1 /* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* This Source Code Form is subject to the terms of the Mozilla Public
3 * License, v. 2.0. If a copy of the MPL was not distributed with this
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 * SurfaceCache is a service for caching temporary surfaces in imagelib.
10 #include "SurfaceCache.h"
15 #include "ISurfaceProvider.h"
17 #include "LookupResult.h"
18 #include "ShutdownTracker.h"
19 #include "gfx2DGlue.h"
20 #include "gfxPlatform.h"
22 #include "mozilla/AppShutdown.h"
23 #include "mozilla/Assertions.h"
24 #include "mozilla/Attributes.h"
25 #include "mozilla/CheckedInt.h"
26 #include "mozilla/DebugOnly.h"
27 #include "mozilla/Likely.h"
28 #include "mozilla/RefPtr.h"
29 #include "mozilla/StaticMutex.h"
30 #include "mozilla/StaticPrefs_image.h"
31 #include "mozilla/StaticPtr.h"
33 #include "nsExpirationTracker.h"
34 #include "nsHashKeys.h"
35 #include "nsIMemoryReporter.h"
36 #include "nsRefPtrHashtable.h"
39 #include "Orientation.h"
51 MOZ_DEFINE_MALLOC_SIZE_OF(SurfaceCacheMallocSizeOf
)
54 class SurfaceCacheImpl
;
56 ///////////////////////////////////////////////////////////////////////////////
58 ///////////////////////////////////////////////////////////////////////////////
60 // The single surface cache instance.
61 static StaticRefPtr
<SurfaceCacheImpl
> sInstance
;
63 // The mutex protecting the surface cache.
64 static StaticMutex sInstanceMutex MOZ_UNANNOTATED
;
66 ///////////////////////////////////////////////////////////////////////////////
67 // SurfaceCache Implementation
68 ///////////////////////////////////////////////////////////////////////////////
71 * Cost models the cost of storing a surface in the cache. Right now, this is
72 * simply an estimate of the size of the surface in bytes, but in the future it
73 * may be worth taking into account the cost of rematerializing the surface as
78 static Cost
ComputeCost(const IntSize
& aSize
, uint32_t aBytesPerPixel
) {
79 MOZ_ASSERT(aBytesPerPixel
== 1 || aBytesPerPixel
== 4);
80 return aSize
.width
* aSize
.height
* aBytesPerPixel
;
84 * Since we want to be able to make eviction decisions based on cost, we need to
85 * be able to look up the CachedSurface which has a certain cost as well as the
86 * cost associated with a certain CachedSurface. To make this possible, in data
87 * structures we actually store a CostEntry, which contains a weak pointer to
88 * its associated surface.
90 * To make usage of the weak pointer safe, SurfaceCacheImpl always calls
91 * StartTracking after a surface is stored in the cache and StopTracking before
96 CostEntry(NotNull
<CachedSurface
*> aSurface
, Cost aCost
)
97 : mSurface(aSurface
), mCost(aCost
) {}
99 NotNull
<CachedSurface
*> Surface() const { return mSurface
; }
100 Cost
GetCost() const { return mCost
; }
102 bool operator==(const CostEntry
& aOther
) const {
103 return mSurface
== aOther
.mSurface
&& mCost
== aOther
.mCost
;
106 bool operator<(const CostEntry
& aOther
) const {
107 return mCost
< aOther
.mCost
||
108 (mCost
== aOther
.mCost
&& mSurface
< aOther
.mSurface
);
112 NotNull
<CachedSurface
*> mSurface
;
117 * A CachedSurface associates a surface with a key that uniquely identifies that
120 class CachedSurface
{
124 MOZ_DECLARE_REFCOUNTED_TYPENAME(CachedSurface
)
125 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(CachedSurface
)
127 explicit CachedSurface(NotNull
<ISurfaceProvider
*> aProvider
)
128 : mProvider(aProvider
), mIsLocked(false) {}
130 DrawableSurface
GetDrawableSurface() const {
131 if (MOZ_UNLIKELY(IsPlaceholder())) {
132 MOZ_ASSERT_UNREACHABLE("Called GetDrawableSurface() on a placeholder");
133 return DrawableSurface();
136 return mProvider
->Surface();
139 DrawableSurface
GetDrawableSurfaceEvenIfPlaceholder() const {
140 return mProvider
->Surface();
143 void SetLocked(bool aLocked
) {
144 if (IsPlaceholder()) {
145 return; // Can't lock a placeholder.
148 // Update both our state and our provider's state. Some surface providers
149 // are permanently locked; maintaining our own locking state enables us to
150 // respect SetLocked() even when it's meaningless from the provider's
153 mProvider
->SetLocked(aLocked
);
156 bool IsLocked() const {
157 return !IsPlaceholder() && mIsLocked
&& mProvider
->IsLocked();
160 void SetCannotSubstitute() {
161 mProvider
->Availability().SetCannotSubstitute();
163 bool CannotSubstitute() const {
164 return mProvider
->Availability().CannotSubstitute();
167 bool IsPlaceholder() const {
168 return mProvider
->Availability().IsPlaceholder();
170 bool IsDecoded() const { return !IsPlaceholder() && mProvider
->IsFinished(); }
172 ImageKey
GetImageKey() const { return mProvider
->GetImageKey(); }
173 const SurfaceKey
& GetSurfaceKey() const { return mProvider
->GetSurfaceKey(); }
174 nsExpirationState
* GetExpirationState() { return &mExpirationState
; }
176 CostEntry
GetCostEntry() {
177 return image::CostEntry(WrapNotNull(this), mProvider
->LogicalSizeInBytes());
180 size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
181 return aMallocSizeOf(this) + aMallocSizeOf(mProvider
.get());
184 void InvalidateRecording() { mProvider
->InvalidateRecording(); }
186 // A helper type used by SurfaceCacheImpl::CollectSizeOfSurfaces.
187 struct MOZ_STACK_CLASS SurfaceMemoryReport
{
188 SurfaceMemoryReport(nsTArray
<SurfaceMemoryCounter
>& aCounters
,
189 MallocSizeOf aMallocSizeOf
)
190 : mCounters(aCounters
), mMallocSizeOf(aMallocSizeOf
) {}
192 void Add(NotNull
<CachedSurface
*> aCachedSurface
, bool aIsFactor2
) {
193 if (aCachedSurface
->IsPlaceholder()) {
197 // Record the memory used by the ISurfaceProvider. This may not have a
198 // straightforward relationship to the size of the surface that
199 // DrawableRef() returns if the surface is generated dynamically. (i.e.,
200 // for surfaces with PlaybackType::eAnimated.)
201 aCachedSurface
->mProvider
->AddSizeOfExcludingThis(
202 mMallocSizeOf
, [&](ISurfaceProvider::AddSizeOfCbData
& aMetadata
) {
203 SurfaceMemoryCounter
counter(aCachedSurface
->GetSurfaceKey(),
204 aCachedSurface
->IsLocked(),
205 aCachedSurface
->CannotSubstitute(),
206 aIsFactor2
, aMetadata
.mFinished
);
208 counter
.Values().SetDecodedHeap(aMetadata
.mHeapBytes
);
209 counter
.Values().SetDecodedNonHeap(aMetadata
.mNonHeapBytes
);
210 counter
.Values().SetDecodedUnknown(aMetadata
.mUnknownBytes
);
211 counter
.Values().SetExternalHandles(aMetadata
.mExternalHandles
);
212 counter
.Values().SetFrameIndex(aMetadata
.mIndex
);
213 counter
.Values().SetExternalId(aMetadata
.mExternalId
);
214 counter
.Values().SetSurfaceTypes(aMetadata
.mTypes
);
216 mCounters
.AppendElement(counter
);
221 nsTArray
<SurfaceMemoryCounter
>& mCounters
;
222 MallocSizeOf mMallocSizeOf
;
226 nsExpirationState mExpirationState
;
227 NotNull
<RefPtr
<ISurfaceProvider
>> mProvider
;
231 static int64_t AreaOfIntSize(const IntSize
& aSize
) {
232 return static_cast<int64_t>(aSize
.width
) * static_cast<int64_t>(aSize
.height
);
236 * An ImageSurfaceCache is a per-image surface cache. For correctness we must be
237 * able to remove all surfaces associated with an image when the image is
238 * destroyed or invalidated. Since this will happen frequently, it makes sense
239 * to make it cheap by storing the surfaces for each image separately.
241 * ImageSurfaceCache also keeps track of whether its associated image is locked
244 * The cache may also enter "factor of 2" mode which occurs when the number of
245 * surfaces in the cache exceeds the "image.cache.factor2.threshold-surfaces"
246 * pref plus the number of native sizes of the image. When in "factor of 2"
247 * mode, the cache will strongly favour sizes which are a factor of 2 of the
248 * largest native size. It accomplishes this by suggesting a factor of 2 size
249 * when lookups fail and substituting the nearest factor of 2 surface to the
250 * ideal size as the "best" available (as opposed to substitution but not
251 * found). This allows us to minimize memory consumption and CPU time spent
252 * decoding when a website requires many variants of the same surface.
254 class ImageSurfaceCache
{
255 ~ImageSurfaceCache() {}
258 explicit ImageSurfaceCache(const ImageKey aImageKey
)
261 mFactor2Pruned(false),
262 mIsVectorImage(aImageKey
->GetType() == imgIContainer::TYPE_VECTOR
) {}
264 MOZ_DECLARE_REFCOUNTED_TYPENAME(ImageSurfaceCache
)
265 NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ImageSurfaceCache
)
267 typedef nsRefPtrHashtable
<nsGenericHashKey
<SurfaceKey
>, CachedSurface
>
270 auto Values() const { return mSurfaces
.Values(); }
271 uint32_t Count() const { return mSurfaces
.Count(); }
272 bool IsEmpty() const { return mSurfaces
.Count() == 0; }
274 size_t ShallowSizeOfIncludingThis(MallocSizeOf aMallocSizeOf
) const {
275 size_t bytes
= aMallocSizeOf(this) +
276 mSurfaces
.ShallowSizeOfExcludingThis(aMallocSizeOf
);
277 for (const auto& value
: Values()) {
278 bytes
+= value
->ShallowSizeOfIncludingThis(aMallocSizeOf
);
283 [[nodiscard
]] bool Insert(NotNull
<CachedSurface
*> aSurface
) {
284 MOZ_ASSERT(!mLocked
|| aSurface
->IsPlaceholder() || aSurface
->IsLocked(),
285 "Inserting an unlocked surface for a locked image");
286 const auto& surfaceKey
= aSurface
->GetSurfaceKey();
287 if (surfaceKey
.Region()) {
288 // We don't allow substitutes for surfaces with regions, so we don't want
289 // to allow factor of 2 mode pruning to release these surfaces.
290 aSurface
->SetCannotSubstitute();
292 return mSurfaces
.InsertOrUpdate(surfaceKey
, RefPtr
<CachedSurface
>{aSurface
},
296 already_AddRefed
<CachedSurface
> Remove(NotNull
<CachedSurface
*> aSurface
) {
297 MOZ_ASSERT(mSurfaces
.GetWeak(aSurface
->GetSurfaceKey()),
298 "Should not be removing a surface we don't have");
300 RefPtr
<CachedSurface
> surface
;
301 mSurfaces
.Remove(aSurface
->GetSurfaceKey(), getter_AddRefs(surface
));
303 return surface
.forget();
306 already_AddRefed
<CachedSurface
> Lookup(const SurfaceKey
& aSurfaceKey
,
308 RefPtr
<CachedSurface
> surface
;
309 mSurfaces
.Get(aSurfaceKey
, getter_AddRefs(surface
));
313 // We don't want to allow factor of 2 mode pruning to release surfaces
314 // for which the callers will accept no substitute.
315 surface
->SetCannotSubstitute();
316 } else if (!mFactor2Mode
) {
317 // If no exact match is found, and this is for use rather than internal
318 // accounting (i.e. insert and removal), we know this will trigger a
319 // decode. Make sure we switch now to factor of 2 mode if necessary.
320 MaybeSetFactor2Mode();
324 return surface
.forget();
328 * @returns A tuple containing the best matching CachedSurface if available,
329 * a MatchType describing how the CachedSurface was selected, and
330 * an IntSize which is the size the caller should choose to decode
331 * at should it attempt to do so.
333 std::tuple
<already_AddRefed
<CachedSurface
>, MatchType
, IntSize
>
334 LookupBestMatch(const SurfaceKey
& aIdealKey
) {
335 // Try for an exact match first.
336 RefPtr
<CachedSurface
> exactMatch
;
337 mSurfaces
.Get(aIdealKey
, getter_AddRefs(exactMatch
));
339 if (exactMatch
->IsDecoded()) {
340 return std::make_tuple(exactMatch
.forget(), MatchType::EXACT
,
343 } else if (aIdealKey
.Region()) {
344 // We cannot substitute if we have a region. Allow it to create an exact
346 return std::make_tuple(exactMatch
.forget(), MatchType::NOT_FOUND
,
348 } else if (!mFactor2Mode
) {
349 // If no exact match is found, and we are not in factor of 2 mode, then
350 // we know that we will trigger a decode because at best we will provide
351 // a substitute. Make sure we switch now to factor of 2 mode if necessary.
352 MaybeSetFactor2Mode();
355 // Try for a best match second, if using compact.
356 IntSize suggestedSize
= SuggestedSize(aIdealKey
.Size());
357 if (suggestedSize
!= aIdealKey
.Size()) {
359 SurfaceKey compactKey
= aIdealKey
.CloneWithSize(suggestedSize
);
360 mSurfaces
.Get(compactKey
, getter_AddRefs(exactMatch
));
361 if (exactMatch
&& exactMatch
->IsDecoded()) {
362 MOZ_ASSERT(suggestedSize
!= aIdealKey
.Size());
363 return std::make_tuple(exactMatch
.forget(),
364 MatchType::SUBSTITUTE_BECAUSE_BEST
,
370 // There's no perfect match, so find the best match we can.
371 RefPtr
<CachedSurface
> bestMatch
;
372 for (const auto& value
: Values()) {
373 NotNull
<CachedSurface
*> current
= WrapNotNull(value
);
374 const SurfaceKey
& currentKey
= current
->GetSurfaceKey();
376 // We never match a placeholder or a surface with a region.
377 if (current
->IsPlaceholder() || currentKey
.Region()) {
380 // Matching the playback type and SVG context is required.
381 if (currentKey
.Playback() != aIdealKey
.Playback() ||
382 currentKey
.SVGContext() != aIdealKey
.SVGContext()) {
385 // Matching the flags is required.
386 if (currentKey
.Flags() != aIdealKey
.Flags()) {
389 // Anything is better than nothing! (Within the constraints we just
390 // checked, of course.)
396 MOZ_ASSERT(bestMatch
, "Should have a current best match");
398 // Always prefer completely decoded surfaces.
399 bool bestMatchIsDecoded
= bestMatch
->IsDecoded();
400 if (bestMatchIsDecoded
&& !current
->IsDecoded()) {
403 if (!bestMatchIsDecoded
&& current
->IsDecoded()) {
408 SurfaceKey bestMatchKey
= bestMatch
->GetSurfaceKey();
409 if (CompareArea(aIdealKey
.Size(), bestMatchKey
.Size(),
410 currentKey
.Size())) {
418 // No exact match, neither ideal nor factor of 2.
419 MOZ_ASSERT(suggestedSize
!= bestMatch
->GetSurfaceKey().Size(),
420 "No exact match despite the fact the sizes match!");
421 matchType
= MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND
;
422 } else if (exactMatch
!= bestMatch
) {
423 // The exact match is still decoding, but we found a substitute.
424 matchType
= MatchType::SUBSTITUTE_BECAUSE_PENDING
;
425 } else if (aIdealKey
.Size() != bestMatch
->GetSurfaceKey().Size()) {
426 // The best factor of 2 match is still decoding, but the best we've got.
427 MOZ_ASSERT(suggestedSize
!= aIdealKey
.Size());
428 MOZ_ASSERT(mFactor2Mode
|| mIsVectorImage
);
429 matchType
= MatchType::SUBSTITUTE_BECAUSE_BEST
;
431 // The exact match is still decoding, but it's the best we've got.
432 matchType
= MatchType::EXACT
;
436 // We found an "exact match"; it must have been a placeholder.
437 MOZ_ASSERT(exactMatch
->IsPlaceholder());
438 matchType
= MatchType::PENDING
;
440 // We couldn't find an exact match *or* a substitute.
441 matchType
= MatchType::NOT_FOUND
;
445 return std::make_tuple(bestMatch
.forget(), matchType
, suggestedSize
);
448 void MaybeSetFactor2Mode() {
449 MOZ_ASSERT(!mFactor2Mode
);
451 // Typically an image cache will not have too many size-varying surfaces, so
452 // if we exceed the given threshold, we should consider using a subset.
453 int32_t thresholdSurfaces
=
454 StaticPrefs::image_cache_factor2_threshold_surfaces();
455 if (thresholdSurfaces
< 0 ||
456 mSurfaces
.Count() <= static_cast<uint32_t>(thresholdSurfaces
)) {
460 // Determine how many native surfaces this image has. If it is zero, and it
461 // is a vector image, then we should impute a single native size. Otherwise,
462 // it may be zero because we don't know yet, or the image has an error, or
463 // it isn't supported.
464 NotNull
<CachedSurface
*> current
=
465 WrapNotNull(mSurfaces
.ConstIter().UserData());
466 Image
* image
= static_cast<Image
*>(current
->GetImageKey());
467 size_t nativeSizes
= image
->GetNativeSizesLength();
468 if (mIsVectorImage
) {
469 MOZ_ASSERT(nativeSizes
== 0);
471 } else if (nativeSizes
== 0) {
475 // Increase the threshold by the number of native sizes. This ensures that
476 // we do not prevent decoding of the image at all its native sizes. It does
477 // not guarantee we will provide a surface at that size however (i.e. many
478 // other sized surfaces are requested, in addition to the native sizes).
479 thresholdSurfaces
+= nativeSizes
;
480 if (mSurfaces
.Count() <= static_cast<uint32_t>(thresholdSurfaces
)) {
484 // We have a valid size, we can change modes.
488 template <typename Function
>
489 void Prune(Function
&& aRemoveCallback
) {
490 if (!mFactor2Mode
|| mFactor2Pruned
) {
494 // Attempt to discard any surfaces which are not factor of 2 and the best
495 // factor of 2 match exists.
496 bool hasNotFactorSize
= false;
497 for (auto iter
= mSurfaces
.Iter(); !iter
.Done(); iter
.Next()) {
498 NotNull
<CachedSurface
*> current
= WrapNotNull(iter
.UserData());
499 const SurfaceKey
& currentKey
= current
->GetSurfaceKey();
500 const IntSize
& currentSize
= currentKey
.Size();
502 // First we check if someone requested this size and would not accept
503 // an alternatively sized surface.
504 if (current
->CannotSubstitute()) {
508 // Next we find the best factor of 2 size for this surface. If this
509 // surface is a factor of 2 size, then we want to keep it.
510 IntSize bestSize
= SuggestedSize(currentSize
);
511 if (bestSize
== currentSize
) {
515 // Check the cache for a surface with the same parameters except for the
516 // size which uses the closest factor of 2 size.
517 SurfaceKey compactKey
= currentKey
.CloneWithSize(bestSize
);
518 RefPtr
<CachedSurface
> compactMatch
;
519 mSurfaces
.Get(compactKey
, getter_AddRefs(compactMatch
));
520 if (compactMatch
&& compactMatch
->IsDecoded()) {
521 aRemoveCallback(current
);
524 hasNotFactorSize
= true;
528 // We have no surfaces that are not factor of 2 sized, so we can stop
529 // pruning henceforth, because we avoid the insertion of new surfaces that
530 // don't match our sizing set (unless the caller won't accept a
532 if (!hasNotFactorSize
) {
533 mFactor2Pruned
= true;
536 // We should never leave factor of 2 mode due to pruning in of itself, but
537 // if we discarded surfaces due to the volatile buffers getting released,
542 template <typename Function
>
543 bool Invalidate(Function
&& aRemoveCallback
) {
544 // Remove all non-blob recordings from the cache. Invalidate any blob
546 bool foundRecording
= false;
547 for (auto iter
= mSurfaces
.Iter(); !iter
.Done(); iter
.Next()) {
548 NotNull
<CachedSurface
*> current
= WrapNotNull(iter
.UserData());
550 if (current
->GetSurfaceKey().Flags() & SurfaceFlags::RECORD_BLOB
) {
551 foundRecording
= true;
552 current
->InvalidateRecording();
556 aRemoveCallback(current
);
561 return foundRecording
;
564 IntSize
SuggestedSize(const IntSize
& aSize
) const {
565 IntSize suggestedSize
= SuggestedSizeInternal(aSize
);
566 if (mIsVectorImage
) {
567 suggestedSize
= SurfaceCache::ClampVectorSize(suggestedSize
);
569 return suggestedSize
;
572 IntSize
SuggestedSizeInternal(const IntSize
& aSize
) const {
573 // When not in factor of 2 mode, we can always decode at the given size.
578 // We cannot enter factor of 2 mode unless we have a minimum number of
579 // surfaces, and we should have left it if the cache was emptied.
580 if (MOZ_UNLIKELY(IsEmpty())) {
581 MOZ_ASSERT_UNREACHABLE("Should not be empty and in factor of 2 mode!");
585 // This bit of awkwardness gets the largest native size of the image.
586 NotNull
<CachedSurface
*> firstSurface
=
587 WrapNotNull(mSurfaces
.ConstIter().UserData());
588 Image
* image
= static_cast<Image
*>(firstSurface
->GetImageKey());
590 if (NS_FAILED(image
->GetWidth(&factorSize
.width
)) ||
591 NS_FAILED(image
->GetHeight(&factorSize
.height
)) ||
592 factorSize
.IsEmpty()) {
593 // Valid vector images may have a default size of 0x0. In that case, just
594 // assume a default size of 100x100 and apply the intrinsic ratio if
595 // available. If our guess was too small, don't use factor-of-scaling.
596 MOZ_ASSERT(mIsVectorImage
);
597 factorSize
= IntSize(100, 100);
598 Maybe
<AspectRatio
> aspectRatio
= image
->GetIntrinsicRatio();
599 if (aspectRatio
&& *aspectRatio
) {
601 NSToIntRound(aspectRatio
->ApplyToFloat(float(factorSize
.height
)));
602 if (factorSize
.IsEmpty()) {
608 if (mIsVectorImage
) {
609 // Ensure the aspect ratio matches the native size before forcing the
610 // caller to accept a factor of 2 size. The difference between the aspect
613 // delta = nativeWidth/nativeHeight - desiredWidth/desiredHeight
615 // delta*nativeHeight*desiredHeight = nativeWidth*desiredHeight
616 // - desiredWidth*nativeHeight
618 // Using the maximum accepted delta as a constant, we can avoid the
619 // floating point division and just compare after some integer ops.
621 factorSize
.width
* aSize
.height
- aSize
.width
* factorSize
.height
;
622 int32_t maxDelta
= (factorSize
.height
* aSize
.height
) >> 4;
623 if (delta
> maxDelta
|| delta
< -maxDelta
) {
627 // If the requested size is bigger than the native size, we actually need
628 // to grow the native size instead of shrinking it.
629 if (factorSize
.width
< aSize
.width
) {
631 IntSize
candidate(factorSize
.width
* 2, factorSize
.height
* 2);
632 if (!SurfaceCache::IsLegalSize(candidate
)) {
636 factorSize
= candidate
;
637 } while (factorSize
.width
< aSize
.width
);
642 // Otherwise we can find the best fit as normal.
645 // Start with the native size as the best first guess.
646 IntSize bestSize
= factorSize
;
647 factorSize
.width
/= 2;
648 factorSize
.height
/= 2;
650 while (!factorSize
.IsEmpty()) {
651 if (!CompareArea(aSize
, bestSize
, factorSize
)) {
652 // This size is not better than the last. Since we proceed from largest
653 // to smallest, we know that the next size will not be better if the
654 // previous size was rejected. Break early.
658 // The current factor of 2 size is better than the last selected size.
659 bestSize
= factorSize
;
660 factorSize
.width
/= 2;
661 factorSize
.height
/= 2;
667 bool CompareArea(const IntSize
& aIdealSize
, const IntSize
& aBestSize
,
668 const IntSize
& aSize
) const {
669 // Compare sizes. We use an area-based heuristic here instead of computing a
670 // truly optimal answer, since it seems very unlikely to make a difference
671 // for realistic sizes.
672 int64_t idealArea
= AreaOfIntSize(aIdealSize
);
673 int64_t currentArea
= AreaOfIntSize(aSize
);
674 int64_t bestMatchArea
= AreaOfIntSize(aBestSize
);
676 // If the best match is smaller than the ideal size, prefer bigger sizes.
677 if (bestMatchArea
< idealArea
) {
678 if (currentArea
> bestMatchArea
) {
684 // Other, prefer sizes closer to the ideal size, but still not smaller.
685 if (idealArea
<= currentArea
&& currentArea
< bestMatchArea
) {
689 // This surface isn't an improvement over the current best match.
693 template <typename Function
>
694 void CollectSizeOfSurfaces(nsTArray
<SurfaceMemoryCounter
>& aCounters
,
695 MallocSizeOf aMallocSizeOf
,
696 Function
&& aRemoveCallback
) {
697 CachedSurface::SurfaceMemoryReport
report(aCounters
, aMallocSizeOf
);
698 for (auto iter
= mSurfaces
.Iter(); !iter
.Done(); iter
.Next()) {
699 NotNull
<CachedSurface
*> surface
= WrapNotNull(iter
.UserData());
701 // We don't need the drawable surface for ourselves, but adding a surface
702 // to the report will trigger this indirectly. If the surface was
703 // discarded by the OS because it was in volatile memory, we should remove
704 // it from the cache immediately rather than include it in the report.
705 DrawableSurface drawableSurface
;
706 if (!surface
->IsPlaceholder()) {
707 drawableSurface
= surface
->GetDrawableSurface();
708 if (!drawableSurface
) {
709 aRemoveCallback(surface
);
715 const IntSize
& size
= surface
->GetSurfaceKey().Size();
716 bool factor2Size
= false;
718 factor2Size
= (size
== SuggestedSize(size
));
720 report
.Add(surface
, factor2Size
);
726 void SetLocked(bool aLocked
) { mLocked
= aLocked
; }
727 bool IsLocked() const { return mLocked
; }
730 void AfterMaybeRemove() {
731 if (IsEmpty() && mFactor2Mode
) {
732 // The last surface for this cache was removed. This can happen if the
733 // surface was stored in a volatile buffer and got purged, or the surface
734 // expired from the cache. If the cache itself lingers for some reason
735 // (e.g. in the process of performing a lookup, the cache itself is
736 // locked), then we need to reset the factor of 2 state because it
737 // requires at least one surface present to get the native size
738 // information from the image.
739 mFactor2Mode
= mFactor2Pruned
= false;
743 SurfaceTable mSurfaces
;
747 // True in "factor of 2" mode.
750 // True if all non-factor of 2 surfaces have been removed from the cache. Note
751 // that this excludes unsubstitutable sizes.
754 // True if the surfaces are produced from a vector image. If so, it must match
755 // the aspect ratio when using factor of 2 mode.
760 * SurfaceCacheImpl is responsible for determining which surfaces will be cached
761 * and managing the surface cache data structures. Rather than interact with
762 * SurfaceCacheImpl directly, client code interacts with SurfaceCache, which
763 * maintains high-level invariants and encapsulates the details of the surface
764 * cache's implementation.
766 class SurfaceCacheImpl final
: public nsIMemoryReporter
{
770 SurfaceCacheImpl(uint32_t aSurfaceCacheExpirationTimeMS
,
771 uint32_t aSurfaceCacheDiscardFactor
,
772 uint32_t aSurfaceCacheSize
)
773 : mExpirationTracker(aSurfaceCacheExpirationTimeMS
),
774 mMemoryPressureObserver(new MemoryPressureObserver
),
775 mDiscardFactor(aSurfaceCacheDiscardFactor
),
776 mMaxCost(aSurfaceCacheSize
),
777 mAvailableCost(aSurfaceCacheSize
),
780 mAlreadyPresentCount(0),
781 mTableFailureCount(0),
782 mTrackingFailureCount(0) {
783 nsCOMPtr
<nsIObserverService
> os
= services::GetObserverService();
785 os
->AddObserver(mMemoryPressureObserver
, "memory-pressure", false);
790 virtual ~SurfaceCacheImpl() {
791 nsCOMPtr
<nsIObserverService
> os
= services::GetObserverService();
793 os
->RemoveObserver(mMemoryPressureObserver
, "memory-pressure");
796 UnregisterWeakMemoryReporter(this);
800 void InitMemoryReporter() { RegisterWeakMemoryReporter(this); }
802 InsertOutcome
Insert(NotNull
<ISurfaceProvider
*> aProvider
, bool aSetAvailable
,
803 const StaticMutexAutoLock
& aAutoLock
) {
804 // If this is a duplicate surface, refuse to replace the original.
805 // XXX(seth): Calling Lookup() and then RemoveEntry() does the lookup
806 // twice. We'll make this more efficient in bug 1185137.
807 LookupResult result
=
808 Lookup(aProvider
->GetImageKey(), aProvider
->GetSurfaceKey(), aAutoLock
,
809 /* aMarkUsed = */ false);
810 if (MOZ_UNLIKELY(result
)) {
811 mAlreadyPresentCount
++;
812 return InsertOutcome::FAILURE_ALREADY_PRESENT
;
815 if (result
.Type() == MatchType::PENDING
) {
816 RemoveEntry(aProvider
->GetImageKey(), aProvider
->GetSurfaceKey(),
820 MOZ_ASSERT(result
.Type() == MatchType::NOT_FOUND
||
821 result
.Type() == MatchType::PENDING
,
822 "A LookupResult with no surface should be NOT_FOUND or PENDING");
824 // If this is bigger than we can hold after discarding everything we can,
825 // refuse to cache it.
826 Cost cost
= aProvider
->LogicalSizeInBytes();
827 if (MOZ_UNLIKELY(!CanHoldAfterDiscarding(cost
))) {
829 return InsertOutcome::FAILURE
;
832 // Remove elements in order of cost until we can fit this in the cache. Note
833 // that locked surfaces aren't in mCosts, so we never remove them here.
834 while (cost
> mAvailableCost
) {
835 MOZ_ASSERT(!mCosts
.IsEmpty(),
836 "Removed everything and it still won't fit");
837 Remove(mCosts
.LastElement().Surface(), /* aStopTracking */ true,
841 // Locate the appropriate per-image cache. If there's not an existing cache
842 // for this image, create it.
843 const ImageKey imageKey
= aProvider
->GetImageKey();
844 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(imageKey
);
846 cache
= new ImageSurfaceCache(imageKey
);
847 if (!mImageCaches
.InsertOrUpdate(aProvider
->GetImageKey(), RefPtr
{cache
},
849 mTableFailureCount
++;
850 return InsertOutcome::FAILURE
;
854 // If we were asked to mark the cache entry available, do so.
856 aProvider
->Availability().SetAvailable();
859 auto surface
= MakeNotNull
<RefPtr
<CachedSurface
>>(aProvider
);
861 // We require that locking succeed if the image is locked and we're not
862 // inserting a placeholder; the caller may need to know this to handle
864 bool mustLock
= cache
->IsLocked() && !surface
->IsPlaceholder();
866 surface
->SetLocked(true);
867 if (!surface
->IsLocked()) {
868 return InsertOutcome::FAILURE
;
873 MOZ_ASSERT(cost
<= mAvailableCost
, "Inserting despite too large a cost");
874 if (!cache
->Insert(surface
)) {
875 mTableFailureCount
++;
877 surface
->SetLocked(false);
879 return InsertOutcome::FAILURE
;
882 if (MOZ_UNLIKELY(!StartTracking(surface
, aAutoLock
))) {
883 MOZ_ASSERT(!mustLock
);
884 Remove(surface
, /* aStopTracking */ false, aAutoLock
);
885 return InsertOutcome::FAILURE
;
888 return InsertOutcome::SUCCESS
;
891 void Remove(NotNull
<CachedSurface
*> aSurface
, bool aStopTracking
,
892 const StaticMutexAutoLock
& aAutoLock
) {
893 ImageKey imageKey
= aSurface
->GetImageKey();
895 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(imageKey
);
896 MOZ_ASSERT(cache
, "Shouldn't try to remove a surface with no image cache");
898 // If the surface was not a placeholder, tell its image that we discarded
900 if (!aSurface
->IsPlaceholder()) {
901 static_cast<Image
*>(imageKey
)->OnSurfaceDiscarded(
902 aSurface
->GetSurfaceKey());
905 // If we failed during StartTracking, we can skip this step.
907 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
910 // Individual surfaces must be freed outside the lock.
911 mCachedSurfacesDiscard
.AppendElement(cache
->Remove(aSurface
));
913 MaybeRemoveEmptyCache(imageKey
, cache
);
916 bool StartTracking(NotNull
<CachedSurface
*> aSurface
,
917 const StaticMutexAutoLock
& aAutoLock
) {
918 CostEntry costEntry
= aSurface
->GetCostEntry();
919 MOZ_ASSERT(costEntry
.GetCost() <= mAvailableCost
,
920 "Cost too large and the caller didn't catch it");
922 if (aSurface
->IsLocked()) {
923 mLockedCost
+= costEntry
.GetCost();
924 MOZ_ASSERT(mLockedCost
<= mMaxCost
, "Locked more than we can hold?");
926 if (NS_WARN_IF(!mCosts
.InsertElementSorted(costEntry
, fallible
))) {
927 mTrackingFailureCount
++;
931 // This may fail during XPCOM shutdown, so we need to ensure the object is
932 // tracked before calling RemoveObject in StopTracking.
933 nsresult rv
= mExpirationTracker
.AddObjectLocked(aSurface
, aAutoLock
);
934 if (NS_WARN_IF(NS_FAILED(rv
))) {
935 DebugOnly
<bool> foundInCosts
= mCosts
.RemoveElementSorted(costEntry
);
936 MOZ_ASSERT(foundInCosts
, "Lost track of costs for this surface");
937 mTrackingFailureCount
++;
942 mAvailableCost
-= costEntry
.GetCost();
946 void StopTracking(NotNull
<CachedSurface
*> aSurface
, bool aIsTracked
,
947 const StaticMutexAutoLock
& aAutoLock
) {
948 CostEntry costEntry
= aSurface
->GetCostEntry();
950 if (aSurface
->IsLocked()) {
951 MOZ_ASSERT(mLockedCost
>= costEntry
.GetCost(), "Costs don't balance");
952 mLockedCost
-= costEntry
.GetCost();
953 // XXX(seth): It'd be nice to use an O(log n) lookup here. This is O(n).
954 MOZ_ASSERT(!mCosts
.Contains(costEntry
),
955 "Shouldn't have a cost entry for a locked surface");
957 if (MOZ_LIKELY(aSurface
->GetExpirationState()->IsTracked())) {
958 MOZ_ASSERT(aIsTracked
, "Expiration-tracking a surface unexpectedly!");
959 mExpirationTracker
.RemoveObjectLocked(aSurface
, aAutoLock
);
961 // Our call to AddObject must have failed in StartTracking; most likely
962 // we're in XPCOM shutdown right now.
963 MOZ_ASSERT(!aIsTracked
, "Not expiration-tracking an unlocked surface!");
966 DebugOnly
<bool> foundInCosts
= mCosts
.RemoveElementSorted(costEntry
);
967 MOZ_ASSERT(foundInCosts
, "Lost track of costs for this surface");
970 mAvailableCost
+= costEntry
.GetCost();
971 MOZ_ASSERT(mAvailableCost
<= mMaxCost
,
972 "More available cost than we started with");
975 LookupResult
Lookup(const ImageKey aImageKey
, const SurfaceKey
& aSurfaceKey
,
976 const StaticMutexAutoLock
& aAutoLock
, bool aMarkUsed
) {
977 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
979 // No cached surfaces for this image.
980 return LookupResult(MatchType::NOT_FOUND
);
983 RefPtr
<CachedSurface
> surface
= cache
->Lookup(aSurfaceKey
, aMarkUsed
);
985 // Lookup in the per-image cache missed.
986 return LookupResult(MatchType::NOT_FOUND
);
989 if (surface
->IsPlaceholder()) {
990 return LookupResult(MatchType::PENDING
);
993 DrawableSurface drawableSurface
= surface
->GetDrawableSurface();
994 if (!drawableSurface
) {
995 // The surface was released by the operating system. Remove the cache
997 Remove(WrapNotNull(surface
), /* aStopTracking */ true, aAutoLock
);
998 return LookupResult(MatchType::NOT_FOUND
);
1002 !MarkUsed(WrapNotNull(surface
), WrapNotNull(cache
), aAutoLock
)) {
1003 Remove(WrapNotNull(surface
), /* aStopTracking */ false, aAutoLock
);
1004 return LookupResult(MatchType::NOT_FOUND
);
1007 MOZ_ASSERT(surface
->GetSurfaceKey() == aSurfaceKey
,
1008 "Lookup() not returning an exact match?");
1009 return LookupResult(std::move(drawableSurface
), MatchType::EXACT
);
1012 LookupResult
LookupBestMatch(const ImageKey aImageKey
,
1013 const SurfaceKey
& aSurfaceKey
,
1014 const StaticMutexAutoLock
& aAutoLock
,
1016 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1018 // No cached surfaces for this image.
1019 return LookupResult(
1020 MatchType::NOT_FOUND
,
1021 SurfaceCache::ClampSize(aImageKey
, aSurfaceKey
.Size()));
1024 // Repeatedly look up the best match, trying again if the resulting surface
1025 // has been freed by the operating system, until we can either lock a
1026 // surface for drawing or there are no matching surfaces left.
1027 // XXX(seth): This is O(N^2), but N is expected to be very small. If we
1028 // encounter a performance problem here we can revisit this.
1030 RefPtr
<CachedSurface
> surface
;
1031 DrawableSurface drawableSurface
;
1032 MatchType matchType
= MatchType::NOT_FOUND
;
1033 IntSize suggestedSize
;
1035 std::tie(surface
, matchType
, suggestedSize
) =
1036 cache
->LookupBestMatch(aSurfaceKey
);
1039 return LookupResult(
1040 matchType
, suggestedSize
); // Lookup in the per-image cache missed.
1043 drawableSurface
= surface
->GetDrawableSurface();
1044 if (drawableSurface
) {
1048 // The surface was released by the operating system. Remove the cache
1050 Remove(WrapNotNull(surface
), /* aStopTracking */ true, aAutoLock
);
1053 MOZ_ASSERT_IF(matchType
== MatchType::EXACT
,
1054 surface
->GetSurfaceKey() == aSurfaceKey
);
1056 matchType
== MatchType::SUBSTITUTE_BECAUSE_NOT_FOUND
||
1057 matchType
== MatchType::SUBSTITUTE_BECAUSE_PENDING
,
1058 surface
->GetSurfaceKey().Region() == aSurfaceKey
.Region() &&
1059 surface
->GetSurfaceKey().SVGContext() == aSurfaceKey
.SVGContext() &&
1060 surface
->GetSurfaceKey().Playback() == aSurfaceKey
.Playback() &&
1061 surface
->GetSurfaceKey().Flags() == aSurfaceKey
.Flags());
1063 if (matchType
== MatchType::EXACT
||
1064 matchType
== MatchType::SUBSTITUTE_BECAUSE_BEST
) {
1066 !MarkUsed(WrapNotNull(surface
), WrapNotNull(cache
), aAutoLock
)) {
1067 Remove(WrapNotNull(surface
), /* aStopTracking */ false, aAutoLock
);
1071 return LookupResult(std::move(drawableSurface
), matchType
, suggestedSize
);
1074 bool CanHold(const Cost aCost
) const { return aCost
<= mMaxCost
; }
1076 size_t MaximumCapacity() const { return size_t(mMaxCost
); }
1078 void SurfaceAvailable(NotNull
<ISurfaceProvider
*> aProvider
,
1079 const StaticMutexAutoLock
& aAutoLock
) {
1080 if (!aProvider
->Availability().IsPlaceholder()) {
1081 MOZ_ASSERT_UNREACHABLE("Calling SurfaceAvailable on non-placeholder");
1085 // Reinsert the provider, requesting that Insert() mark it available. This
1086 // may or may not succeed, depending on whether some other decoder has
1087 // beaten us to the punch and inserted a non-placeholder version of this
1088 // surface first, but it's fine either way.
1089 // XXX(seth): This could be implemented more efficiently; we should be able
1090 // to just update our data structures without reinserting.
1091 Insert(aProvider
, /* aSetAvailable = */ true, aAutoLock
);
1094 void LockImage(const ImageKey aImageKey
) {
1095 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1097 cache
= new ImageSurfaceCache(aImageKey
);
1098 mImageCaches
.InsertOrUpdate(aImageKey
, RefPtr
{cache
});
1101 cache
->SetLocked(true);
1103 // We don't relock this image's existing surfaces right away; instead, the
1104 // image should arrange for Lookup() to touch them if they are still useful.
1107 void UnlockImage(const ImageKey aImageKey
,
1108 const StaticMutexAutoLock
& aAutoLock
) {
1109 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1110 if (!cache
|| !cache
->IsLocked()) {
1111 return; // Already unlocked.
1114 cache
->SetLocked(false);
1115 DoUnlockSurfaces(WrapNotNull(cache
), /* aStaticOnly = */ false, aAutoLock
);
1118 void UnlockEntries(const ImageKey aImageKey
,
1119 const StaticMutexAutoLock
& aAutoLock
) {
1120 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1121 if (!cache
|| !cache
->IsLocked()) {
1122 return; // Already unlocked.
1125 // (Note that we *don't* unlock the per-image cache here; that's the
1126 // difference between this and UnlockImage.)
1127 DoUnlockSurfaces(WrapNotNull(cache
),
1129 !StaticPrefs::image_mem_animated_discardable_AtStartup(),
1133 already_AddRefed
<ImageSurfaceCache
> RemoveImage(
1134 const ImageKey aImageKey
, const StaticMutexAutoLock
& aAutoLock
) {
1135 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1137 return nullptr; // No cached surfaces for this image, so nothing to do.
1140 // Discard all of the cached surfaces for this image.
1141 // XXX(seth): This is O(n^2) since for each item in the cache we are
1142 // removing an element from the costs array. Since n is expected to be
1143 // small, performance should be good, but if usage patterns change we should
1144 // change the data structure used for mCosts.
1145 for (const auto& value
: cache
->Values()) {
1146 StopTracking(WrapNotNull(value
),
1147 /* aIsTracked */ true, aAutoLock
);
1150 // The per-image cache isn't needed anymore, so remove it as well.
1151 // This implicitly unlocks the image if it was locked.
1152 mImageCaches
.Remove(aImageKey
);
1154 // Since we did not actually remove any of the surfaces from the cache
1155 // itself, only stopped tracking them, we should free it outside the lock.
1156 return cache
.forget();
1159 void PruneImage(const ImageKey aImageKey
,
1160 const StaticMutexAutoLock
& aAutoLock
) {
1161 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1163 return; // No cached surfaces for this image, so nothing to do.
1166 cache
->Prune([this, &aAutoLock
](NotNull
<CachedSurface
*> aSurface
) -> void {
1167 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1168 // Individual surfaces must be freed outside the lock.
1169 mCachedSurfacesDiscard
.AppendElement(aSurface
);
1172 MaybeRemoveEmptyCache(aImageKey
, cache
);
1175 bool InvalidateImage(const ImageKey aImageKey
,
1176 const StaticMutexAutoLock
& aAutoLock
) {
1177 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1179 return false; // No cached surfaces for this image, so nothing to do.
1182 bool rv
= cache
->Invalidate(
1183 [this, &aAutoLock
](NotNull
<CachedSurface
*> aSurface
) -> void {
1184 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1185 // Individual surfaces must be freed outside the lock.
1186 mCachedSurfacesDiscard
.AppendElement(aSurface
);
1189 MaybeRemoveEmptyCache(aImageKey
, cache
);
1193 void DiscardAll(const StaticMutexAutoLock
& aAutoLock
) {
1194 // Remove in order of cost because mCosts is an array and the other data
1195 // structures are all hash tables. Note that locked surfaces are not
1196 // removed, since they aren't present in mCosts.
1197 while (!mCosts
.IsEmpty()) {
1198 Remove(mCosts
.LastElement().Surface(), /* aStopTracking */ true,
1203 void DiscardForMemoryPressure(const StaticMutexAutoLock
& aAutoLock
) {
1204 // Compute our discardable cost. Since locked surfaces aren't discardable,
1206 const Cost discardableCost
= (mMaxCost
- mAvailableCost
) - mLockedCost
;
1207 MOZ_ASSERT(discardableCost
<= mMaxCost
, "Discardable cost doesn't add up");
1209 // Our target is to raise our available cost by (1 / mDiscardFactor) of our
1210 // discardable cost - in other words, we want to end up with about
1211 // (discardableCost / mDiscardFactor) fewer bytes stored in the surface
1212 // cache after we're done.
1213 const Cost targetCost
= mAvailableCost
+ (discardableCost
/ mDiscardFactor
);
1215 if (targetCost
> mMaxCost
- mLockedCost
) {
1216 MOZ_ASSERT_UNREACHABLE("Target cost is more than we can discard");
1217 DiscardAll(aAutoLock
);
1221 // Discard surfaces until we've reduced our cost to our target cost.
1222 while (mAvailableCost
< targetCost
) {
1223 MOZ_ASSERT(!mCosts
.IsEmpty(), "Removed everything and still not done");
1224 Remove(mCosts
.LastElement().Surface(), /* aStopTracking */ true,
1229 void TakeDiscard(nsTArray
<RefPtr
<CachedSurface
>>& aDiscard
,
1230 const StaticMutexAutoLock
& aAutoLock
) {
1231 MOZ_ASSERT(aDiscard
.IsEmpty());
1232 aDiscard
= std::move(mCachedSurfacesDiscard
);
1235 already_AddRefed
<CachedSurface
> GetSurfaceForResetAnimation(
1236 const ImageKey aImageKey
, const SurfaceKey
& aSurfaceKey
,
1237 const StaticMutexAutoLock
& aAutoLock
) {
1238 RefPtr
<CachedSurface
> surface
;
1240 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1242 // No cached surfaces for this image.
1243 return surface
.forget();
1246 surface
= cache
->Lookup(aSurfaceKey
, /* aForAccess = */ false);
1247 return surface
.forget();
1250 void LockSurface(NotNull
<CachedSurface
*> aSurface
,
1251 const StaticMutexAutoLock
& aAutoLock
) {
1252 if (aSurface
->IsPlaceholder() || aSurface
->IsLocked()) {
1256 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1258 // Lock the surface. This can fail.
1259 aSurface
->SetLocked(true);
1260 DebugOnly
<bool> tracked
= StartTracking(aSurface
, aAutoLock
);
1261 MOZ_ASSERT(tracked
);
1264 size_t ShallowSizeOfIncludingThis(
1265 MallocSizeOf aMallocSizeOf
, const StaticMutexAutoLock
& aAutoLock
) const {
1267 aMallocSizeOf(this) + mCosts
.ShallowSizeOfExcludingThis(aMallocSizeOf
) +
1268 mImageCaches
.ShallowSizeOfExcludingThis(aMallocSizeOf
) +
1269 mCachedSurfacesDiscard
.ShallowSizeOfExcludingThis(aMallocSizeOf
) +
1270 mExpirationTracker
.ShallowSizeOfExcludingThis(aMallocSizeOf
);
1271 for (const auto& data
: mImageCaches
.Values()) {
1272 bytes
+= data
->ShallowSizeOfIncludingThis(aMallocSizeOf
);
1278 CollectReports(nsIHandleReportCallback
* aHandleReport
, nsISupports
* aData
,
1279 bool aAnonymize
) override
{
1280 StaticMutexAutoLock
lock(sInstanceMutex
);
1282 uint32_t lockedImageCount
= 0;
1283 uint32_t totalSurfaceCount
= 0;
1284 uint32_t lockedSurfaceCount
= 0;
1285 for (const auto& cache
: mImageCaches
.Values()) {
1286 totalSurfaceCount
+= cache
->Count();
1287 if (cache
->IsLocked()) {
1290 for (const auto& value
: cache
->Values()) {
1291 if (value
->IsLocked()) {
1292 ++lockedSurfaceCount
;
1298 // We have explicit memory reporting for the surface cache which is more
1299 // accurate than the cost metrics we report here, but these metrics are
1300 // still useful to report, since they control the cache's behavior.
1302 "explicit/images/cache/overhead", KIND_HEAP
, UNITS_BYTES
,
1303 ShallowSizeOfIncludingThis(SurfaceCacheMallocSizeOf
, lock
),
1304 "Memory used by the surface cache data structures, excluding surface data.");
1307 "imagelib-surface-cache-estimated-total",
1308 KIND_OTHER
, UNITS_BYTES
, (mMaxCost
- mAvailableCost
),
1309 "Estimated total memory used by the imagelib surface cache.");
1312 "imagelib-surface-cache-estimated-locked",
1313 KIND_OTHER
, UNITS_BYTES
, mLockedCost
,
1314 "Estimated memory used by locked surfaces in the imagelib surface cache.");
1317 "imagelib-surface-cache-tracked-cost-count",
1318 KIND_OTHER
, UNITS_COUNT
, mCosts
.Length(),
1319 "Total number of surfaces tracked for cost (and expiry) in the imagelib surface cache.");
1322 "imagelib-surface-cache-tracked-expiry-count",
1323 KIND_OTHER
, UNITS_COUNT
, mExpirationTracker
.Length(lock
),
1324 "Total number of surfaces tracked for expiry (and cost) in the imagelib surface cache.");
1327 "imagelib-surface-cache-image-count",
1328 KIND_OTHER
, UNITS_COUNT
, mImageCaches
.Count(),
1329 "Total number of images in the imagelib surface cache.");
1332 "imagelib-surface-cache-locked-image-count",
1333 KIND_OTHER
, UNITS_COUNT
, lockedImageCount
,
1334 "Total number of locked images in the imagelib surface cache.");
1337 "imagelib-surface-cache-image-surface-count",
1338 KIND_OTHER
, UNITS_COUNT
, totalSurfaceCount
,
1339 "Total number of surfaces in the imagelib surface cache.");
1342 "imagelib-surface-cache-locked-surfaces-count",
1343 KIND_OTHER
, UNITS_COUNT
, lockedSurfaceCount
,
1344 "Total number of locked surfaces in the imagelib surface cache.");
1347 "imagelib-surface-cache-overflow-count",
1348 KIND_OTHER
, UNITS_COUNT
, mOverflowCount
,
1349 "Count of how many times the surface cache has hit its capacity and been "
1350 "unable to insert a new surface.");
1353 "imagelib-surface-cache-tracking-failure-count",
1354 KIND_OTHER
, UNITS_COUNT
, mTrackingFailureCount
,
1355 "Count of how many times the surface cache has failed to begin tracking a "
1359 "imagelib-surface-cache-already-present-count",
1360 KIND_OTHER
, UNITS_COUNT
, mAlreadyPresentCount
,
1361 "Count of how many times the surface cache has failed to insert a surface "
1362 "because it is already present.");
1365 "imagelib-surface-cache-table-failure-count",
1366 KIND_OTHER
, UNITS_COUNT
, mTableFailureCount
,
1367 "Count of how many times the surface cache has failed to insert a surface "
1368 "because a hash table could not accept an entry.");
1374 void CollectSizeOfSurfaces(const ImageKey aImageKey
,
1375 nsTArray
<SurfaceMemoryCounter
>& aCounters
,
1376 MallocSizeOf aMallocSizeOf
,
1377 const StaticMutexAutoLock
& aAutoLock
) {
1378 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1380 return; // No surfaces for this image.
1383 // Report all surfaces in the per-image cache.
1384 cache
->CollectSizeOfSurfaces(
1385 aCounters
, aMallocSizeOf
,
1386 [this, &aAutoLock
](NotNull
<CachedSurface
*> aSurface
) -> void {
1387 StopTracking(aSurface
, /* aIsTracked */ true, aAutoLock
);
1388 // Individual surfaces must be freed outside the lock.
1389 mCachedSurfacesDiscard
.AppendElement(aSurface
);
1392 MaybeRemoveEmptyCache(aImageKey
, cache
);
1395 void ReleaseImageOnMainThread(already_AddRefed
<image::Image
>&& aImage
,
1396 const StaticMutexAutoLock
& aAutoLock
) {
1397 RefPtr
<image::Image
> image
= aImage
;
1402 bool needsDispatch
= mReleasingImagesOnMainThread
.IsEmpty();
1403 mReleasingImagesOnMainThread
.AppendElement(image
);
1405 if (!needsDispatch
||
1406 AppShutdown::IsInOrBeyond(ShutdownPhase::XPCOMShutdownFinal
)) {
1407 // Either there is already a ongoing task for ClearReleasingImages() or
1408 // it's too late in shutdown to dispatch.
1412 NS_DispatchToMainThread(NS_NewRunnableFunction(
1413 "SurfaceCacheImpl::ReleaseImageOnMainThread",
1414 []() -> void { SurfaceCache::ClearReleasingImages(); }));
1417 void TakeReleasingImages(nsTArray
<RefPtr
<image::Image
>>& aImage
,
1418 const StaticMutexAutoLock
& aAutoLock
) {
1419 MOZ_ASSERT(NS_IsMainThread());
1420 aImage
.SwapElements(mReleasingImagesOnMainThread
);
1424 already_AddRefed
<ImageSurfaceCache
> GetImageCache(const ImageKey aImageKey
) {
1425 RefPtr
<ImageSurfaceCache
> imageCache
;
1426 mImageCaches
.Get(aImageKey
, getter_AddRefs(imageCache
));
1427 return imageCache
.forget();
1430 void MaybeRemoveEmptyCache(const ImageKey aImageKey
,
1431 ImageSurfaceCache
* aCache
) {
1432 // Remove the per-image cache if it's unneeded now. Keep it if the image is
1433 // locked, since the per-image cache is where we store that state. Note that
1434 // we don't push it into mImageCachesDiscard because all of its surfaces
1435 // have been removed, so it is safe to free while holding the lock.
1436 if (aCache
->IsEmpty() && !aCache
->IsLocked()) {
1437 mImageCaches
.Remove(aImageKey
);
1441 // This is similar to CanHold() except that it takes into account the costs of
1442 // locked surfaces. It's used internally in Insert(), but it's not exposed
1443 // publicly because we permit multithreaded access to the surface cache, which
1444 // means that the result would be meaningless: another thread could insert a
1445 // surface or lock an image at any time.
1446 bool CanHoldAfterDiscarding(const Cost aCost
) const {
1447 return aCost
<= mMaxCost
- mLockedCost
;
1450 bool MarkUsed(NotNull
<CachedSurface
*> aSurface
,
1451 NotNull
<ImageSurfaceCache
*> aCache
,
1452 const StaticMutexAutoLock
& aAutoLock
) {
1453 if (aCache
->IsLocked()) {
1454 LockSurface(aSurface
, aAutoLock
);
1458 nsresult rv
= mExpirationTracker
.MarkUsedLocked(aSurface
, aAutoLock
);
1459 if (NS_WARN_IF(NS_FAILED(rv
))) {
1460 // If mark used fails, it is because it failed to reinsert the surface
1461 // after removing it from the tracker. Thus we need to update our
1462 // own accounting but otherwise expect it to be untracked.
1463 StopTracking(aSurface
, /* aIsTracked */ false, aAutoLock
);
1469 void DoUnlockSurfaces(NotNull
<ImageSurfaceCache
*> aCache
, bool aStaticOnly
,
1470 const StaticMutexAutoLock
& aAutoLock
) {
1471 AutoTArray
<NotNull
<CachedSurface
*>, 8> discard
;
1473 // Unlock all the surfaces the per-image cache is holding.
1474 for (const auto& value
: aCache
->Values()) {
1475 NotNull
<CachedSurface
*> surface
= WrapNotNull(value
);
1476 if (surface
->IsPlaceholder() || !surface
->IsLocked()) {
1480 surface
->GetSurfaceKey().Playback() != PlaybackType::eStatic
) {
1483 StopTracking(surface
, /* aIsTracked */ true, aAutoLock
);
1484 surface
->SetLocked(false);
1485 if (MOZ_UNLIKELY(!StartTracking(surface
, aAutoLock
))) {
1486 discard
.AppendElement(surface
);
1490 // Discard any that we failed to track.
1491 for (auto iter
= discard
.begin(); iter
!= discard
.end(); ++iter
) {
1492 Remove(*iter
, /* aStopTracking */ false, aAutoLock
);
1496 void RemoveEntry(const ImageKey aImageKey
, const SurfaceKey
& aSurfaceKey
,
1497 const StaticMutexAutoLock
& aAutoLock
) {
1498 RefPtr
<ImageSurfaceCache
> cache
= GetImageCache(aImageKey
);
1500 return; // No cached surfaces for this image.
1503 RefPtr
<CachedSurface
> surface
=
1504 cache
->Lookup(aSurfaceKey
, /* aForAccess = */ false);
1506 return; // Lookup in the per-image cache missed.
1509 Remove(WrapNotNull(surface
), /* aStopTracking */ true, aAutoLock
);
1512 class SurfaceTracker final
1513 : public ExpirationTrackerImpl
<CachedSurface
, 2, StaticMutex
,
1514 StaticMutexAutoLock
> {
1516 explicit SurfaceTracker(uint32_t aSurfaceCacheExpirationTimeMS
)
1517 : ExpirationTrackerImpl
<CachedSurface
, 2, StaticMutex
,
1518 StaticMutexAutoLock
>(
1519 aSurfaceCacheExpirationTimeMS
, "SurfaceTracker") {}
1522 void NotifyExpiredLocked(CachedSurface
* aSurface
,
1523 const StaticMutexAutoLock
& aAutoLock
) override
{
1524 sInstance
->Remove(WrapNotNull(aSurface
), /* aStopTracking */ true,
1528 void NotifyHandlerEndLocked(const StaticMutexAutoLock
& aAutoLock
) override
{
1529 sInstance
->TakeDiscard(mDiscard
, aAutoLock
);
1532 void NotifyHandlerEnd() override
{
1533 nsTArray
<RefPtr
<CachedSurface
>> discard(std::move(mDiscard
));
1536 StaticMutex
& GetMutex() override
{ return sInstanceMutex
; }
1538 nsTArray
<RefPtr
<CachedSurface
>> mDiscard
;
1541 class MemoryPressureObserver final
: public nsIObserver
{
1545 NS_IMETHOD
Observe(nsISupports
*, const char* aTopic
,
1546 const char16_t
*) override
{
1547 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1549 StaticMutexAutoLock
lock(sInstanceMutex
);
1550 if (sInstance
&& strcmp(aTopic
, "memory-pressure") == 0) {
1551 sInstance
->DiscardForMemoryPressure(lock
);
1552 sInstance
->TakeDiscard(discard
, lock
);
1559 virtual ~MemoryPressureObserver() {}
1562 nsTArray
<CostEntry
> mCosts
;
1563 nsRefPtrHashtable
<nsPtrHashKey
<Image
>, ImageSurfaceCache
> mImageCaches
;
1564 nsTArray
<RefPtr
<CachedSurface
>> mCachedSurfacesDiscard
;
1565 SurfaceTracker mExpirationTracker
;
1566 RefPtr
<MemoryPressureObserver
> mMemoryPressureObserver
;
1567 nsTArray
<RefPtr
<image::Image
>> mReleasingImagesOnMainThread
;
1568 const uint32_t mDiscardFactor
;
1569 const Cost mMaxCost
;
1570 Cost mAvailableCost
;
1572 size_t mOverflowCount
;
1573 size_t mAlreadyPresentCount
;
1574 size_t mTableFailureCount
;
1575 size_t mTrackingFailureCount
;
1578 NS_IMPL_ISUPPORTS(SurfaceCacheImpl
, nsIMemoryReporter
)
1579 NS_IMPL_ISUPPORTS(SurfaceCacheImpl::MemoryPressureObserver
, nsIObserver
)
1581 ///////////////////////////////////////////////////////////////////////////////
1583 ///////////////////////////////////////////////////////////////////////////////
1586 void SurfaceCache::Initialize() {
1587 // Initialize preferences.
1588 MOZ_ASSERT(NS_IsMainThread());
1589 MOZ_ASSERT(!sInstance
, "Shouldn't initialize more than once");
1591 // See StaticPrefs for the default values of these preferences.
1593 // Length of time before an unused surface is removed from the cache, in
1595 uint32_t surfaceCacheExpirationTimeMS
=
1596 StaticPrefs::image_mem_surfacecache_min_expiration_ms_AtStartup();
1598 // What fraction of the memory used by the surface cache we should discard
1599 // when we get a memory pressure notification. This value is interpreted as
1600 // 1/N, so 1 means to discard everything, 2 means to discard about half of the
1601 // memory we're using, and so forth. We clamp it to avoid division by zero.
1602 uint32_t surfaceCacheDiscardFactor
=
1603 max(StaticPrefs::image_mem_surfacecache_discard_factor_AtStartup(), 1u);
1605 // Maximum size of the surface cache, in kilobytes.
1606 uint64_t surfaceCacheMaxSizeKB
=
1607 StaticPrefs::image_mem_surfacecache_max_size_kb_AtStartup();
1609 if (sizeof(uintptr_t) <= 4) {
1610 // Limit surface cache to 1 GB if our address space is 32 bit.
1611 surfaceCacheMaxSizeKB
= 1024 * 1024;
1614 // A knob determining the actual size of the surface cache. Currently the
1615 // cache is (size of main memory) / (surface cache size factor) KB
1616 // or (surface cache max size) KB, whichever is smaller. The formula
1617 // may change in the future, though.
1618 // For example, a value of 4 would yield a 256MB cache on a 1GB machine.
1619 // The smallest machines we are likely to run this code on have 256MB
1620 // of memory, which would yield a 64MB cache on this setting.
1621 // We clamp this value to avoid division by zero.
1622 uint32_t surfaceCacheSizeFactor
=
1623 max(StaticPrefs::image_mem_surfacecache_size_factor_AtStartup(), 1u);
1625 // Compute the size of the surface cache.
1626 uint64_t memorySize
= PR_GetPhysicalMemorySize();
1627 if (memorySize
== 0) {
1628 #if !defined(__DragonFly__)
1629 MOZ_ASSERT_UNREACHABLE("PR_GetPhysicalMemorySize not implemented here");
1631 memorySize
= 256 * 1024 * 1024; // Fall back to 256MB.
1633 uint64_t proposedSize
= memorySize
/ surfaceCacheSizeFactor
;
1634 uint64_t surfaceCacheSizeBytes
=
1635 min(proposedSize
, surfaceCacheMaxSizeKB
* 1024);
1636 uint32_t finalSurfaceCacheSizeBytes
=
1637 min(surfaceCacheSizeBytes
, uint64_t(UINT32_MAX
));
1639 // Create the surface cache singleton with the requested settings. Note that
1640 // the size is a limit that the cache may not grow beyond, but we do not
1641 // actually allocate any storage for surfaces at this time.
1642 sInstance
= new SurfaceCacheImpl(surfaceCacheExpirationTimeMS
,
1643 surfaceCacheDiscardFactor
,
1644 finalSurfaceCacheSizeBytes
);
1645 sInstance
->InitMemoryReporter();
1649 void SurfaceCache::Shutdown() {
1650 RefPtr
<SurfaceCacheImpl
> cache
;
1652 StaticMutexAutoLock
lock(sInstanceMutex
);
1653 MOZ_ASSERT(NS_IsMainThread());
1654 MOZ_ASSERT(sInstance
, "No singleton - was Shutdown() called twice?");
1655 cache
= sInstance
.forget();
1660 LookupResult
SurfaceCache::Lookup(const ImageKey aImageKey
,
1661 const SurfaceKey
& aSurfaceKey
,
1663 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1664 LookupResult
rv(MatchType::NOT_FOUND
);
1667 StaticMutexAutoLock
lock(sInstanceMutex
);
1672 rv
= sInstance
->Lookup(aImageKey
, aSurfaceKey
, lock
, aMarkUsed
);
1673 sInstance
->TakeDiscard(discard
, lock
);
1680 LookupResult
SurfaceCache::LookupBestMatch(const ImageKey aImageKey
,
1681 const SurfaceKey
& aSurfaceKey
,
1683 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1684 LookupResult
rv(MatchType::NOT_FOUND
);
1687 StaticMutexAutoLock
lock(sInstanceMutex
);
1692 rv
= sInstance
->LookupBestMatch(aImageKey
, aSurfaceKey
, lock
, aMarkUsed
);
1693 sInstance
->TakeDiscard(discard
, lock
);
1700 InsertOutcome
SurfaceCache::Insert(NotNull
<ISurfaceProvider
*> aProvider
) {
1701 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1702 InsertOutcome
rv(InsertOutcome::FAILURE
);
1705 StaticMutexAutoLock
lock(sInstanceMutex
);
1710 rv
= sInstance
->Insert(aProvider
, /* aSetAvailable = */ false, lock
);
1711 sInstance
->TakeDiscard(discard
, lock
);
1718 bool SurfaceCache::CanHold(const IntSize
& aSize
,
1719 uint32_t aBytesPerPixel
/* = 4 */) {
1720 StaticMutexAutoLock
lock(sInstanceMutex
);
1725 Cost cost
= ComputeCost(aSize
, aBytesPerPixel
);
1726 return sInstance
->CanHold(cost
);
1730 bool SurfaceCache::CanHold(size_t aSize
) {
1731 StaticMutexAutoLock
lock(sInstanceMutex
);
1736 return sInstance
->CanHold(aSize
);
1740 void SurfaceCache::SurfaceAvailable(NotNull
<ISurfaceProvider
*> aProvider
) {
1741 StaticMutexAutoLock
lock(sInstanceMutex
);
1746 sInstance
->SurfaceAvailable(aProvider
, lock
);
1750 void SurfaceCache::LockImage(const ImageKey aImageKey
) {
1751 StaticMutexAutoLock
lock(sInstanceMutex
);
1753 return sInstance
->LockImage(aImageKey
);
1758 void SurfaceCache::UnlockImage(const ImageKey aImageKey
) {
1759 StaticMutexAutoLock
lock(sInstanceMutex
);
1761 return sInstance
->UnlockImage(aImageKey
, lock
);
1766 void SurfaceCache::UnlockEntries(const ImageKey aImageKey
) {
1767 StaticMutexAutoLock
lock(sInstanceMutex
);
1769 return sInstance
->UnlockEntries(aImageKey
, lock
);
1774 void SurfaceCache::RemoveImage(const ImageKey aImageKey
) {
1775 RefPtr
<ImageSurfaceCache
> discard
;
1777 StaticMutexAutoLock
lock(sInstanceMutex
);
1779 discard
= sInstance
->RemoveImage(aImageKey
, lock
);
1785 void SurfaceCache::PruneImage(const ImageKey aImageKey
) {
1786 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1788 StaticMutexAutoLock
lock(sInstanceMutex
);
1790 sInstance
->PruneImage(aImageKey
, lock
);
1791 sInstance
->TakeDiscard(discard
, lock
);
1797 bool SurfaceCache::InvalidateImage(const ImageKey aImageKey
) {
1798 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1801 StaticMutexAutoLock
lock(sInstanceMutex
);
1803 rv
= sInstance
->InvalidateImage(aImageKey
, lock
);
1804 sInstance
->TakeDiscard(discard
, lock
);
1811 void SurfaceCache::DiscardAll() {
1812 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1814 StaticMutexAutoLock
lock(sInstanceMutex
);
1816 sInstance
->DiscardAll(lock
);
1817 sInstance
->TakeDiscard(discard
, lock
);
1823 void SurfaceCache::ResetAnimation(const ImageKey aImageKey
,
1824 const SurfaceKey
& aSurfaceKey
) {
1825 RefPtr
<CachedSurface
> surface
;
1826 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1828 StaticMutexAutoLock
lock(sInstanceMutex
);
1834 sInstance
->GetSurfaceForResetAnimation(aImageKey
, aSurfaceKey
, lock
);
1835 sInstance
->TakeDiscard(discard
, lock
);
1838 // Calling Reset will acquire the AnimationSurfaceProvider::mFramesMutex
1839 // mutex. In other places we acquire the mFramesMutex then call into the
1840 // surface cache (acquiring the surface cache mutex), so that determines a
1841 // lock order which we must obey by calling Reset after releasing the surface
1844 DrawableSurface drawableSurface
=
1845 surface
->GetDrawableSurfaceEvenIfPlaceholder();
1846 if (drawableSurface
) {
1847 MOZ_ASSERT(surface
->GetSurfaceKey() == aSurfaceKey
,
1848 "ResetAnimation() not returning an exact match?");
1850 drawableSurface
.Reset();
1856 void SurfaceCache::CollectSizeOfSurfaces(
1857 const ImageKey aImageKey
, nsTArray
<SurfaceMemoryCounter
>& aCounters
,
1858 MallocSizeOf aMallocSizeOf
) {
1859 nsTArray
<RefPtr
<CachedSurface
>> discard
;
1861 StaticMutexAutoLock
lock(sInstanceMutex
);
1866 sInstance
->CollectSizeOfSurfaces(aImageKey
, aCounters
, aMallocSizeOf
, lock
);
1867 sInstance
->TakeDiscard(discard
, lock
);
1872 size_t SurfaceCache::MaximumCapacity() {
1873 StaticMutexAutoLock
lock(sInstanceMutex
);
1878 return sInstance
->MaximumCapacity();
1882 bool SurfaceCache::IsLegalSize(const IntSize
& aSize
) {
1883 // reject over-wide or over-tall images
1884 const int32_t k64KLimit
= 0x0000FFFF;
1885 if (MOZ_UNLIKELY(aSize
.width
> k64KLimit
|| aSize
.height
> k64KLimit
)) {
1886 NS_WARNING("image too big");
1890 // protect against invalid sizes
1891 if (MOZ_UNLIKELY(aSize
.height
<= 0 || aSize
.width
<= 0)) {
1895 // check to make sure we don't overflow a 32-bit
1896 CheckedInt32 requiredBytes
=
1897 CheckedInt32(aSize
.width
) * CheckedInt32(aSize
.height
) * 4;
1898 if (MOZ_UNLIKELY(!requiredBytes
.isValid())) {
1899 NS_WARNING("width or height too large");
1902 const int32_t maxSize
=
1903 StaticPrefs::image_mem_max_legal_imgframe_size_kb_AtStartup();
1904 if (MOZ_UNLIKELY(maxSize
> 0 && requiredBytes
.value() / 1024 > maxSize
)) {
1910 IntSize
SurfaceCache::ClampVectorSize(const IntSize
& aSize
) {
1911 // If we exceed the maximum, we need to scale the size downwards to fit.
1912 // It shouldn't get here if it is significantly larger because
1913 // VectorImage::UseSurfaceCacheForSize should prevent us from requesting
1914 // a rasterized version of a surface greater than 4x the maximum.
1916 StaticPrefs::image_cache_max_rasterized_svg_threshold_kb();
1917 if (maxSizeKB
<= 0) {
1921 int64_t proposedKB
= int64_t(aSize
.width
) * aSize
.height
/ 256;
1922 if (maxSizeKB
>= proposedKB
) {
1926 double scale
= sqrt(double(maxSizeKB
) / proposedKB
);
1927 return IntSize(int32_t(scale
* aSize
.width
), int32_t(scale
* aSize
.height
));
1930 IntSize
SurfaceCache::ClampSize(ImageKey aImageKey
, const IntSize
& aSize
) {
1931 if (aImageKey
->GetType() != imgIContainer::TYPE_VECTOR
) {
1935 return ClampVectorSize(aSize
);
1939 void SurfaceCache::ReleaseImageOnMainThread(
1940 already_AddRefed
<image::Image
> aImage
, bool aAlwaysProxy
) {
1941 if (NS_IsMainThread() && !aAlwaysProxy
) {
1942 RefPtr
<image::Image
> image
= std::move(aImage
);
1946 // Don't try to dispatch the release after shutdown, we'll just leak the
1948 if (AppShutdown::IsInOrBeyond(ShutdownPhase::XPCOMShutdownFinal
)) {
1952 StaticMutexAutoLock
lock(sInstanceMutex
);
1954 sInstance
->ReleaseImageOnMainThread(std::move(aImage
), lock
);
1956 NS_ReleaseOnMainThread("SurfaceCache::ReleaseImageOnMainThread",
1957 std::move(aImage
), /* aAlwaysProxy */ true);
1962 void SurfaceCache::ClearReleasingImages() {
1963 MOZ_ASSERT(NS_IsMainThread());
1965 nsTArray
<RefPtr
<image::Image
>> images
;
1967 StaticMutexAutoLock
lock(sInstanceMutex
);
1969 sInstance
->TakeReleasingImages(images
, lock
);
1974 } // namespace image
1975 } // namespace mozilla