1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* A type/length-parametrized vector class. */
9 #ifndef mozilla_Vector_h
10 #define mozilla_Vector_h
12 #include <new> // for placement new
13 #include <type_traits>
16 #include "mozilla/Alignment.h"
17 #include "mozilla/AllocPolicy.h"
18 #include "mozilla/ArrayUtils.h" // for PointerRangeSize
19 #include "mozilla/Assertions.h"
20 #include "mozilla/Attributes.h"
21 #include "mozilla/MathAlgorithms.h"
22 #include "mozilla/MemoryReporting.h"
23 #include "mozilla/OperatorNewExtensions.h"
24 #include "mozilla/ReentrancyGuard.h"
25 #include "mozilla/Span.h"
26 #include "mozilla/TemplateLib.h"
30 template <typename T
, size_t N
, class AllocPolicy
>
36 * Check that the given capacity wastes the minimal amount of space if
37 * allocated on the heap. This means that aCapacity*EltSize is as close to a
38 * power-of-two as possible. growStorageBy() is responsible for ensuring this.
40 template <size_t EltSize
>
41 static bool CapacityHasExcessSpace(size_t aCapacity
) {
42 size_t size
= aCapacity
* EltSize
;
43 return RoundUpPow2(size
) - size
>= EltSize
;
47 * AllocPolicy can optionally provide a `computeGrowth<T>(size_t aOldElts,
48 * size_t aIncr)` method that returns the new number of elements to allocate
49 * when the current capacity is `aOldElts` and `aIncr` more are being
50 * requested. If the AllocPolicy does not have such a method, a fallback
51 * will be used that mostly will just round the new requested capacity up to
52 * the next power of two, which results in doubling capacity for the most part.
54 * If the new size would overflow some limit, `computeGrowth` returns 0.
56 * A simpler way would be to make computeGrowth() part of the API for all
57 * AllocPolicy classes, but this turns out to be rather complex because
58 * mozalloc.h defines a very widely-used InfallibleAllocPolicy, and yet it
59 * can only be compiled in limited contexts, eg within `extern "C"` and with
60 * -std=c++11 rather than a later version. That makes the headers that are
61 * necessary for the computation unavailable (eg mfbt/MathAlgorithms.h).
65 template <size_t EltSize
>
66 inline size_t GrowEltsByDoubling(size_t aOldElts
, size_t aIncr
) {
68 * When choosing a new capacity, its size in bytes should is as close to 2**N
69 * bytes as possible. 2**N-sized requests are best because they are unlikely
70 * to be rounded up by the allocator. Asking for a 2**N number of elements
71 * isn't as good, because if EltSize is not a power-of-two that would
72 * result in a non-2**N request size.
80 /* This case occurs in ~15--20% of the calls to Vector::growStorageBy. */
83 * Will aOldSize * 4 * sizeof(T) overflow? This condition limits a
84 * collection to 1GB of memory on a 32-bit system, which is a reasonable
85 * limit. It also ensures that
87 * static_cast<char*>(end()) - static_cast<char*>(begin())
89 * for a Vector doesn't overflow ptrdiff_t (see bug 510319).
91 if (MOZ_UNLIKELY(aOldElts
&
92 mozilla::tl::MulOverflowMask
<4 * EltSize
>::value
)) {
97 * If we reach here, the existing capacity will have a size that is already
98 * as close to 2^N as sizeof(T) will allow. Just double the capacity, and
99 * then there might be space for one more element.
101 size_t newElts
= aOldElts
* 2;
102 if (CapacityHasExcessSpace
<EltSize
>(newElts
)) {
108 /* This case occurs in ~2% of the calls to Vector::growStorageBy. */
109 size_t newMinCap
= aOldElts
+ aIncr
;
111 /* Did aOldElts + aIncr overflow? Will newMinCap * EltSize rounded up to the
112 * next power of two overflow PTRDIFF_MAX? */
113 if (MOZ_UNLIKELY(newMinCap
< aOldElts
||
114 newMinCap
& tl::MulOverflowMask
<4 * EltSize
>::value
)) {
118 size_t newMinSize
= newMinCap
* EltSize
;
119 size_t newSize
= RoundUpPow2(newMinSize
);
120 return newSize
/ EltSize
;
124 template <typename AP
, size_t EltSize
>
125 static size_t ComputeGrowth(size_t aOldElts
, size_t aIncr
, int) {
126 return GrowEltsByDoubling
<EltSize
>(aOldElts
, aIncr
);
129 // If the AllocPolicy provides its own computeGrowth<EltSize> implementation,
131 template <typename AP
, size_t EltSize
>
132 static size_t ComputeGrowth(
133 size_t aOldElts
, size_t aIncr
,
134 decltype(std::declval
<AP
>().template computeGrowth
<EltSize
>(0, 0),
135 bool()) aOverloadSelector
) {
136 size_t newElts
= AP::template computeGrowth
<EltSize
>(aOldElts
, aIncr
);
137 MOZ_ASSERT(newElts
<= PTRDIFF_MAX
&& newElts
* EltSize
<= PTRDIFF_MAX
,
138 "invalid Vector size (see bug 510319)");
143 * This template class provides a default implementation for vector operations
144 * when the element type is not known to be a POD, as judged by IsPod.
146 template <typename T
, size_t N
, class AP
, bool IsPod
>
149 * Constructs an object in the uninitialized memory at *aDst with aArgs.
151 template <typename
... Args
>
153 static inline void new_(T
* aDst
, Args
&&... aArgs
) {
154 new (KnownNotNull
, aDst
) T(std::forward
<Args
>(aArgs
)...);
157 /* Destroys constructed objects in the range [aBegin, aEnd). */
158 static inline void destroy(T
* aBegin
, T
* aEnd
) {
159 MOZ_ASSERT(aBegin
<= aEnd
);
160 for (T
* p
= aBegin
; p
< aEnd
; ++p
) {
165 /* Constructs objects in the uninitialized range [aBegin, aEnd). */
166 static inline void initialize(T
* aBegin
, T
* aEnd
) {
167 MOZ_ASSERT(aBegin
<= aEnd
);
168 for (T
* p
= aBegin
; p
< aEnd
; ++p
) {
174 * Copy-constructs objects in the uninitialized range
175 * [aDst, aDst+(aSrcEnd-aSrcStart)) from the range [aSrcStart, aSrcEnd).
177 template <typename U
>
178 static inline void copyConstruct(T
* aDst
, const U
* aSrcStart
,
180 MOZ_ASSERT(aSrcStart
<= aSrcEnd
);
181 for (const U
* p
= aSrcStart
; p
< aSrcEnd
; ++p
, ++aDst
) {
187 * Move-constructs objects in the uninitialized range
188 * [aDst, aDst+(aSrcEnd-aSrcStart)) from the range [aSrcStart, aSrcEnd).
190 template <typename U
>
191 static inline void moveConstruct(T
* aDst
, U
* aSrcStart
, U
* aSrcEnd
) {
192 MOZ_ASSERT(aSrcStart
<= aSrcEnd
);
193 for (U
* p
= aSrcStart
; p
< aSrcEnd
; ++p
, ++aDst
) {
194 new_(aDst
, std::move(*p
));
199 * Copy-constructs objects in the uninitialized range [aDst, aDst+aN) from
200 * the same object aU.
202 template <typename U
>
203 static inline void copyConstructN(T
* aDst
, size_t aN
, const U
& aU
) {
204 for (T
* end
= aDst
+ aN
; aDst
< end
; ++aDst
) {
210 * Grows the given buffer to have capacity aNewCap, preserving the objects
211 * constructed in the range [begin, end) and updating aV. Assumes that (1)
212 * aNewCap has not overflowed, and (2) multiplying aNewCap by sizeof(T) will
215 [[nodiscard
]] static inline bool growTo(Vector
<T
, N
, AP
>& aV
,
217 MOZ_ASSERT(!aV
.usingInlineStorage());
218 MOZ_ASSERT(!CapacityHasExcessSpace
<sizeof(T
)>(aNewCap
));
219 T
* newbuf
= aV
.template pod_malloc
<T
>(aNewCap
);
220 if (MOZ_UNLIKELY(!newbuf
)) {
224 T
* src
= aV
.beginNoCheck();
225 for (; src
< aV
.endNoCheck(); ++dst
, ++src
) {
226 new_(dst
, std::move(*src
));
228 VectorImpl::destroy(aV
.beginNoCheck(), aV
.endNoCheck());
229 aV
.free_(aV
.mBegin
, aV
.mTail
.mCapacity
);
231 /* aV.mLength is unchanged. */
232 aV
.mTail
.mCapacity
= aNewCap
;
238 * This partial template specialization provides a default implementation for
239 * vector operations when the element type is known to be a POD, as judged by
242 template <typename T
, size_t N
, class AP
>
243 struct VectorImpl
<T
, N
, AP
, true> {
244 template <typename
... Args
>
246 static inline void new_(T
* aDst
, Args
&&... aArgs
) {
247 // Explicitly construct a local object instead of using a temporary since
248 // T(args...) will be treated like a C-style cast in the unary case and
249 // allow unsafe conversions. Both forms should be equivalent to an
250 // optimizing compiler.
251 T
temp(std::forward
<Args
>(aArgs
)...);
255 static inline void destroy(T
*, T
*) {}
257 static inline void initialize(T
* aBegin
, T
* aEnd
) {
259 * You would think that memset would be a big win (or even break even)
260 * when we know T is a POD. But currently it's not. This is probably
261 * because |append| tends to be given small ranges and memset requires
262 * a function call that doesn't get inlined.
264 * memset(aBegin, 0, sizeof(T) * (aEnd - aBegin));
266 MOZ_ASSERT(aBegin
<= aEnd
);
267 for (T
* p
= aBegin
; p
< aEnd
; ++p
) {
272 template <typename U
>
273 static inline void copyConstruct(T
* aDst
, const U
* aSrcStart
,
276 * See above memset comment. Also, notice that copyConstruct is
277 * currently templated (T != U), so memcpy won't work without
280 * memcpy(aDst, aSrcStart, sizeof(T) * (aSrcEnd - aSrcStart));
282 MOZ_ASSERT(aSrcStart
<= aSrcEnd
);
283 for (const U
* p
= aSrcStart
; p
< aSrcEnd
; ++p
, ++aDst
) {
288 template <typename U
>
289 static inline void moveConstruct(T
* aDst
, const U
* aSrcStart
,
291 copyConstruct(aDst
, aSrcStart
, aSrcEnd
);
294 static inline void copyConstructN(T
* aDst
, size_t aN
, const T
& aT
) {
295 for (T
* end
= aDst
+ aN
; aDst
< end
; ++aDst
) {
300 [[nodiscard
]] static inline bool growTo(Vector
<T
, N
, AP
>& aV
,
302 MOZ_ASSERT(!aV
.usingInlineStorage());
303 MOZ_ASSERT(!CapacityHasExcessSpace
<sizeof(T
)>(aNewCap
));
305 aV
.template pod_realloc
<T
>(aV
.mBegin
, aV
.mTail
.mCapacity
, aNewCap
);
306 if (MOZ_UNLIKELY(!newbuf
)) {
310 /* aV.mLength is unchanged. */
311 aV
.mTail
.mCapacity
= aNewCap
;
316 // A struct for TestVector.cpp to access private internal fields.
317 // DO NOT DEFINE IN YOUR OWN CODE.
318 struct VectorTesting
;
320 } // namespace detail
323 * STL-like container providing a short-lived, dynamic buffer. Vector calls the
324 * constructors/destructors of all elements stored in its internal buffer, so
325 * non-PODs may be safely used. Additionally, Vector will store the first N
326 * elements in-place before resorting to dynamic allocation.
329 * - default and copy constructible, assignable, destructible
330 * - operations do not throw
331 * MinInlineCapacity requirements:
332 * - any value, however, MinInlineCapacity is clamped to min/max values
334 * - see "Allocation policies" in AllocPolicy.h (defaults to
335 * mozilla::MallocAllocPolicy)
337 * Vector is not reentrant: T member functions called during Vector member
338 * functions must not call back into the same object!
340 template <typename T
, size_t MinInlineCapacity
= 0,
341 class AllocPolicy
= MallocAllocPolicy
>
342 class MOZ_NON_PARAM Vector final
: private AllocPolicy
{
344 static constexpr bool kElemIsPod
=
345 std::is_trivial_v
<T
> && std::is_standard_layout_v
<T
>;
346 typedef detail::VectorImpl
<T
, MinInlineCapacity
, AllocPolicy
, kElemIsPod
>
348 friend struct detail::VectorImpl
<T
, MinInlineCapacity
, AllocPolicy
,
351 friend struct detail::VectorTesting
;
353 [[nodiscard
]] bool growStorageBy(size_t aIncr
);
354 [[nodiscard
]] bool convertToHeapStorage(size_t aNewCap
);
355 [[nodiscard
]] bool maybeCheckSimulatedOOM(size_t aRequestedSize
);
357 /* magic constants */
360 * The maximum space allocated for inline element storage.
362 * We reduce space by what the AllocPolicy base class and prior Vector member
363 * fields likely consume to attempt to play well with binary size classes.
365 static constexpr size_t kMaxInlineBytes
=
367 (sizeof(AllocPolicy
) + sizeof(T
*) + sizeof(size_t) + sizeof(size_t));
370 * The number of T elements of inline capacity built into this Vector. This
371 * is usually |MinInlineCapacity|, but it may be less (or zero!) for large T.
373 * We use a partially-specialized template (not explicit specialization, which
374 * is only allowed at namespace scope) to compute this value. The benefit is
375 * that |sizeof(T)| need not be computed, and |T| doesn't have to be fully
376 * defined at the time |Vector<T>| appears, if no inline storage is requested.
378 template <size_t MinimumInlineCapacity
, size_t Dummy
>
379 struct ComputeCapacity
{
380 static constexpr size_t value
=
381 tl::Min
<MinimumInlineCapacity
, kMaxInlineBytes
/ sizeof(T
)>::value
;
384 template <size_t Dummy
>
385 struct ComputeCapacity
<0, Dummy
> {
386 static constexpr size_t value
= 0;
389 /** The actual inline capacity in number of elements T. This may be zero! */
390 static constexpr size_t kInlineCapacity
=
391 ComputeCapacity
<MinInlineCapacity
, 0>::value
;
396 * Pointer to the buffer, be it inline or heap-allocated. Only [mBegin,
397 * mBegin + mLength) hold valid constructed T objects. The range [mBegin +
398 * mLength, mBegin + mCapacity) holds uninitialized memory. The range
399 * [mBegin + mLength, mBegin + mReserved) also holds uninitialized memory
400 * previously allocated by a call to reserve().
404 /* Number of elements in the vector. */
408 * Memory used to store capacity, reserved element count (debug builds only),
409 * and inline storage. The simple "answer" is:
415 * alignas(T) unsigned char mBytes[kInlineCapacity * sizeof(T)];
417 * but there are complications. First, C++ forbids zero-sized arrays that
418 * might result. Second, we don't want zero capacity to affect Vector's size
419 * (even empty classes take up a byte, unless they're base classes).
421 * Yet again, we eliminate the zero-sized array using partial specialization.
422 * And we eliminate potential size hit by putting capacity/reserved in one
423 * struct, then putting the array (if any) in a derived struct. If no array
424 * is needed, the derived struct won't consume extra space.
426 struct CapacityAndReserved
{
427 explicit CapacityAndReserved(size_t aCapacity
, size_t aReserved
)
428 : mCapacity(aCapacity
)
435 CapacityAndReserved() = default;
437 /* Max number of elements storable in the vector without resizing. */
441 /* Max elements of reserved or used space in this vector. */
446 // Silence warnings about this struct possibly being padded dued to the
447 // alignas() in it -- there's nothing we can do to avoid it.
449 # pragma warning(push)
450 # pragma warning(disable : 4324)
453 template <size_t Capacity
, size_t Dummy
>
454 struct CRAndStorage
: CapacityAndReserved
{
455 explicit CRAndStorage(size_t aCapacity
, size_t aReserved
)
456 : CapacityAndReserved(aCapacity
, aReserved
) {}
457 CRAndStorage() = default;
459 alignas(T
) unsigned char mBytes
[Capacity
* sizeof(T
)];
461 // GCC fails due to -Werror=strict-aliasing if |mBytes| is directly cast to
462 // T*. Indirecting through this function addresses the problem.
463 void* data() { return mBytes
; }
465 T
* storage() { return static_cast<T
*>(data()); }
468 template <size_t Dummy
>
469 struct CRAndStorage
<0, Dummy
> : CapacityAndReserved
{
470 explicit CRAndStorage(size_t aCapacity
, size_t aReserved
)
471 : CapacityAndReserved(aCapacity
, aReserved
) {}
472 CRAndStorage() = default;
475 // If this returns |nullptr|, functions like |Vector::begin()| would too,
476 // breaking callers that pass a vector's elements as pointer/length to
477 // code that bounds its operation by length but (even just as a sanity
478 // check) always wants a non-null pointer. Fake up an aligned, non-null
479 // pointer to support these callers.
480 return reinterpret_cast<T
*>(sizeof(T
));
484 CRAndStorage
<kInlineCapacity
, 0> mTail
;
487 # pragma warning(pop)
491 friend class ReentrancyGuard
;
495 /* private accessors */
497 bool usingInlineStorage() const {
498 return mBegin
== const_cast<Vector
*>(this)->inlineStorage();
501 T
* inlineStorage() { return mTail
.storage(); }
503 T
* beginNoCheck() const { return mBegin
; }
505 T
* endNoCheck() { return mBegin
+ mLength
; }
507 const T
* endNoCheck() const { return mBegin
+ mLength
; }
511 * The amount of explicitly allocated space in this vector that is immediately
512 * available to be filled by appending additional elements. This value is
513 * always greater than or equal to |length()| -- the vector's actual elements
514 * are implicitly reserved. This value is always less than or equal to
515 * |capacity()|. It may be explicitly increased using the |reserve()| method.
517 size_t reserved() const {
518 MOZ_ASSERT(mLength
<= mTail
.mReserved
);
519 MOZ_ASSERT(mTail
.mReserved
<= mTail
.mCapacity
);
520 return mTail
.mReserved
;
524 bool internalEnsureCapacity(size_t aNeeded
);
526 /* Append operations guaranteed to succeed due to pre-reserved space. */
527 template <typename U
>
528 void internalAppend(U
&& aU
);
529 template <typename U
, size_t O
, class BP
>
530 void internalAppendAll(const Vector
<U
, O
, BP
>& aU
);
531 void internalAppendN(const T
& aT
, size_t aN
);
532 template <typename U
>
533 void internalAppend(const U
* aBegin
, size_t aLength
);
534 template <typename U
>
535 void internalMoveAppend(U
* aBegin
, size_t aLength
);
538 static const size_t sMaxInlineStorage
= MinInlineCapacity
;
540 typedef T ElementType
;
542 explicit Vector(AllocPolicy
);
543 Vector() : Vector(AllocPolicy()) {}
545 Vector(Vector
&&); /* Move constructor. */
546 Vector
& operator=(Vector
&&); /* Move assignment. */
551 const AllocPolicy
& allocPolicy() const { return *this; }
553 AllocPolicy
& allocPolicy() { return *this; }
555 enum { InlineLength
= MinInlineCapacity
};
557 size_t length() const { return mLength
; }
559 bool empty() const { return mLength
== 0; }
561 size_t capacity() const { return mTail
.mCapacity
; }
564 MOZ_ASSERT(!mEntered
);
568 const T
* begin() const {
569 MOZ_ASSERT(!mEntered
);
574 MOZ_ASSERT(!mEntered
);
575 return mBegin
+ mLength
;
578 const T
* end() const {
579 MOZ_ASSERT(!mEntered
);
580 return mBegin
+ mLength
;
583 T
& operator[](size_t aIndex
) {
584 MOZ_ASSERT(!mEntered
);
585 MOZ_ASSERT(aIndex
< mLength
);
586 return begin()[aIndex
];
589 const T
& operator[](size_t aIndex
) const {
590 MOZ_ASSERT(!mEntered
);
591 MOZ_ASSERT(aIndex
< mLength
);
592 return begin()[aIndex
];
596 MOZ_ASSERT(!mEntered
);
597 MOZ_ASSERT(!empty());
601 const T
& back() const {
602 MOZ_ASSERT(!mEntered
);
603 MOZ_ASSERT(!empty());
607 operator mozilla::Span
<const T
>() const {
608 // Explicitly specify template argument here to avoid instantiating Span<T>
609 // first and then implicitly converting to Span<const T>
610 return mozilla::Span
<const T
>{mBegin
, mLength
};
613 operator mozilla::Span
<T
>() { return mozilla::Span
{mBegin
, mLength
}; }
619 Range(T
* aCur
, T
* aEnd
) : mCur(aCur
), mEnd(aEnd
) {
620 MOZ_ASSERT(aCur
<= aEnd
);
624 bool empty() const { return mCur
== mEnd
; }
625 size_t remain() const { return PointerRangeSize(mCur
, mEnd
); }
627 MOZ_ASSERT(!empty());
631 MOZ_ASSERT(!empty());
635 MOZ_ASSERT(!empty());
644 ConstRange(const T
* aCur
, const T
* aEnd
) : mCur(aCur
), mEnd(aEnd
) {
645 MOZ_ASSERT(aCur
<= aEnd
);
649 bool empty() const { return mCur
== mEnd
; }
650 size_t remain() const { return PointerRangeSize(mCur
, mEnd
); }
651 const T
& front() const {
652 MOZ_ASSERT(!empty());
656 MOZ_ASSERT(!empty());
660 MOZ_ASSERT(!empty());
665 Range
all() { return Range(begin(), end()); }
666 ConstRange
all() const { return ConstRange(begin(), end()); }
671 * Reverse the order of the elements in the vector in place.
676 * Given that the vector is empty, grow the internal capacity to |aRequest|,
677 * keeping the length 0.
679 [[nodiscard
]] bool initCapacity(size_t aRequest
);
682 * Given that the vector is empty, grow the internal capacity and length to
683 * |aRequest| leaving the elements' memory completely uninitialized (with all
684 * the associated hazards and caveats). This avoids the usual allocation-size
685 * rounding that happens in resize and overhead of initialization for elements
686 * that are about to be overwritten.
688 [[nodiscard
]] bool initLengthUninitialized(size_t aRequest
);
691 * If reserve(aRequest) succeeds and |aRequest >= length()|, then appending
692 * |aRequest - length()| elements, in any sequence of append/appendAll calls,
693 * is guaranteed to succeed.
695 * A request to reserve an amount less than the current length does not affect
698 [[nodiscard
]] bool reserve(size_t aRequest
);
701 * Destroy elements in the range [end() - aIncr, end()). Does not deallocate
702 * or unreserve storage for those elements.
704 void shrinkBy(size_t aIncr
);
707 * Destroy elements in the range [aNewLength, end()). Does not deallocate
708 * or unreserve storage for those elements.
710 void shrinkTo(size_t aNewLength
);
712 /** Grow the vector by aIncr elements. */
713 [[nodiscard
]] bool growBy(size_t aIncr
);
715 /** Call shrinkBy or growBy based on whether newSize > length(). */
716 [[nodiscard
]] bool resize(size_t aNewLength
);
719 * Increase the length of the vector, but don't initialize the new elements
720 * -- leave them as uninitialized memory.
722 [[nodiscard
]] bool growByUninitialized(size_t aIncr
);
723 void infallibleGrowByUninitialized(size_t aIncr
);
724 [[nodiscard
]] bool resizeUninitialized(size_t aNewLength
);
726 /** Shorthand for shrinkBy(length()). */
729 /** Clears and releases any heap-allocated storage. */
733 * Shrinks the storage to drop excess capacity if possible.
735 * The return value indicates whether the operation succeeded, otherwise, it
736 * represents an OOM. The bool can be safely ignored unless you want to
737 * provide the guarantee that `length() == capacity()`.
739 * For PODs, it calls the AllocPolicy's pod_realloc. For non-PODs, it moves
740 * the elements into the new storage.
742 bool shrinkStorageToFit();
745 * If true, appending |aNeeded| elements won't reallocate elements storage.
746 * This *doesn't* mean that infallibleAppend may be used! You still must
747 * reserve the extra space, even if this method indicates that appends won't
748 * need to reallocate elements storage.
750 bool canAppendWithoutRealloc(size_t aNeeded
) const;
752 /** Potentially fallible append operations. */
755 * This can take either a T& or a T&&. Given a T&&, it moves |aU| into the
756 * vector, instead of copying it. If it fails, |aU| is left unmoved. ("We are
759 template <typename U
>
760 [[nodiscard
]] bool append(U
&& aU
);
763 * Construct a T in-place as a new entry at the end of this vector.
765 template <typename
... Args
>
766 [[nodiscard
]] bool emplaceBack(Args
&&... aArgs
) {
767 if (!growByUninitialized(1)) return false;
768 Impl::new_(&back(), std::forward
<Args
>(aArgs
)...);
772 template <typename U
, size_t O
, class BP
>
773 [[nodiscard
]] bool appendAll(const Vector
<U
, O
, BP
>& aU
);
774 template <typename U
, size_t O
, class BP
>
775 [[nodiscard
]] bool appendAll(Vector
<U
, O
, BP
>&& aU
);
776 [[nodiscard
]] bool appendN(const T
& aT
, size_t aN
);
777 template <typename U
>
778 [[nodiscard
]] bool append(const U
* aBegin
, const U
* aEnd
);
779 template <typename U
>
780 [[nodiscard
]] bool append(const U
* aBegin
, size_t aLength
);
781 template <typename U
>
782 [[nodiscard
]] bool moveAppend(U
* aBegin
, U
* aEnd
);
785 * Guaranteed-infallible append operations for use upon vectors whose
786 * memory has been pre-reserved. Don't use this if you haven't reserved the
789 template <typename U
>
790 void infallibleAppend(U
&& aU
) {
791 internalAppend(std::forward
<U
>(aU
));
793 void infallibleAppendN(const T
& aT
, size_t aN
) { internalAppendN(aT
, aN
); }
794 template <typename U
>
795 void infallibleAppend(const U
* aBegin
, const U
* aEnd
) {
796 internalAppend(aBegin
, PointerRangeSize(aBegin
, aEnd
));
798 template <typename U
>
799 void infallibleAppend(const U
* aBegin
, size_t aLength
) {
800 internalAppend(aBegin
, aLength
);
802 template <typename
... Args
>
803 void infallibleEmplaceBack(Args
&&... aArgs
) {
804 infallibleGrowByUninitialized(1);
805 Impl::new_(&back(), std::forward
<Args
>(aArgs
)...);
813 * If elements are stored in-place, return nullptr and leave this vector
816 * Otherwise return this vector's elements buffer, and clear this vector as if
817 * by clearAndFree(). The caller now owns the buffer and is responsible for
818 * deallocating it consistent with this vector's AllocPolicy.
820 * N.B. Although a T*, only the range [0, length()) is constructed.
822 [[nodiscard
]] T
* extractRawBuffer();
825 * If elements are stored in-place, allocate a new buffer, move this vector's
826 * elements into it, and return that buffer.
828 * Otherwise return this vector's elements buffer. The caller now owns the
829 * buffer and is responsible for deallocating it consistent with this vector's
832 * This vector is cleared, as if by clearAndFree(), when this method
833 * succeeds. This method fails and returns nullptr only if new elements buffer
836 * N.B. Only the range [0, length()) of the returned buffer is constructed.
837 * If any of these elements are uninitialized (as growByUninitialized
838 * enables), behavior is undefined.
840 [[nodiscard
]] T
* extractOrCopyRawBuffer();
843 * Transfer ownership of an array of objects into the vector. The caller
844 * must have allocated the array in accordance with this vector's
847 * N.B. This call assumes that there are no uninitialized elements in the
848 * passed range [aP, aP + aLength). The range [aP + aLength, aP +
849 * aCapacity) must be allocated uninitialized memory.
851 void replaceRawBuffer(T
* aP
, size_t aLength
, size_t aCapacity
);
854 * Transfer ownership of an array of objects into the vector. The caller
855 * must have allocated the array in accordance with this vector's
858 * N.B. This call assumes that there are no uninitialized elements in the
861 void replaceRawBuffer(T
* aP
, size_t aLength
);
864 * Places |aVal| at position |aP|, shifting existing elements from |aP| onward
865 * one position higher. On success, |aP| should not be reused because it'll
866 * be a dangling pointer if reallocation of the vector storage occurred; the
867 * return value should be used instead. On failure, nullptr is returned.
871 * if (!(p = vec.insert(p, val))) {
874 * <keep working with p>
876 * This is inherently a linear-time operation. Be careful!
878 template <typename U
>
879 [[nodiscard
]] T
* insert(T
* aP
, U
&& aVal
);
882 * Removes the element |aT|, which must fall in the bounds [begin, end),
883 * shifting existing elements from |aT + 1| onward one position lower.
888 * Removes the elements [|aBegin|, |aEnd|), which must fall in the bounds
889 * [begin, end), shifting existing elements from |aEnd| onward to aBegin's old
892 void erase(T
* aBegin
, T
* aEnd
);
895 * Removes all elements that satisfy the predicate, shifting existing elements
896 * lower to fill erased gaps.
898 template <typename Pred
>
899 void eraseIf(Pred aPred
);
902 * Removes all elements that compare equal to |aU|, shifting existing elements
903 * lower to fill erased gaps.
905 template <typename U
>
906 void eraseIfEqual(const U
& aU
);
909 * Measure the size of the vector's heap-allocated storage.
911 size_t sizeOfExcludingThis(MallocSizeOf aMallocSizeOf
) const;
914 * Like sizeOfExcludingThis, but also measures the size of the vector
915 * object (which must be heap-allocated) itself.
917 size_t sizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const;
919 void swap(Vector
& aOther
);
922 Vector(const Vector
&) = delete;
923 void operator=(const Vector
&) = delete;
926 /* This does the re-entrancy check plus several other sanity checks. */
927 #define MOZ_REENTRANCY_GUARD_ET_AL \
928 ReentrancyGuard g(*this); \
929 MOZ_ASSERT_IF(usingInlineStorage(), mTail.mCapacity == kInlineCapacity); \
930 MOZ_ASSERT(reserved() <= mTail.mCapacity); \
931 MOZ_ASSERT(mLength <= reserved()); \
932 MOZ_ASSERT(mLength <= mTail.mCapacity)
934 /* Vector Implementation */
936 template <typename T
, size_t N
, class AP
>
937 MOZ_ALWAYS_INLINE Vector
<T
, N
, AP
>::Vector(AP aAP
)
938 : AP(std::move(aAP
)),
940 mTail(kInlineCapacity
, 0)
946 mBegin
= inlineStorage();
949 /* Move constructor. */
950 template <typename T
, size_t N
, class AllocPolicy
>
951 MOZ_ALWAYS_INLINE Vector
<T
, N
, AllocPolicy
>::Vector(Vector
&& aRhs
)
952 : AllocPolicy(std::move(aRhs
))
958 mLength
= aRhs
.mLength
;
959 mTail
.mCapacity
= aRhs
.mTail
.mCapacity
;
961 mTail
.mReserved
= aRhs
.mTail
.mReserved
;
964 if (aRhs
.usingInlineStorage()) {
965 /* We can't move the buffer over in this case, so copy elements. */
966 mBegin
= inlineStorage();
967 Impl::moveConstruct(mBegin
, aRhs
.beginNoCheck(), aRhs
.endNoCheck());
969 * Leave aRhs's mLength, mBegin, mCapacity, and mReserved as they are.
970 * The elements in its in-line storage still need to be destroyed.
974 * Take src's buffer, and turn src into an empty vector using
977 mBegin
= aRhs
.mBegin
;
978 aRhs
.mBegin
= aRhs
.inlineStorage();
979 aRhs
.mTail
.mCapacity
= kInlineCapacity
;
982 aRhs
.mTail
.mReserved
= 0;
987 /* Move assignment. */
988 template <typename T
, size_t N
, class AP
>
989 MOZ_ALWAYS_INLINE Vector
<T
, N
, AP
>& Vector
<T
, N
, AP
>::operator=(Vector
&& aRhs
) {
990 MOZ_ASSERT(this != &aRhs
, "self-move assignment is prohibited");
992 new (KnownNotNull
, this) Vector(std::move(aRhs
));
996 template <typename T
, size_t N
, class AP
>
997 MOZ_ALWAYS_INLINE Vector
<T
, N
, AP
>::~Vector() {
998 MOZ_REENTRANCY_GUARD_ET_AL
;
999 Impl::destroy(beginNoCheck(), endNoCheck());
1000 if (!usingInlineStorage()) {
1001 this->free_(beginNoCheck(), mTail
.mCapacity
);
1005 template <typename T
, size_t N
, class AP
>
1006 MOZ_ALWAYS_INLINE
void Vector
<T
, N
, AP
>::reverse() {
1007 MOZ_REENTRANCY_GUARD_ET_AL
;
1009 size_t len
= mLength
;
1010 size_t mid
= len
/ 2;
1011 for (size_t i
= 0; i
< mid
; i
++) {
1012 std::swap(elems
[i
], elems
[len
- i
- 1]);
1017 * This function will create a new heap buffer with capacity aNewCap,
1018 * move all elements in the inline buffer to this new buffer,
1021 template <typename T
, size_t N
, class AP
>
1022 inline bool Vector
<T
, N
, AP
>::convertToHeapStorage(size_t aNewCap
) {
1023 MOZ_ASSERT(usingInlineStorage());
1025 /* Allocate buffer. */
1026 MOZ_ASSERT(!detail::CapacityHasExcessSpace
<sizeof(T
)>(aNewCap
));
1027 T
* newBuf
= this->template pod_malloc
<T
>(aNewCap
);
1028 if (MOZ_UNLIKELY(!newBuf
)) {
1032 /* Copy inline elements into heap buffer. */
1033 Impl::moveConstruct(newBuf
, beginNoCheck(), endNoCheck());
1034 Impl::destroy(beginNoCheck(), endNoCheck());
1036 /* Switch in heap buffer. */
1038 /* mLength is unchanged. */
1039 mTail
.mCapacity
= aNewCap
;
1043 template <typename T
, size_t N
, class AP
>
1044 MOZ_NEVER_INLINE
bool Vector
<T
, N
, AP
>::growStorageBy(size_t aIncr
) {
1045 MOZ_ASSERT(mLength
+ aIncr
> mTail
.mCapacity
);
1049 if (aIncr
== 1 && usingInlineStorage()) {
1050 /* This case occurs in ~70--80% of the calls to this function. */
1051 constexpr size_t newSize
=
1052 tl::RoundUpPow2
<(kInlineCapacity
+ 1) * sizeof(T
)>::value
;
1053 static_assert(newSize
/ sizeof(T
) > 0,
1054 "overflow when exceeding inline Vector storage");
1055 newCap
= newSize
/ sizeof(T
);
1057 newCap
= detail::ComputeGrowth
<AP
, sizeof(T
)>(mLength
, aIncr
, true);
1058 if (MOZ_UNLIKELY(newCap
== 0)) {
1059 this->reportAllocOverflow();
1064 if (usingInlineStorage()) {
1065 return convertToHeapStorage(newCap
);
1068 return Impl::growTo(*this, newCap
);
1071 template <typename T
, size_t N
, class AP
>
1072 inline bool Vector
<T
, N
, AP
>::initCapacity(size_t aRequest
) {
1073 MOZ_ASSERT(empty());
1074 MOZ_ASSERT(usingInlineStorage());
1075 if (aRequest
== 0) {
1078 T
* newbuf
= this->template pod_malloc
<T
>(aRequest
);
1079 if (MOZ_UNLIKELY(!newbuf
)) {
1083 mTail
.mCapacity
= aRequest
;
1085 mTail
.mReserved
= aRequest
;
1090 template <typename T
, size_t N
, class AP
>
1091 inline bool Vector
<T
, N
, AP
>::initLengthUninitialized(size_t aRequest
) {
1092 if (!initCapacity(aRequest
)) {
1095 infallibleGrowByUninitialized(aRequest
);
1099 template <typename T
, size_t N
, class AP
>
1100 inline bool Vector
<T
, N
, AP
>::maybeCheckSimulatedOOM(size_t aRequestedSize
) {
1101 if (aRequestedSize
<= N
) {
1106 if (aRequestedSize
<= mTail
.mReserved
) {
1111 return allocPolicy().checkSimulatedOOM();
1114 template <typename T
, size_t N
, class AP
>
1115 inline bool Vector
<T
, N
, AP
>::reserve(size_t aRequest
) {
1116 MOZ_REENTRANCY_GUARD_ET_AL
;
1117 if (aRequest
> mTail
.mCapacity
) {
1118 if (MOZ_UNLIKELY(!growStorageBy(aRequest
- mLength
))) {
1121 } else if (!maybeCheckSimulatedOOM(aRequest
)) {
1125 if (aRequest
> mTail
.mReserved
) {
1126 mTail
.mReserved
= aRequest
;
1128 MOZ_ASSERT(mLength
<= mTail
.mReserved
);
1129 MOZ_ASSERT(mTail
.mReserved
<= mTail
.mCapacity
);
1134 template <typename T
, size_t N
, class AP
>
1135 inline void Vector
<T
, N
, AP
>::shrinkBy(size_t aIncr
) {
1136 MOZ_REENTRANCY_GUARD_ET_AL
;
1137 MOZ_ASSERT(aIncr
<= mLength
);
1138 Impl::destroy(endNoCheck() - aIncr
, endNoCheck());
1142 template <typename T
, size_t N
, class AP
>
1143 MOZ_ALWAYS_INLINE
void Vector
<T
, N
, AP
>::shrinkTo(size_t aNewLength
) {
1144 MOZ_ASSERT(aNewLength
<= mLength
);
1145 shrinkBy(mLength
- aNewLength
);
1148 template <typename T
, size_t N
, class AP
>
1149 MOZ_ALWAYS_INLINE
bool Vector
<T
, N
, AP
>::growBy(size_t aIncr
) {
1150 MOZ_REENTRANCY_GUARD_ET_AL
;
1151 if (aIncr
> mTail
.mCapacity
- mLength
) {
1152 if (MOZ_UNLIKELY(!growStorageBy(aIncr
))) {
1155 } else if (!maybeCheckSimulatedOOM(mLength
+ aIncr
)) {
1158 MOZ_ASSERT(mLength
+ aIncr
<= mTail
.mCapacity
);
1159 T
* newend
= endNoCheck() + aIncr
;
1160 Impl::initialize(endNoCheck(), newend
);
1163 if (mLength
> mTail
.mReserved
) {
1164 mTail
.mReserved
= mLength
;
1170 template <typename T
, size_t N
, class AP
>
1171 MOZ_ALWAYS_INLINE
bool Vector
<T
, N
, AP
>::growByUninitialized(size_t aIncr
) {
1172 MOZ_REENTRANCY_GUARD_ET_AL
;
1173 if (aIncr
> mTail
.mCapacity
- mLength
) {
1174 if (MOZ_UNLIKELY(!growStorageBy(aIncr
))) {
1177 } else if (!maybeCheckSimulatedOOM(mLength
+ aIncr
)) {
1181 if (mLength
+ aIncr
> mTail
.mReserved
) {
1182 mTail
.mReserved
= mLength
+ aIncr
;
1185 infallibleGrowByUninitialized(aIncr
);
1189 template <typename T
, size_t N
, class AP
>
1190 MOZ_ALWAYS_INLINE
void Vector
<T
, N
, AP
>::infallibleGrowByUninitialized(
1192 MOZ_ASSERT(mLength
+ aIncr
<= reserved());
1196 template <typename T
, size_t N
, class AP
>
1197 inline bool Vector
<T
, N
, AP
>::resize(size_t aNewLength
) {
1198 size_t curLength
= mLength
;
1199 if (aNewLength
> curLength
) {
1200 return growBy(aNewLength
- curLength
);
1202 shrinkBy(curLength
- aNewLength
);
1206 template <typename T
, size_t N
, class AP
>
1207 MOZ_ALWAYS_INLINE
bool Vector
<T
, N
, AP
>::resizeUninitialized(
1208 size_t aNewLength
) {
1209 size_t curLength
= mLength
;
1210 if (aNewLength
> curLength
) {
1211 return growByUninitialized(aNewLength
- curLength
);
1213 shrinkBy(curLength
- aNewLength
);
1217 template <typename T
, size_t N
, class AP
>
1218 inline void Vector
<T
, N
, AP
>::clear() {
1219 MOZ_REENTRANCY_GUARD_ET_AL
;
1220 Impl::destroy(beginNoCheck(), endNoCheck());
1224 template <typename T
, size_t N
, class AP
>
1225 inline void Vector
<T
, N
, AP
>::clearAndFree() {
1228 if (usingInlineStorage()) {
1231 this->free_(beginNoCheck(), mTail
.mCapacity
);
1232 mBegin
= inlineStorage();
1233 mTail
.mCapacity
= kInlineCapacity
;
1235 mTail
.mReserved
= 0;
1239 template <typename T
, size_t N
, class AP
>
1240 inline bool Vector
<T
, N
, AP
>::shrinkStorageToFit() {
1241 MOZ_REENTRANCY_GUARD_ET_AL
;
1243 const auto length
= this->length();
1244 if (usingInlineStorage() || length
== capacity()) {
1249 this->free_(beginNoCheck(), mTail
.mCapacity
);
1250 mBegin
= inlineStorage();
1251 mTail
.mCapacity
= kInlineCapacity
;
1253 mTail
.mReserved
= 0;
1260 if (length
<= kInlineCapacity
) {
1261 newBuf
= inlineStorage();
1262 newCap
= kInlineCapacity
;
1265 newBuf
= this->template pod_realloc
<T
>(beginNoCheck(), mTail
.mCapacity
,
1268 newBuf
= this->template pod_malloc
<T
>(length
);
1270 if (MOZ_UNLIKELY(!newBuf
)) {
1275 if (!kElemIsPod
|| newBuf
== inlineStorage()) {
1276 Impl::moveConstruct(newBuf
, beginNoCheck(), endNoCheck());
1277 Impl::destroy(beginNoCheck(), endNoCheck());
1280 this->free_(beginNoCheck(), mTail
.mCapacity
);
1283 mTail
.mCapacity
= newCap
;
1285 mTail
.mReserved
= length
;
1290 template <typename T
, size_t N
, class AP
>
1291 inline bool Vector
<T
, N
, AP
>::canAppendWithoutRealloc(size_t aNeeded
) const {
1292 return mLength
+ aNeeded
<= mTail
.mCapacity
;
1295 template <typename T
, size_t N
, class AP
>
1296 template <typename U
, size_t O
, class BP
>
1297 MOZ_ALWAYS_INLINE
void Vector
<T
, N
, AP
>::internalAppendAll(
1298 const Vector
<U
, O
, BP
>& aOther
) {
1299 internalAppend(aOther
.begin(), aOther
.length());
1302 template <typename T
, size_t N
, class AP
>
1303 template <typename U
>
1304 MOZ_ALWAYS_INLINE
void Vector
<T
, N
, AP
>::internalAppend(U
&& aU
) {
1305 MOZ_ASSERT(mLength
+ 1 <= mTail
.mReserved
);
1306 MOZ_ASSERT(mTail
.mReserved
<= mTail
.mCapacity
);
1307 Impl::new_(endNoCheck(), std::forward
<U
>(aU
));
1311 template <typename T
, size_t N
, class AP
>
1312 MOZ_ALWAYS_INLINE
bool Vector
<T
, N
, AP
>::appendN(const T
& aT
, size_t aNeeded
) {
1313 MOZ_REENTRANCY_GUARD_ET_AL
;
1314 if (mLength
+ aNeeded
> mTail
.mCapacity
) {
1315 if (MOZ_UNLIKELY(!growStorageBy(aNeeded
))) {
1318 } else if (!maybeCheckSimulatedOOM(mLength
+ aNeeded
)) {
1322 if (mLength
+ aNeeded
> mTail
.mReserved
) {
1323 mTail
.mReserved
= mLength
+ aNeeded
;
1326 internalAppendN(aT
, aNeeded
);
1330 template <typename T
, size_t N
, class AP
>
1331 MOZ_ALWAYS_INLINE
void Vector
<T
, N
, AP
>::internalAppendN(const T
& aT
,
1333 MOZ_ASSERT(mLength
+ aNeeded
<= mTail
.mReserved
);
1334 MOZ_ASSERT(mTail
.mReserved
<= mTail
.mCapacity
);
1335 Impl::copyConstructN(endNoCheck(), aNeeded
, aT
);
1339 template <typename T
, size_t N
, class AP
>
1340 template <typename U
>
1341 inline T
* Vector
<T
, N
, AP
>::insert(T
* aP
, U
&& aVal
) {
1342 MOZ_ASSERT(begin() <= aP
);
1343 MOZ_ASSERT(aP
<= end());
1344 size_t pos
= aP
- begin();
1345 MOZ_ASSERT(pos
<= mLength
);
1346 size_t oldLength
= mLength
;
1347 if (pos
== oldLength
) {
1348 if (!append(std::forward
<U
>(aVal
))) {
1352 T oldBack
= std::move(back());
1353 if (!append(std::move(oldBack
))) {
1356 for (size_t i
= oldLength
- 1; i
> pos
; --i
) {
1357 (*this)[i
] = std::move((*this)[i
- 1]);
1359 (*this)[pos
] = std::forward
<U
>(aVal
);
1361 return begin() + pos
;
1364 template <typename T
, size_t N
, class AP
>
1365 inline void Vector
<T
, N
, AP
>::erase(T
* aIt
) {
1366 MOZ_ASSERT(begin() <= aIt
);
1367 MOZ_ASSERT(aIt
< end());
1368 while (aIt
+ 1 < end()) {
1369 *aIt
= std::move(*(aIt
+ 1));
1375 template <typename T
, size_t N
, class AP
>
1376 inline void Vector
<T
, N
, AP
>::erase(T
* aBegin
, T
* aEnd
) {
1377 MOZ_ASSERT(begin() <= aBegin
);
1378 MOZ_ASSERT(aBegin
<= aEnd
);
1379 MOZ_ASSERT(aEnd
<= end());
1380 while (aEnd
< end()) {
1381 *aBegin
++ = std::move(*aEnd
++);
1383 shrinkBy(aEnd
- aBegin
);
1386 template <typename T
, size_t N
, class AP
>
1387 template <typename Pred
>
1388 void Vector
<T
, N
, AP
>::eraseIf(Pred aPred
) {
1389 // remove_if finds the first element to be erased, and then efficiently move-
1390 // assigns elements to effectively overwrite elements that satisfy the
1391 // predicate. It returns the new end pointer, after which there are only
1392 // moved-from elements ready to be destroyed, so we just need to shrink the
1393 // vector accordingly.
1394 T
* newEnd
= std::remove_if(begin(), end(),
1395 [&aPred
](const T
& aT
) { return aPred(aT
); });
1396 MOZ_ASSERT(newEnd
<= end());
1397 shrinkBy(end() - newEnd
);
1400 template <typename T
, size_t N
, class AP
>
1401 template <typename U
>
1402 void Vector
<T
, N
, AP
>::eraseIfEqual(const U
& aU
) {
1403 return eraseIf([&aU
](const T
& aT
) { return aT
== aU
; });
1406 template <typename T
, size_t N
, class AP
>
1407 MOZ_ALWAYS_INLINE
bool Vector
<T
, N
, AP
>::internalEnsureCapacity(
1409 if (mLength
+ aNeeded
> mTail
.mCapacity
) {
1410 if (MOZ_UNLIKELY(!growStorageBy(aNeeded
))) {
1413 } else if (!maybeCheckSimulatedOOM(mLength
+ aNeeded
)) {
1417 if (mLength
+ aNeeded
> mTail
.mReserved
) {
1418 mTail
.mReserved
= mLength
+ aNeeded
;
1424 template <typename T
, size_t N
, class AP
>
1425 template <typename U
>
1426 MOZ_ALWAYS_INLINE
bool Vector
<T
, N
, AP
>::append(const U
* aInsBegin
,
1428 MOZ_REENTRANCY_GUARD_ET_AL
;
1429 const size_t needed
= PointerRangeSize(aInsBegin
, aInsEnd
);
1430 if (!internalEnsureCapacity(needed
)) {
1433 internalAppend(aInsBegin
, needed
);
1437 template <typename T
, size_t N
, class AP
>
1438 template <typename U
>
1439 MOZ_ALWAYS_INLINE
void Vector
<T
, N
, AP
>::internalAppend(const U
* aInsBegin
,
1440 size_t aInsLength
) {
1441 MOZ_ASSERT(mLength
+ aInsLength
<= mTail
.mReserved
);
1442 MOZ_ASSERT(mTail
.mReserved
<= mTail
.mCapacity
);
1443 Impl::copyConstruct(endNoCheck(), aInsBegin
, aInsBegin
+ aInsLength
);
1444 mLength
+= aInsLength
;
1447 template <typename T
, size_t N
, class AP
>
1448 template <typename U
>
1449 MOZ_ALWAYS_INLINE
bool Vector
<T
, N
, AP
>::moveAppend(U
* aInsBegin
, U
* aInsEnd
) {
1450 MOZ_REENTRANCY_GUARD_ET_AL
;
1451 const size_t needed
= PointerRangeSize(aInsBegin
, aInsEnd
);
1452 if (!internalEnsureCapacity(needed
)) {
1455 internalMoveAppend(aInsBegin
, needed
);
1459 template <typename T
, size_t N
, class AP
>
1460 template <typename U
>
1461 MOZ_ALWAYS_INLINE
void Vector
<T
, N
, AP
>::internalMoveAppend(U
* aInsBegin
,
1462 size_t aInsLength
) {
1463 MOZ_ASSERT(mLength
+ aInsLength
<= mTail
.mReserved
);
1464 MOZ_ASSERT(mTail
.mReserved
<= mTail
.mCapacity
);
1465 Impl::moveConstruct(endNoCheck(), aInsBegin
, aInsBegin
+ aInsLength
);
1466 mLength
+= aInsLength
;
1469 template <typename T
, size_t N
, class AP
>
1470 template <typename U
>
1471 MOZ_ALWAYS_INLINE
bool Vector
<T
, N
, AP
>::append(U
&& aU
) {
1472 MOZ_REENTRANCY_GUARD_ET_AL
;
1473 if (mLength
== mTail
.mCapacity
) {
1474 if (MOZ_UNLIKELY(!growStorageBy(1))) {
1477 } else if (!maybeCheckSimulatedOOM(mLength
+ 1)) {
1481 if (mLength
+ 1 > mTail
.mReserved
) {
1482 mTail
.mReserved
= mLength
+ 1;
1485 internalAppend(std::forward
<U
>(aU
));
1489 template <typename T
, size_t N
, class AP
>
1490 template <typename U
, size_t O
, class BP
>
1491 MOZ_ALWAYS_INLINE
bool Vector
<T
, N
, AP
>::appendAll(
1492 const Vector
<U
, O
, BP
>& aOther
) {
1493 return append(aOther
.begin(), aOther
.length());
1496 template <typename T
, size_t N
, class AP
>
1497 template <typename U
, size_t O
, class BP
>
1498 MOZ_ALWAYS_INLINE
bool Vector
<T
, N
, AP
>::appendAll(Vector
<U
, O
, BP
>&& aOther
) {
1499 if (empty() && capacity() < aOther
.length()) {
1500 *this = std::move(aOther
);
1504 if (moveAppend(aOther
.begin(), aOther
.end())) {
1505 aOther
.clearAndFree();
1512 template <typename T
, size_t N
, class AP
>
1514 MOZ_ALWAYS_INLINE
bool Vector
<T
, N
, AP
>::append(const U
* aInsBegin
,
1515 size_t aInsLength
) {
1516 return append(aInsBegin
, aInsBegin
+ aInsLength
);
1519 template <typename T
, size_t N
, class AP
>
1520 MOZ_ALWAYS_INLINE
void Vector
<T
, N
, AP
>::popBack() {
1521 MOZ_REENTRANCY_GUARD_ET_AL
;
1522 MOZ_ASSERT(!empty());
1527 template <typename T
, size_t N
, class AP
>
1528 MOZ_ALWAYS_INLINE T Vector
<T
, N
, AP
>::popCopy() {
1534 template <typename T
, size_t N
, class AP
>
1535 inline T
* Vector
<T
, N
, AP
>::extractRawBuffer() {
1536 MOZ_REENTRANCY_GUARD_ET_AL
;
1538 if (usingInlineStorage()) {
1543 mBegin
= inlineStorage();
1545 mTail
.mCapacity
= kInlineCapacity
;
1547 mTail
.mReserved
= 0;
1552 template <typename T
, size_t N
, class AP
>
1553 inline T
* Vector
<T
, N
, AP
>::extractOrCopyRawBuffer() {
1554 if (T
* ret
= extractRawBuffer()) {
1558 MOZ_REENTRANCY_GUARD_ET_AL
;
1560 T
* copy
= this->template pod_malloc
<T
>(mLength
);
1565 Impl::moveConstruct(copy
, beginNoCheck(), endNoCheck());
1566 Impl::destroy(beginNoCheck(), endNoCheck());
1567 mBegin
= inlineStorage();
1569 mTail
.mCapacity
= kInlineCapacity
;
1571 mTail
.mReserved
= 0;
1576 template <typename T
, size_t N
, class AP
>
1577 inline void Vector
<T
, N
, AP
>::replaceRawBuffer(T
* aP
, size_t aLength
,
1579 MOZ_REENTRANCY_GUARD_ET_AL
;
1581 /* Destroy what we have. */
1582 Impl::destroy(beginNoCheck(), endNoCheck());
1583 if (!usingInlineStorage()) {
1584 this->free_(beginNoCheck(), mTail
.mCapacity
);
1587 /* Take in the new buffer. */
1588 if (aCapacity
<= kInlineCapacity
) {
1590 * We convert to inline storage if possible, even though aP might
1591 * otherwise be acceptable. Maybe this behaviour should be
1592 * specifiable with an argument to this function.
1594 mBegin
= inlineStorage();
1596 mTail
.mCapacity
= kInlineCapacity
;
1597 Impl::moveConstruct(mBegin
, aP
, aP
+ aLength
);
1598 Impl::destroy(aP
, aP
+ aLength
);
1599 this->free_(aP
, aCapacity
);
1603 mTail
.mCapacity
= aCapacity
;
1606 mTail
.mReserved
= aCapacity
;
1610 template <typename T
, size_t N
, class AP
>
1611 inline void Vector
<T
, N
, AP
>::replaceRawBuffer(T
* aP
, size_t aLength
) {
1612 replaceRawBuffer(aP
, aLength
, aLength
);
1615 template <typename T
, size_t N
, class AP
>
1616 inline size_t Vector
<T
, N
, AP
>::sizeOfExcludingThis(
1617 MallocSizeOf aMallocSizeOf
) const {
1618 return usingInlineStorage() ? 0 : aMallocSizeOf(beginNoCheck());
1621 template <typename T
, size_t N
, class AP
>
1622 inline size_t Vector
<T
, N
, AP
>::sizeOfIncludingThis(
1623 MallocSizeOf aMallocSizeOf
) const {
1624 return aMallocSizeOf(this) + sizeOfExcludingThis(aMallocSizeOf
);
1627 template <typename T
, size_t N
, class AP
>
1628 inline void Vector
<T
, N
, AP
>::swap(Vector
& aOther
) {
1629 static_assert(N
== 0, "still need to implement this for N != 0");
1631 // This only works when inline storage is always empty.
1632 if (!usingInlineStorage() && aOther
.usingInlineStorage()) {
1633 aOther
.mBegin
= mBegin
;
1634 mBegin
= inlineStorage();
1635 } else if (usingInlineStorage() && !aOther
.usingInlineStorage()) {
1636 mBegin
= aOther
.mBegin
;
1637 aOther
.mBegin
= aOther
.inlineStorage();
1638 } else if (!usingInlineStorage() && !aOther
.usingInlineStorage()) {
1639 std::swap(mBegin
, aOther
.mBegin
);
1641 // This case is a no-op, since we'd set both to use their inline storage.
1644 std::swap(mLength
, aOther
.mLength
);
1645 std::swap(mTail
.mCapacity
, aOther
.mTail
.mCapacity
);
1647 std::swap(mTail
.mReserved
, aOther
.mTail
.mReserved
);
1651 } // namespace mozilla
1653 #endif /* mozilla_Vector_h */