ALREADY_PRESENT
;
812 if (result
.Type() == MatchType::PENDING
) {
813 RemoveEntry(aProvider
->GetImageKey(), aProvider
->GetSurfaceKey(),
817 MOZ_ASSERT(result
.Type() == MatchType::NOT_FOUND
||
818 result
.Type() == MatchType::PENDING
,
819 "A LookupResult with no surface should be NOT_FOUND or PENDING");
821 // If this is bigger than we can hold after discarding everything we can,
822 // refuse to cache it.
823 Cost cost
= aProvider
->LogicalSizeInBytes();
824 if (MOZ_UNLIKELY(!CanHoldAfterDiscarding(cost
))) {
826 return InsertOutcome::FAILURE
;
829 // Remove elements in order of cost until we can fit this in the cache. Note
830 // that locked surfaces aren't in mCosts, so we never remove them here.
831 while (cost
> mAvailableCost
) {
832 MOZ_ASSERT(!mCosts
.IsEmpty(),
833 "Removed everything and it still won't fit");
834 Remove(mCosts
.LastElement().Surface(), /* aStopTracking */ true,
838 // Locate the appropriate per-image cache. If there's not an existing cache
839 // for this image, create it.
840 const ImageKey imageKey
= aProvider
->GetImageKey();
841 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(imageKey
);
843 cache
= new ImageSurfaceCache(imageKey
);
844 if (!mImageCaches
.InsertOrUpdate(aProvider
->GetImageKey(), RefPtr
{cache
},
846 mTableFailureCount
++;
847 return InsertOutcome::FAILURE
;
851 // If we were asked to mark the cache entry available, do so.
853 aProvider
->Availability().SetAvailable();
856 auto surface
= MakeNotNull
<RefPtr
<CachedSurface
>>(aProvider
);
858 // We require that locking succeed if the image is locked and we're not
859 // inserting a placeholder; the caller may need to know this to handle
861 bool mustLock
= cache
->IsLocked() && !surface
->IsPlaceholder();
863 surface
->SetLocked(true);
864 if (!surface
->IsLocked()) {
865 return InsertOutcome::FAILURE
;
870 MOZ_ASSERT(cost
<= mAvailableCost
, "Inserting despite too large a cost");
871 if (!cache
->Insert(surface
)) {
872 mTableFailureCount
++;
874 surface
->SetLocked(false);
876 return InsertOutcome::FAILURE
;
879 if (MOZ_UNLIKELY(!StartTracking(surface
, aAutoLock
))) {
880 MOZ_ASSERT(!mustLock
);
881 Remove(surface
, /* aStopTracking */ false, aAutoLock
);
882 return InsertOutcome::FAILURE
;
885 return InsertOutcome::SUCCESS
;
888 void Remove(NotNull
<CachedSurface
*> aSurface
, bool aStopTracking
,
889 const StaticMutexAutoLock
& aAutoLock
) {
890 ImageKey imageKey
= aSurface
->GetImageKey();
892 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(imageKey
);
893 MOZ_ASSERT(cache
, "Shouldn't try to remove a surface with no image cache");
895 // If the surface was not a placeholder, tell its image that we discarded
897 if (!aSurface
->IsPlaceholder()) {
898 static_cast<Image
*>(imageKey
)->OnSurfaceDiscarded(
899 aSurface
->GetSurfaceKey());
902 // If we failed during StartTracking, we can skip this step.
904 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
907 // Individual surfaces must be freed outside the lock.
908 mCachedSurfacesDiscard
.AppendElement(cache
->Remove(aSurface
));
910 MaybeRemoveEmptyCache(imageKey
, cache
);
913 bool StartTracking(NotNull
<CachedSurface
*> aSurface
,
914 const StaticMutexAutoLock
& aAutoLock
) {
915 CostEntry costEntry
= aSurface
->GetCostEntry();
916 MOZ_ASSERT(costEntry
.GetCost() <= mAvailableCost
,
917 "Cost too large and the caller didn't catch it");
919 if (aSurface
->IsLocked()) {
920 mLockedCost
+= costEntry
.GetCost();
921 MOZ_ASSERT(mLockedCost
<= mMaxCost
, "Locked more than we can hold?");
923 if (NS_WARN_IF(!mCosts
.InsertElementSorted(costEntry
, fallible
))) {
924 mTrackingFailureCount
++;
928 // This may fail during XPCOM shutdown, so we need to ensure the object is
929 // tracked before calling RemoveObject in StopTracking.
930 nsresult rv
= mExpirationTracker
.AddObjectLocked(aSurface
, aAutoLock
);
931 if (NS_WARN_IF(NS_FAILED(rv
))) {
932 DebugOnly
<bool> foundInCosts
= mCosts
.RemoveElementSorted(costEntry
);
933 MOZ_ASSERT(foundInCosts
, "Lost track of costs for this surface");
934 mTrackingFailureCount
++;
939 mAvailableCost
-= costEntry
.GetCost();
943 void StopTracking(NotNull
<CachedSurface
*> aSurface
, bool aIsTracked
,
944 const StaticMutexAutoLock
& aAutoLock
) {
945 CostEntry costEntry
= aSurface
->GetCostEntry();
947 if (aSurface
->IsLocked()) {
948 MOZ_ASSERT(mLockedCost
>= costEntry
.GetCost(), "Costs don't balance");
949 mLockedCost
-= costEntry
.GetCost();
950 // XXX(seth): It'd be nice to use an O(log n) lookup here. This is O(n).
951 MOZ_ASSERT(!mCosts
.Contains(costEntry
),
952 "Shouldn't have a cost entry for a locked surface");
954 if (MOZ_LIKELY(aSurface
->GetExpirationState()->IsTracked())) {
955 MOZ_ASSERT(aIsTracked
, "Expiration-tracking a surface unexpectedly!");
956 mExpirationTracker
.RemoveObjectLocked(aSurface
, aAutoLock
);
958 // Our call to AddObject must have failed in StartTracking; most likely
959 // we're in XPCOM shutdown right now.
960 MOZ_ASSERT(!aIsTracked
, "Not expiration-tracking an unlocked surface!");
963 DebugOnly
<bool> foundInCosts
= mCosts
.RemoveElementSorted(costEntry
);
964 MOZ_ASSERT(foundInCosts
, "Lost track of costs for this surface");
967 mAvailableCost
+= costEntry
.GetCost();
968 MOZ_ASSERT(mAvailableCost
<= mMaxCost
,
969 "More available cost than we started with");
972 LookupResult
Lookup(const ImageKey aImageKey
, const SurfaceKey
& aSurfaceKey
,
973 const StaticMutexAutoLock
& aAutoLock
, bool aMarkUsed
) {
974 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
976 // No cached surfaces for this image.
977 return LookupResult(MatchType::NOT_FOUND
);
980 RefPtr
<CachedSurface
> surface
= cache
->Lookup(aSurfaceKey
, aMarkUsed
);
982 // Lookup in the per-image cache missed.
983 return LookupResult(MatchType::NOT_FOUND
);
986 if (surface
->IsPlaceholder()) {
987 return LookupResult(MatchType::PENDING
);
990 DrawableSurface drawableSurface
= surface
->GetDrawableSurface();
991 if (!drawableSurface
) {
992 // The surface was released by the operating system. Remove the cache
994 Remove(WrapNotNull(surface
), /* aStopTracking */ true, aAutoLock
);
995 return LookupResult(MatchType::NOT_FOUND
);
999 !MarkUsed(WrapNotNull(surface
), WrapNotNull(cache
), aAutoLock
)) {
1000 Remove(WrapNotNull(surface
), /* aStopTracking */ false, aAutoLock
);
1001 return LookupResult(MatchType::NOT_FOUND
);
1004 MOZ_ASSERT(surface
->GetSurfaceKey() == aSurfaceKey
,
1005 "Lookup() not returning an exact match?");
1006 return LookupResult(std::move(drawableSurface
), MatchType::EXACT
);
1009 LookupResult
LookupBestMatch(const ImageKey aImageKey
,
1010 const SurfaceKey
& aSurfaceKey
,
1011 const StaticMutexAutoLock
& aAutoLock
,
1013 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1015 // No cached surfaces for this image.
1016 return LookupResult(
1017 MatchType::NOT_FOUND
,
1018 SurfaceCache::ClampSize(aImageKey
, aSurfaceKey
.Size()));
1021 // Repeatedly look up the best match, trying again if the resulting surface
1022 // has been freed by the operating system, until we can either lock a
1023 // surface for drawing or there are no matching surfaces left.
1024 // XXX(seth): This is O(N^2), but N is expected to be very small. If we
1025 // encounter a performance problem here we can revisit this.
1027 RefPtr
<CachedSurface
> surface
;
1028 DrawableSurface drawableSurface
;
1029 MatchType matchType
= MatchType::NOT_FOUND
;
1030 IntSize suggestedSize
;
1032 Tie(surface
, matchType
, suggestedSize
) =
1033 cache
->LookupBestMatch(aSurfaceKey
);
1036 return LookupResult(
1037 matchType
, suggestedSize
); // Lookup in the per-image cache missed.
1040 drawableSurface
= surface
->GetDrawableSurface();
1041 if (drawableSurface
) {
1045 // The surface was released by the operating system. Remove the cache
1047 Remove(WrapNotNull(surface
), /* aStopTracking */ true, aAutoLock
);
1050 MOZ_ASSERT_IF(matchType
== MatchType::EXACT
,
1051 surface
->GetSurfaceKey() == aSurfaceKey
);
1053 matchType
== MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND
||
1054 matchType
== MatchType::SUBSTITUTE_BECAUSE_PENDING
,
1055 surface
->GetSurfaceKey().Region() == aSurfaceKey
.Region() &&
1056 surface
->GetSurfaceKey().SVGContext() == aSurfaceKey
.SVGContext() &&
1057 surface
->GetSurfaceKey().Playback() == aSurfaceKey
.Playback() &&
1058 surface
->GetSurfaceKey().Flags() == aSurfaceKey
.Flags());
1060 if (matchType
== MatchType::EXACT
||
1061 matchType
== MatchType::SUBSTITUTE_BECAUSE_BEST
) {
1063 !MarkUsed(WrapNotNull(surface
), WrapNotNull(cache
), aAutoLock
)) {
1064 Remove(WrapNotNull(surface
), /* aStopTracking */ false, aAutoLock
);
1068 return LookupResult(std::move(drawableSurface
), matchType
, suggestedSize
);
1071 bool CanHold(const Cost aCost
) const { return aCost
<= mMaxCost
; }
1073 size_t MaximumCapacity() const { return size_t(mMaxCost
); }
1075 void SurfaceAvailable(NotNull
<ISurfaceProvider
*> aProvider
,
1076 const StaticMutexAutoLock
& aAutoLock
) {
1077 if (!aProvider
->Availability().IsPlaceholder()) {
1078 MOZ_ASSERT_UNREACHABLE("Calling SurfaceAvailable on non-placeholder");
1082 // Reinsert the provider, requesting that Insert() mark it available. This
1083 // may or may not succeed, depending on whether some other decoder has
1084 // beaten us to the punch and inserted a non-placeholder version of this
1085 // surface first, but it's fine either way.
1086 // XXX(seth): This could be implemented more efficiently; we should be able
1087 // to just update our data structures without reinserting.
1088 Insert(aProvider
, /* aSetAvailable = */ true, aAutoLock
);
1091 void LockImage(const ImageKey aImageKey
) {
1092 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1094 cache
= new ImageSurfaceCache(aImageKey
);
1095 mImageCaches
.InsertOrUpdate(aImageKey
, RefPtr
{cache
});
1098 cache
->SetLocked(true);
1100 // We don't relock this image's existing surfaces right away; instead, the
1101 // image should arrange for Lookup() to touch them if they are still useful.
1104 void UnlockImage(const ImageKey aImageKey
,
1105 const StaticMutexAutoLock
& aAutoLock
) {
1106 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1107 if (!cache
|| !cache
->IsLocked()) {
1108 return; // Already unlocked.
1111 cache
->SetLocked(false);
1112 DoUnlockSurfaces(WrapNotNull(cache
), /* aStaticOnly = */ false, aAutoLock
);
1115 void UnlockEntries(const ImageKey aImageKey
,
1116 const StaticMutexAutoLock
& aAutoLock
) {
1117 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1118 if (!cache
|| !cache
->IsLocked()) {
1119 return; // Already unlocked.
1122 // (Note that we *don't* unlock the per-image cache here; that's the
1123 // difference between this and UnlockImage.)
1124 DoUnlockSurfaces(WrapNotNull(cache
),
1126 !StaticPrefs::image_mem_animated_discardable_AtStartup(),
1130 already_AddRefed
<ImageSurfaceCache
> RemoveImage(
1131 const ImageKey aImageKey
, const StaticMutexAutoLock
& aAutoLock
) {
1132 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1134 return nullptr; // No cached surfaces for this image, so nothing to do.
1137 // Discard all of the cached surfaces for this image.
1138 // XXX(seth): This is O(n^2) since for each item in the cache we are
1139 // removing an element from the costs array. Since n is expected to be
1140 // small, performance should be good, but if usage patterns change we should
1141 // change the data structure used for mCosts.
1142 for (const auto& value
: cache
->Values()) {
1143 StopTracking(WrapNotNull(value
),
1144 /* aIsTracked */ true, aAutoLock
);
1147 // The per-image cache isn't needed anymore, so remove it as well.
1148 // This implicitly unlocks the image if it was locked.
1149 mImageCaches
.Remove(aImageKey
);
1151 // Since we did not actually remove any of the surfaces from the cache
1152 // itself, only stopped tracking them, we should free it outside the lock.
1153 return cache
.forget();
1156 void PruneImage(const ImageKey aImageKey
,
1157 const StaticMutexAutoLock
& aAutoLock
) {
1158 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1160 return; // No cached surfaces for this image, so nothing to do.
1163 cache
->Prune([this, &aAutoLock
](NotNull
<CachedSurface
*> aSurface
) -> void {
1164 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1165 // Individual surfaces must be freed outside the lock.
1166 mCachedSurfacesDiscard
.AppendElement(aSurface
);
1169 MaybeRemoveEmptyCache(aImageKey
, cache
);
1172 bool InvalidateImage(const ImageKey aImageKey
,
1173 const StaticMutexAutoLock
& aAutoLock
) {
1174 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1176 return false; // No cached surfaces for this image, so nothing to do.
1179 bool rv
= cache
->Invalidate(
1180 [this, &aAutoLock
](NotNull
<CachedSurface
*> aSurface
) -> void {
1181 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1182 // Individual surfaces must be freed outside the lock.
1183 mCachedSurfacesDiscard
.AppendElement(aSurface
);
1186 MaybeRemoveEmptyCache(aImageKey
, cache
);
1190 void DiscardAll(const StaticMutexAutoLock
& aAutoLock
) {
1191 // Remove in order of cost because mCosts is an array and the other data
1192 // structures are all hash tables. Note that locked surfaces are not
1193 // removed, since they aren't present in mCosts.
1194 while (!mCosts
.IsEmpty()) {
1195 Remove(mCosts
.LastElement().Surface(), /* aStopTracking */ true,
1200 void DiscardForMemoryPressure(const StaticMutexAutoLock
& aAutoLock
) {
1201 // Compute our discardable cost. Since locked surfaces aren't discardable,
1203 const Cost discardableCost
= (mMaxCost
- mAvailableCost
) - mLockedCost
;
1204 MOZ_ASSERT(discardableCost
<= mMaxCost
, "Discardable cost doesn't add up");
1206 // Our target is to raise our available cost by (1 / mDiscardFactor) of our
1207 // discardable cost - in other words, we want to end up with about
1208 // (discardableCost / mDiscardFactor) fewer bytes stored in the surface
1209 // cache after we're done.
1210 const Cost targetCost
= mAvailableCost
+ (discardableCost
/ mDiscardFactor
);
1212 if (targetCost
> mMaxCost
- mLockedCost
) {
1213 MOZ_ASSERT_UNREACHABLE("Target cost is more than we can discard");
1214 DiscardAll(aAutoLock
);
1218 // Discard surfaces until we've reduced our cost to our target cost.
1219 while (mAvailableCost
< targetCost
) {
1220 MOZ_ASSERT(!mCosts
.IsEmpty(), "Removed everything and still not done");
1221 Remove(mCosts
.LastElement().Surface(), /* aStopTracking */ true,
1226 void TakeDiscard(nsTArray
<RefPtr
<CachedSurface
>>& aDiscard
,
1227 const StaticMutexAutoLock
& aAutoLock
) {
1228 MOZ_ASSERT(aDiscard
.IsEmpty());
1229 aDiscard
= std::move(mCachedSurfacesDiscard
);
1232 already_AddRefed
<CachedSurface
> GetSurfaceForResetAnimation(
1233 const ImageKey aImageKey
, const SurfaceKey
& aSurfaceKey
,
1234 const StaticMutexAutoLock
& aAutoLock
) {
1235 RefPtr
<CachedSurface
> surface
;
1237 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1239 // No cached surfaces for this image.
1240 return surface
.forget();
1243 surface
= cache
->Lookup(aSurfaceKey
, /* aForAccess = */ false);
1244 return surface
.forget();
1247 void LockSurface(NotNull
<CachedSurface
*> aSurface
,
1248 const StaticMutexAutoLock
& aAutoLock
) {
1249 if (aSurface
->IsPlaceholder() || aSurface
->IsLocked()) {
1253 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1255 // Lock the surface. This can fail.
1256 aSurface
->SetLocked(true);
1257 DebugOnly
<bool> tracked
= StartTracking(aSurface
, aAutoLock
);
1258 MOZ_ASSERT(tracked
);
1261 size_t ShallowSizeOfIncludingThis(
1262 MallocSizeOf aMallocSizeOf
, const StaticMutexAutoLock
& aAutoLock
) const {
1264 aMallocSizeOf(this) + mCosts
.ShallowSizeOfExcludingThis(aMallocSizeOf
) +
1265 mImageCaches
.ShallowSizeOfExcludingThis(aMallocSizeOf
) +
1266 mCachedSurfacesDiscard
.ShallowSizeOfExcludingThis(aMallocSizeOf
) +
1267 mExpirationTracker
.ShallowSizeOfExcludingThis(aMallocSizeOf
);
1268 for (const auto& data
: mImageCaches
.Values()) {
1269 bytes
+= data
->ShallowSizeOfIncludingThis(aMallocSizeOf
);
1275 CollectReports(nsIHandleReportCallback
* aHandleReport
, nsISupports
* aData
,
1276 bool aAnonymize
) override
{
1277 StaticMutexAutoLock
lock(sInstanceMutex
);
1279 uint32_t lockedImageCount
= 0;
1280 uint32_t totalSurfaceCount
= 0;
1281 uint32_t lockedSurfaceCount
= 0;
1282 for (const auto& cache
: mImageCaches
.Values()) {
1283 totalSurfaceCount
+= cache
->Count();
1284 if (cache
->IsLocked()) {
1287 for (const auto& value
: cache
->Values()) {
1288 if (value
->IsLocked()) {
1289 ++lockedSurfaceCount
;
1295 // We have explicit memory reporting for the surface cache which is more
1296 // accurate than the cost metrics we report here, but these metrics are
1297 // still useful to report, since they control the cache's behavior.
1299 "explicit/images/cache/overhead", KIND_HEAP
, UNITS_BYTES
,
1300 ShallowSizeOfIncludingThis(SurfaceCacheMallocSizeOf
, lock
),
1301 "Memory used by the surface cache data structures, excluding surface data.");
1304 "imagelib-surface-cache-estimated-total",
1305 KIND_OTHER
, UNITS_BYTES
, (mMaxCost
- mAvailableCost
),
1306 "Estimated total memory used by the imagelib surface cache.");
1309 "imagelib-surface-cache-estimated-locked",
1310 KIND_OTHER
, UNITS_BYTES
, mLockedCost
,
1311 "Estimated memory used by locked surfaces in the imagelib surface cache.");
1314 "imagelib-surface-cache-tracked-cost-count",
1315 KIND_OTHER
, UNITS_COUNT
, mCosts
.Length(),
1316 "Total number of surfaces tracked for cost (and expiry) in the imagelib surface cache.");
1319 "imagelib-surface-cache-tracked-expiry-count",
1320 KIND_OTHER
, UNITS_COUNT
, mExpirationTracker
.Length(lock
),
1321 "Total number of surfaces tracked for expiry (and cost) in the imagelib surface cache.");
1324 "imagelib-surface-cache-image-count",
1325 KIND_OTHER
, UNITS_COUNT
, mImageCaches
.Count(),
1326 "Total number of images in the imagelib surface cache.");
1329 "imagelib-surface-cache-locked-image-count",
1330 KIND_OTHER
, UNITS_COUNT
, lockedImageCount
,
1331 "Total number of locked images in the imagelib surface cache.");
1334 "imagelib-surface-cache-image-surface-count",
1335 KIND_OTHER
, UNITS_COUNT
, totalSurfaceCount
,
1336 "Total number of surfaces in the imagelib surface cache.");
1339 "imagelib-surface-cache-locked-surfaces-count",
1340 KIND_OTHER
, UNITS_COUNT
, lockedSurfaceCount
,
1341 "Total number of locked surfaces in the imagelib surface cache.");
1344 "imagelib-surface-cache-overflow-count",
1345 KIND_OTHER
, UNITS_COUNT
, mOverflowCount
,
1346 "Count of how many times the surface cache has hit its capacity and been "
1347 "unable to insert a new surface.");
1350 "imagelib-surface-cache-tracking-failure-count",
1351 KIND_OTHER
, UNITS_COUNT
, mTrackingFailureCount
,
1352 "Count of how many times the surface cache has failed to begin tracking a "
1356 "imagelib-surface-cache-already-present-count",
1357 KIND_OTHER
, UNITS_COUNT
, mAlreadyPresentCount
,
1358 "Count of how many times the surface cache has failed to insert a surface "
1359 "because it is already present.");
1362 "imagelib-surface-cache-table-failure-count",
1363 KIND_OTHER
, UNITS_COUNT
, mTableFailureCount
,
1364 "Count of how many times the surface cache has failed to insert a surface "
1365 "because a hash table could not accept an entry.");
1371 void CollectSizeOfSurfaces(const ImageKey aImageKey
,
1372 nsTArray
<SurfaceMemoryCounter
>& aCounters
,
1373 MallocSizeOf aMallocSizeOf
,
1374 const StaticMutexAutoLock
& aAutoLock
) {
1375 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1377 return; // No surfaces for this image.
1380 // Report all surfaces in the per-image cache.
1381 cache
->CollectSizeOfSurfaces(
1382 aCounters
, aMallocSizeOf
,
1383 [this, &aAutoLock
](NotNull
<CachedSurface
*> aSurface
) -> void {
1384 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1385 // Individual surfaces must be freed outside the lock.
1386 mCachedSurfacesDiscard
.AppendElement(aSurface
);
1389 MaybeRemoveEmptyCache(aImageKey
, cache
);
1392 void ReleaseImageOnMainThread(already_AddRefed
<image::Image
>&& aImage
,
1393 const StaticMutexAutoLock
& aAutoLock
) {
1394 RefPtr
<image::Image
> image
= aImage
;
1399 bool needsDispatch
= mReleasingImagesOnMainThread
.IsEmpty();
1400 mReleasingImagesOnMainThread
.AppendElement(image
);
1402 if (!needsDispatch
||
1403 AppShutdown::IsInOrBeyond(ShutdownPhase::XPCOMShutdownFinal
)) {
1404 // Either there is already a ongoing task for ClearReleasingImages() or
1405 // it's too late in shutdown to dispatch.
1409 NS_DispatchToMainThread(NS_NewRunnableFunction(
1410 "SurfaceCacheImpl::ReleaseImageOnMainThread",
1411 []() -> void { SurfaceCache::ClearReleasingImages(); }));
1414 void TakeReleasingImages(nsTArray
<RefPtr
<image::Image
>>& aImage
,
1415 const StaticMutexAutoLock
& aAutoLock
) {
1416 MOZ_ASSERT(NS_IsMainThread());
1417 aImage
.SwapElements(mReleasingImagesOnMainThread
);
1421 already_AddRefed
<ImageSurfaceCache
> GetImageCache(const ImageKey aImageKey
) {
1422 RefPtr
<ImageSurfaceCache
> imageCache
;
1423 mImageCaches
.Get(aImageKey
, getter_AddRefs(imageCache
));
1424 return imageCache
.forget();
1427 void MaybeRemoveEmptyCache(const ImageKey aImageKey
,
1428 ImageSurfaceCache
* aCache
) {
1429 // Remove the per-image cache if it's unneeded now. Keep it if the image is
1430 // locked, since the per-image cache is where we store that state. Note that
1431 // we don't push it into mImageCachesDiscard because all of its surfaces
1432 // have been removed, so it is safe to free while holding the lock.
1433 if (aCache
->IsEmpty() && !aCache
->IsLocked()) {
1434 mImageCaches
.Remove(aImageKey
);
1438 // This is similar to CanHold() except that it takes into account the costs of
1439 // locked surfaces. It's used internally in Insert(), but it's not exposed
1440 // publicly because we permit multithreaded access to the surface cache, which
1441 // means that the result would be meaningless: another thread could insert a
1442 // surface or lock an image at any time.
1443 bool CanHoldAfterDiscarding(const Cost aCost
) const {
1444 return aCost
<= mMaxCost
- mLockedCost
;
1447 bool MarkUsed(NotNull
<CachedSurface
*> aSurface
,
1448 NotNull
<ImageSurfaceCache
*> aCache
,
1449 const StaticMutexAutoLock
& aAutoLock
) {
1450 if (aCache
->IsLocked()) {
1451 LockSurface(aSurface
, aAutoLock
);
1455 nsresult rv
= mExpirationTracker
.MarkUsedLocked(aSurface
, aAutoLock
);
1456 if (NS_WARN_IF(NS_FAILED(rv
))) {
1457 // If mark used fails, it is because it failed to reinsert the surface
1458 // after removing it from the tracker. Thus we need to update our
1459 // own accounting but otherwise expect it to be untracked.
1460 StopTracking(aSurface
, /* aIsTracked */ false, aAutoLock
);
1466 void DoUnlockSurfaces(NotNull
<ImageSurfaceCache
*> aCache
, bool aStaticOnly
,
1467 const StaticMutexAutoLock
& aAutoLock
) {
1468 AutoTArray
<NotNull
<CachedSurface
*>, 8> discard
;
1470 // Unlock all the surfaces the per-image cache is holding.
1471 for (const auto& value
: aCache
->Values()) {
1472 NotNull
<CachedSurface
*> surface
= WrapNotNull(value
);
1473 if (surface
->IsPlaceholder() || !surface
->IsLocked()) {
1477 surface
->GetSurfaceKey().Playback() != PlaybackType::eStatic
) {
1480 StopTracking(surface
, /* aIsTracked */ true, aAutoLock
);
1481 surface
->SetLocked(false);
1482 if (MOZ_UNLIKELY(!StartTracking(surface
, aAutoLock
))) {
1483 discard
.AppendElement(surface
);
1487 // Discard any that we failed to track.
1488 for (auto iter
= discard
.begin(); iter
!= discard
.end(); ++iter
) {
1489 Remove(*iter
, /* aStopTracking */ false, aAutoLock
);
1493 void RemoveEntry(const ImageKey aImageKey
, const SurfaceKey
& aSurfaceKey
,
1494 const StaticMutexAutoLock
& aAutoLock
) {
1495 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1497 return; // No cached surfaces for this image.
1500 RefPtr
<CachedSurface
> surface
=
1501 cache
->Lookup(aSurfaceKey
, /* aForAccess = */ false);
1503 return; // Lookup in the per-image cache missed.
1506 Remove(WrapNotNull(surface
), /* aStopTracking */ true, aAutoLock
);
1509 class SurfaceTracker final
1510 : public ExpirationTrackerImpl
<CachedSurface
, 2, StaticMutex
,
1511 StaticMutexAutoLock
> {
1513 explicit SurfaceTracker(uint32_t aSurfaceCacheExpirationTimeMS
)
1514 : ExpirationTrackerImpl
<CachedSurface
, 2, StaticMutex
,
1515 StaticMutexAutoLock
>(
1516 aSurfaceCacheExpirationTimeMS
, "SurfaceTracker") {}
1519 void NotifyExpiredLocked(CachedSurface
* aSurface
,
1520 const StaticMutexAutoLock
& aAutoLock
) override
{
1521 sInstance
->Remove(WrapNotNull(aSurface
), /* aStopTracking */ true,
1525 void NotifyHandlerEndLocked(const StaticMutexAutoLock
& aAutoLock
) override
{
1526 sInstance
->TakeDiscard(mDiscard
, aAutoLock
);
1529 void NotifyHandlerEnd() override
{
1530 nsTArray
<RefPtr
<CachedSurface
>> discard(std::move(mDiscard
));
1533 StaticMutex
& GetMutex() override
{ return sInstanceMutex
; }
1535 nsTArray
<RefPtr
<CachedSurface
>> mDiscard
;
1538 class MemoryPressureObserver final
: public nsIObserver
{
1542 NS_IMETHOD
Observe(nsISupports
*, const char* aTopic
,
1543 const char16_t
*) override
{
1544 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1546 StaticMutexAutoLock
lock(sInstanceMutex
);
1547 if (sInstance
&& strcmp(aTopic
, "memory-pressure") == 0) {
1548 sInstance
->DiscardForMemoryPressure(lock
);
1549 sInstance
->TakeDiscard(discard
, lock
);
1556 virtual ~MemoryPressureObserver() {}
1559 nsTArray
<CostEntry
> mCosts
;
1560 nsRefPtrHashtable
<nsPtrHashKey
<Image
>, ImageSurfaceCache
> mImageCaches
;
1561 nsTArray
<RefPtr
<CachedSurface
>> mCachedSurfacesDiscard
;
1562 SurfaceTracker mExpirationTracker
;
1563 RefPtr
<MemoryPressureObserver
> mMemoryPressureObserver
;
1564 nsTArray
<RefPtr
<image::Image
>> mReleasingImagesOnMainThread
;
1565 const uint32_t mDiscardFactor
;
1566 const Cost mMaxCost
;
1567 Cost mAvailableCost
;
1569 size_t mOverflowCount
;
1570 size_t mAlreadyPresentCount
;
1571 size_t mTableFailureCount
;
1572 size_t mTrackingFailureCount
;
1575 NS_IMPL_ISUPPORTS(SurfaceCacheImpl
, nsIMemoryReporter
)
1576 NS_IMPL_ISUPPORTS(SurfaceCacheImpl::MemoryPressureObserver
, nsIObserver
)
1578 ///////////////////////////////////////////////////////////////////////////////
1580 ///////////////////////////////////////////////////////////////////////////////
1583 void SurfaceCache::Initialize() {
1584 // Initialize preferences.
1585 MOZ_ASSERT(NS_IsMainThread());
1586 MOZ_ASSERT(!sInstance
, "Shouldn't initialize more than once");
1588 // See StaticPrefs for the default values of these preferences.
1590 // Length of time before an unused surface is removed from the cache, in
1592 uint32_t surfaceCacheExpirationTimeMS
=
1593 StaticPrefs::image_mem_surfacecache_min_expiration_ms_AtStartup();
1595 // What fraction of the memory used by the surface cache we should discard
1596 // when we get a memory pressure notification. This value is interpreted as
1597 // 1/N, so 1 means to discard everything, 2 means to discard about half of the
1598 // memory we're using, and so forth. We clamp it to avoid division by zero.
1599 uint32_t surfaceCacheDiscardFactor
=
1600 max(StaticPrefs::image_mem_surfacecache_discard_factor_AtStartup(), 1u);
1602 // Maximum size of the surface cache, in kilobytes.
1603 uint64_t surfaceCacheMaxSizeKB
=
1604 StaticPrefs::image_mem_surfacecache_max_size_kb_AtStartup();
1606 if (sizeof(uintptr_t) <= 4) {
1607 // Limit surface cache to 1 GB if our address space is 32 bit.
1608 surfaceCacheMaxSizeKB
= 1024 * 1024;
1611 // A knob determining the actual size of the surface cache. Currently the
1612 // cache is (size of main memory) / (surface cache size factor) KB
1613 // or (surface cache max size) KB, whichever is smaller. The formula
1614 // may change in the future, though.
1615 // For example, a value of 4 would yield a 256MB cache on a 1GB machine.
1616 // The smallest machines we are likely to run this code on have 256MB
1617 // of memory, which would yield a 64MB cache on this setting.
1618 // We clamp this value to avoid division by zero.
1619 uint32_t surfaceCacheSizeFactor
=
1620 max(StaticPrefs::image_mem_surfacecache_size_factor_AtStartup(), 1u);
1622 // Compute the size of the surface cache.
1623 uint64_t memorySize
= PR_GetPhysicalMemorySize();
1624 if (memorySize
== 0) {
1625 #if !defined(__DragonFly__)
1626 MOZ_ASSERT_UNREACHABLE("PR_GetPhysicalMemorySize not implemented here");
1628 memorySize
= 256 * 1024 * 1024; // Fall back to 256MB.
1630 uint64_t proposedSize
= memorySize
/ surfaceCacheSizeFactor
;
1631 uint64_t surfaceCacheSizeBytes
=
1632 min(proposedSize
, surfaceCacheMaxSizeKB
* 1024);
1633 uint32_t finalSurfaceCacheSizeBytes
=
1634 min(surfaceCacheSizeBytes
, uint64_t(UINT32_MAX
));
1636 // Create the surface cache singleton with the requested settings. Note that
1637 // the size is a limit that the cache may not grow beyond, but we do not
1638 // actually allocate any storage for surfaces at this time.
1639 sInstance
= new SurfaceCacheImpl(surfaceCacheExpirationTimeMS
,
1640 surfaceCacheDiscardFactor
,
1641 finalSurfaceCacheSizeBytes
);
1642 sInstance
->InitMemoryReporter();
1646 void SurfaceCache::Shutdown() {
1647 RefPtr
<SurfaceCacheImpl
> cache
;
1649 StaticMutexAutoLock
lock(sInstanceMutex
);
1650 MOZ_ASSERT(NS_IsMainThread());
1651 MOZ_ASSERT(sInstance
, "No singleton - was Shutdown() called twice?");
1652 cache
= sInstance
.forget();
1657 LookupResult
SurfaceCache::Lookup(const ImageKey aImageKey
,
1658 const SurfaceKey
& aSurfaceKey
,
1660 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1661 LookupResult
rv(MatchType::NOT_FOUND
);
1664 StaticMutexAutoLock
lock(sInstanceMutex
);
1669 rv
= sInstance
->Lookup(aImageKey
, aSurfaceKey
, lock
, aMarkUsed
);
1670 sInstance
->TakeDiscard(discard
, lock
);
1677 LookupResult
SurfaceCache::LookupBestMatch(const ImageKey aImageKey
,
1678 const SurfaceKey
& aSurfaceKey
,
1680 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1681 LookupResult
rv(MatchType::NOT_FOUND
);
1684 StaticMutexAutoLock
lock(sInstanceMutex
);
1689 rv
= sInstance
->LookupBestMatch(aImageKey
, aSurfaceKey
, lock
, aMarkUsed
);
1690 sInstance
->TakeDiscard(discard
, lock
);
1697 InsertOutcome
SurfaceCache::Insert(NotNull
<ISurfaceProvider
*> aProvider
) {
1698 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1699 InsertOutcome
rv(InsertOutcome::FAILURE
);
1702 StaticMutexAutoLock
lock(sInstanceMutex
);
1707 rv
= sInstance
->Insert(aProvider
, /* aSetAvailable = */ false, lock
);
1708 sInstance
->TakeDiscard(discard
, lock
);
1715 bool SurfaceCache::CanHold(const IntSize
& aSize
,
1716 uint32_t aBytesPerPixel
/* = 4 */) {
1717 StaticMutexAutoLock
lock(sInstanceMutex
);
1722 Cost cost
= ComputeCost(aSize
, aBytesPerPixel
);
1723 return sInstance
->CanHold(cost
);
1727 bool SurfaceCache::CanHold(size_t aSize
) {
1728 StaticMutexAutoLock
lock(sInstanceMutex
);
1733 return sInstance
->CanHold(aSize
);
1737 void SurfaceCache::SurfaceAvailable(NotNull
<ISurfaceProvider
*> aProvider
) {
1738 StaticMutexAutoLock
lock(sInstanceMutex
);
1743 sInstance
->SurfaceAvailable(aProvider
, lock
);
1747 void SurfaceCache::LockImage(const ImageKey aImageKey
) {
1748 StaticMutexAutoLock
lock(sInstanceMutex
);
1750 return sInstance
->LockImage(aImageKey
);
1755 void SurfaceCache::UnlockImage(const ImageKey aImageKey
) {
1756 StaticMutexAutoLock
lock(sInstanceMutex
);
1758 return sInstance
->UnlockImage(aImageKey
, lock
);
1763 void SurfaceCache::UnlockEntries(const ImageKey aImageKey
) {
1764 StaticMutexAutoLock
lock(sInstanceMutex
);
1766 return sInstance
->UnlockEntries(aImageKey
, lock
);
1771 void SurfaceCache::RemoveImage(const ImageKey aImageKey
) {
1772 RefPtr
<ImageSurfaceCache
> discard
;
1774 StaticMutexAutoLock
lock(sInstanceMutex
);
1776 discard
= sInstance
->RemoveImage(aImageKey
, lock
);
1782 void SurfaceCache::PruneImage(const ImageKey aImageKey
) {
1783 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1785 StaticMutexAutoLock
lock(sInstanceMutex
);
1787 sInstance
->PruneImage(aImageKey
, lock
);
1788 sInstance
->TakeDiscard(discard
, lock
);
1794 bool SurfaceCache::InvalidateImage(const ImageKey aImageKey
) {
1795 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1798 StaticMutexAutoLock
lock(sInstanceMutex
);
1800 rv
= sInstance
->InvalidateImage(aImageKey
, lock
);
1801 sInstance
->TakeDiscard(discard
, lock
);
1808 void SurfaceCache::DiscardAll() {
1809 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1811 StaticMutexAutoLock
lock(sInstanceMutex
);
1813 sInstance
->DiscardAll(lock
);
1814 sInstance
->TakeDiscard(discard
, lock
);
1820 void SurfaceCache::ResetAnimation(const ImageKey aImageKey
,
1821 const SurfaceKey
& aSurfaceKey
) {
1822 RefPtr
<CachedSurface
> surface
;
1823 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1825 StaticMutexAutoLock
lock(sInstanceMutex
);
1831 sInstance
->GetSurfaceForResetAnimation(aImageKey
, aSurfaceKey
, lock
);
1832 sInstance
->TakeDiscard(discard
, lock
);
1835 // Calling Reset will acquire the AnimationSurfaceProvider::mFramesMutex
1836 // mutex. In other places we acquire the mFramesMutex then call into the
1837 // surface cache (acquiring the surface cache mutex), so that determines a
1838 // lock order which we must obey by calling Reset after releasing the surface
1841 DrawableSurface drawableSurface
=
1842 surface
->GetDrawableSurfaceEvenIfPlaceholder();
1843 if (drawableSurface
) {
1844 MOZ_ASSERT(surface
->GetSurfaceKey() == aSurfaceKey
,
1845 "ResetAnimation() not returning an exact match?");
1847 drawableSurface
.Reset();
1853 void SurfaceCache::CollectSizeOfSurfaces(
1854 const ImageKey aImageKey
, nsTArray
<SurfaceMemoryCounter
>& aCounters
,
1855 MallocSizeOf aMallocSizeOf
) {
1856 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1858 StaticMutexAutoLock
lock(sInstanceMutex
);
1863 sInstance
->CollectSizeOfSurfaces(aImageKey
, aCounters
, aMallocSizeOf
, lock
);
1864 sInstance
->TakeDiscard(discard
, lock
);
1869 size_t SurfaceCache::MaximumCapacity() {
1870 StaticMutexAutoLock
lock(sInstanceMutex
);
1875 return sInstance
->MaximumCapacity();
1879 bool SurfaceCache::IsLegalSize(const IntSize
& aSize
) {
1880 // reject over-wide or over-tall images
1881 const int32_t k64KLimit
= 0x0000FFFF;
1882 if (MOZ_UNLIKELY(aSize
.width
> k64KLimit
|| aSize
.height
> k64KLimit
)) {
1883 NS_WARNING("image too big");
1887 // protect against invalid sizes
1888 if (MOZ_UNLIKELY(aSize
.height
<= 0 || aSize
.width
<= 0)) {
1892 // check to make sure we don't overflow a 32-bit
1893 CheckedInt32 requiredBytes
=
1894 CheckedInt32(aSize
.width
) * CheckedInt32(aSize
.height
) * 4;
1895 if (MOZ_UNLIKELY(!requiredBytes
.isValid())) {
1896 NS_WARNING("width or height too large");
1902 IntSize
SurfaceCache::ClampVectorSize(const IntSize
& aSize
) {
1903 // If we exceed the maximum, we need to scale the size downwards to fit.
1904 // It shouldn't get here if it is significantly larger because
1905 // VectorImage::UseSurfaceCacheForSize should prevent us from requesting
1906 // a rasterized version of a surface greater than 4x the maximum.
1908 StaticPrefs::image_cache_max_rasterized_svg_threshold_kb();
1909 if (maxSizeKB
<= 0) {
1913 int64_t proposedKB
= int64_t(aSize
.width
) * aSize
.height
/ 256;
1914 if (maxSizeKB
>= proposedKB
) {
1918 double scale
= sqrt(double(maxSizeKB
) / proposedKB
);
1919 return IntSize(int32_t(scale
* aSize
.width
), int32_t(scale
* aSize
.height
));
1922 IntSize
SurfaceCache::ClampSize(ImageKey aImageKey
, const IntSize
& aSize
) {
1923 if (aImageKey
->GetType() != imgIContainer::TYPE_VECTOR
) {
1927 return ClampVectorSize(aSize
);
1931 void SurfaceCache::ReleaseImageOnMainThread(
1932 already_AddRefed
<image::Image
> aImage
, bool aAlwaysProxy
) {
1933 if (NS_IsMainThread() && !aAlwaysProxy
) {
1934 RefPtr
<image::Image
> image
= std::move(aImage
);
1938 // Don't try to dispatch the release after shutdown, we'll just leak the
1940 if (AppShutdown::IsInOrBeyond(ShutdownPhase::XPCOMShutdownFinal
)) {
1944 StaticMutexAutoLock
lock(sInstanceMutex
);
1946 sInstance
->ReleaseImageOnMainThread(std::move(aImage
), lock
);
1948 NS_ReleaseOnMainThread("SurfaceCache::ReleaseImageOnMainThread",
1949 std::move(aImage
), /* aAlwaysProxy */ true);
1954 void SurfaceCache::ClearReleasingImages() {
1955 MOZ_ASSERT(NS_IsMainThread());
1957 nsTArray
<RefPtr
<image::Image
>> images
;
1959 StaticMutexAutoLock
lock(sInstanceMutex
);
1961 sInstance
->TakeReleasingImages(images
, lock
);
1966 } // namespace image
1967 } // namespace mozilla