1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* Smart pointer managing sole ownership of a resource. */
9 #ifndef mozilla_UniquePtr_h
10 #define mozilla_UniquePtr_h
12 #include <type_traits>
15 #include "mozilla/Assertions.h"
16 #include "mozilla/Attributes.h"
17 #include "mozilla/CompactPair.h"
18 #include "mozilla/Compiler.h"
24 template <typename T
, class D
= DefaultDelete
<T
>>
27 } // namespace mozilla
33 struct HasPointerTypeHelper
{
35 static double Test(...);
37 static char Test(typename
U::pointer
* = 0);
42 : public std::integral_constant
<bool, sizeof(HasPointerTypeHelper::Test
<T
>(
45 template <class T
, class D
, bool = HasPointerType
<D
>::value
>
46 struct PointerTypeImpl
{
47 typedef typename
D::pointer Type
;
50 template <class T
, class D
>
51 struct PointerTypeImpl
<T
, D
, false> {
55 template <class T
, class D
>
57 typedef typename PointerTypeImpl
<T
, std::remove_reference_t
<D
>>::Type Type
;
63 * UniquePtr is a smart pointer that wholly owns a resource. Ownership may be
64 * transferred out of a UniquePtr through explicit action, but otherwise the
65 * resource is destroyed when the UniquePtr is destroyed.
67 * UniquePtr is similar to C++98's std::auto_ptr, but it improves upon auto_ptr
68 * in one crucial way: it's impossible to copy a UniquePtr. Copying an auto_ptr
69 * obviously *can't* copy ownership of its singly-owned resource. So what
70 * happens if you try to copy one? Bizarrely, ownership is implicitly
71 * *transferred*, preserving single ownership but breaking code that assumes a
72 * copy of an object is identical to the original. (This is why auto_ptr is
73 * prohibited in STL containers.)
75 * UniquePtr solves this problem by being *movable* rather than copyable.
76 * Instead of passing a |UniquePtr u| directly to the constructor or assignment
77 * operator, you pass |Move(u)|. In doing so you indicate that you're *moving*
78 * ownership out of |u|, into the target of the construction/assignment. After
79 * the transfer completes, |u| contains |nullptr| and may be safely destroyed.
80 * This preserves single ownership but also allows UniquePtr to be moved by
81 * algorithms that have been made move-safe. (Note: if |u| is instead a
82 * temporary expression, don't use |Move()|: just pass the expression, because
83 * it's already move-ready. For more information see Move.h.)
85 * UniquePtr is also better than std::auto_ptr in that the deletion operation is
86 * customizable. An optional second template parameter specifies a class that
87 * (through its operator()(T*)) implements the desired deletion policy. If no
88 * policy is specified, mozilla::DefaultDelete<T> is used -- which will either
89 * |delete| or |delete[]| the resource, depending whether the resource is an
90 * array. Custom deletion policies ideally should be empty classes (no member
91 * fields, no member fields in base classes, no virtual methods/inheritance),
92 * because then UniquePtr can be just as efficient as a raw pointer.
94 * Use of UniquePtr proceeds like so:
96 * UniquePtr<int> g1; // initializes to nullptr
97 * g1.reset(new int); // switch resources using reset()
98 * g1 = nullptr; // clears g1, deletes the int
100 * UniquePtr<int> g2(new int); // owns that int
101 * int* p = g2.release(); // g2 leaks its int -- still requires deletion
102 * delete p; // now freed
104 * struct S { int x; S(int x) : x(x) {} };
105 * UniquePtr<S> g3, g4(new S(5));
106 * g3 = std::move(g4); // g3 owns the S, g4 cleared
107 * S* p = g3.get(); // g3 still owns |p|
108 * assert(g3->x == 5); // operator-> works (if .get() != nullptr)
109 * assert((*g3).x == 5); // also operator* (again, if not cleared)
110 * std::swap(g3, g4); // g4 now owns the S, g3 cleared
111 * g3.swap(g4); // g3 now owns the S, g4 cleared
112 * UniquePtr<S> g5(std::move(g3)); // g5 owns the S, g3 cleared
113 * g5.reset(); // deletes the S, g5 cleared
115 * struct FreePolicy { void operator()(void* p) { free(p); } };
116 * UniquePtr<int, FreePolicy> g6(static_cast<int*>(malloc(sizeof(int))));
117 * int* ptr = g6.get();
118 * g6 = nullptr; // calls free(ptr)
120 * Now, carefully note a few things you *can't* do:
123 * b1 = new int; // BAD: can only assign another UniquePtr
124 * int* ptr = b1; // BAD: no auto-conversion to pointer, use get()
126 * UniquePtr<int> b2(b1); // BAD: can't copy a UniquePtr
127 * UniquePtr<int> b3 = b1; // BAD: can't copy-assign a UniquePtr
129 * (Note that changing a UniquePtr to store a direct |new| expression is
130 * permitted, but usually you should use MakeUnique, defined at the end of this
133 * A few miscellaneous notes:
135 * UniquePtr, when not instantiated for an array type, can be move-constructed
136 * and move-assigned, not only from itself but from "derived" UniquePtr<U, E>
137 * instantiations where U converts to T and E converts to D. If you want to use
138 * this, you're going to have to specify a deletion policy for both UniquePtr
139 * instantations, and T pretty much has to have a virtual destructor. In other
140 * words, this doesn't work:
142 * struct Base { virtual ~Base() {} };
143 * struct Derived : Base {};
145 * UniquePtr<Base> b1;
146 * // BAD: DefaultDelete<Base> and DefaultDelete<Derived> don't interconvert
147 * UniquePtr<Derived> d1(std::move(b));
149 * UniquePtr<Base> b2;
150 * UniquePtr<Derived, DefaultDelete<Base>> d2(std::move(b2)); // okay
152 * UniquePtr is specialized for array types. Specializing with an array type
153 * creates a smart-pointer version of that array -- not a pointer to such an
156 * UniquePtr<int[]> arr(new int[5]);
159 * What else is different? Deletion of course uses |delete[]|. An operator[]
160 * is provided. Functionality that doesn't make sense for arrays is removed.
161 * The constructors and mutating methods only accept array pointers (not T*, U*
162 * that converts to T*, or UniquePtr<U[]> or UniquePtr<U>) or |nullptr|.
164 * It's perfectly okay for a function to return a UniquePtr. This transfers
165 * the UniquePtr's sole ownership of the data, to the fresh UniquePtr created
166 * in the calling function, that will then solely own that data. Such functions
167 * can return a local variable UniquePtr, |nullptr|, |UniquePtr(ptr)| where
168 * |ptr| is a |T*|, or a UniquePtr |Move()|'d from elsewhere.
170 * UniquePtr will commonly be a member of a class, with lifetime equivalent to
171 * that of that class. If you want to expose the related resource, you could
172 * expose a raw pointer via |get()|, but ownership of a raw pointer is
173 * inherently unclear. So it's better to expose a |const UniquePtr&| instead.
174 * This prohibits mutation but still allows use of |get()| when needed (but
175 * operator-> is preferred). Of course, you can only use this smart pointer as
176 * long as the enclosing class instance remains live -- no different than if you
177 * exposed the |get()| raw pointer.
179 * To pass a UniquePtr-managed resource as a pointer, use a |const UniquePtr&|
180 * argument. To specify an inout parameter (where the method may or may not
181 * take ownership of the resource, or reset it), or to specify an out parameter
182 * (where simply returning a |UniquePtr| isn't possible), use a |UniquePtr&|
183 * argument. To unconditionally transfer ownership of a UniquePtr
184 * into a method, use a |UniquePtr| argument. To conditionally transfer
185 * ownership of a resource into a method, should the method want it, use a
186 * |UniquePtr&&| argument.
188 template <typename T
, class D
>
191 typedef T ElementType
;
192 typedef D DeleterType
;
193 typedef typename
detail::PointerType
<T
, DeleterType
>::Type Pointer
;
196 mozilla::CompactPair
<Pointer
, DeleterType
> mTuple
;
198 Pointer
& ptr() { return mTuple
.first(); }
199 const Pointer
& ptr() const { return mTuple
.first(); }
201 DeleterType
& del() { return mTuple
.second(); }
202 const DeleterType
& del() const { return mTuple
.second(); }
206 * Construct a UniquePtr containing |nullptr|.
208 constexpr UniquePtr() : mTuple(static_cast<Pointer
>(nullptr), DeleterType()) {
209 static_assert(!std::is_pointer_v
<D
>, "must provide a deleter instance");
210 static_assert(!std::is_reference_v
<D
>, "must provide a deleter instance");
214 * Construct a UniquePtr containing |aPtr|.
216 explicit UniquePtr(Pointer aPtr
) : mTuple(aPtr
, DeleterType()) {
217 static_assert(!std::is_pointer_v
<D
>, "must provide a deleter instance");
218 static_assert(!std::is_reference_v
<D
>, "must provide a deleter instance");
221 UniquePtr(Pointer aPtr
,
222 std::conditional_t
<std::is_reference_v
<D
>, D
, const D
&> aD1
)
223 : mTuple(aPtr
, aD1
) {}
225 UniquePtr(Pointer aPtr
, std::remove_reference_t
<D
>&& aD2
)
226 : mTuple(aPtr
, std::move(aD2
)) {
227 static_assert(!std::is_reference_v
<D
>,
228 "rvalue deleter can't be stored by reference");
231 UniquePtr(UniquePtr
&& aOther
)
232 : mTuple(aOther
.release(),
233 std::forward
<DeleterType
>(aOther
.get_deleter())) {}
235 MOZ_IMPLICIT
constexpr UniquePtr(decltype(nullptr)) : UniquePtr() {}
237 template <typename U
, class E
>
238 MOZ_IMPLICIT
UniquePtr(
239 UniquePtr
<U
, E
>&& aOther
,
241 std::is_convertible_v
<typename UniquePtr
<U
, E
>::Pointer
, Pointer
> &&
242 !std::is_array_v
<U
> &&
243 (std::is_reference_v
<D
> ? std::is_same_v
<D
, E
>
244 : std::is_convertible_v
<E
, D
>),
247 : mTuple(aOther
.release(), std::forward
<E
>(aOther
.get_deleter())) {}
249 ~UniquePtr() { reset(nullptr); }
251 UniquePtr
& operator=(UniquePtr
&& aOther
) {
252 reset(aOther
.release());
253 get_deleter() = std::forward
<DeleterType
>(aOther
.get_deleter());
257 template <typename U
, typename E
>
258 UniquePtr
& operator=(UniquePtr
<U
, E
>&& aOther
) {
260 std::is_convertible_v
<typename UniquePtr
<U
, E
>::Pointer
, Pointer
>,
261 "incompatible UniquePtr pointees");
262 static_assert(!std::is_array_v
<U
>,
263 "can't assign from UniquePtr holding an array");
265 reset(aOther
.release());
266 get_deleter() = std::forward
<E
>(aOther
.get_deleter());
270 UniquePtr
& operator=(decltype(nullptr)) {
275 std::add_lvalue_reference_t
<T
> operator*() const {
276 MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr with *");
279 Pointer
operator->() const {
280 MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr with ->");
284 explicit operator bool() const { return get() != nullptr; }
286 Pointer
get() const { return ptr(); }
288 DeleterType
& get_deleter() { return del(); }
289 const DeleterType
& get_deleter() const { return del(); }
291 [[nodiscard
]] Pointer
release() {
297 void reset(Pointer aPtr
= Pointer()) {
300 if (old
!= nullptr) {
305 void swap(UniquePtr
& aOther
) { mTuple
.swap(aOther
.mTuple
); }
307 UniquePtr(const UniquePtr
& aOther
) = delete; // construct using std::move()!
308 void operator=(const UniquePtr
& aOther
) =
309 delete; // assign using std::move()!
312 // In case you didn't read the comment by the main definition (you should!): the
313 // UniquePtr<T[]> specialization exists to manage array pointers. It deletes
314 // such pointers using delete[], it will reject construction and modification
315 // attempts using U* or U[]. Otherwise it works like the normal UniquePtr.
316 template <typename T
, class D
>
317 class UniquePtr
<T
[], D
> {
320 typedef T ElementType
;
321 typedef D DeleterType
;
324 mozilla::CompactPair
<Pointer
, DeleterType
> mTuple
;
328 * Construct a UniquePtr containing nullptr.
330 constexpr UniquePtr() : mTuple(static_cast<Pointer
>(nullptr), DeleterType()) {
331 static_assert(!std::is_pointer_v
<D
>, "must provide a deleter instance");
332 static_assert(!std::is_reference_v
<D
>, "must provide a deleter instance");
336 * Construct a UniquePtr containing |aPtr|.
338 explicit UniquePtr(Pointer aPtr
) : mTuple(aPtr
, DeleterType()) {
339 static_assert(!std::is_pointer_v
<D
>, "must provide a deleter instance");
340 static_assert(!std::is_reference_v
<D
>, "must provide a deleter instance");
343 // delete[] knows how to handle *only* an array of a single class type. For
344 // delete[] to work correctly, it must know the size of each element, the
345 // fields and base classes of each element requiring destruction, and so on.
346 // So forbid all overloads which would end up invoking delete[] on a pointer
347 // of the wrong type.
348 template <typename U
>
351 std::is_pointer_v
<U
> && std::is_convertible_v
<U
, Pointer
>, int>
352 aDummy
= 0) = delete;
354 UniquePtr(Pointer aPtr
,
355 std::conditional_t
<std::is_reference_v
<D
>, D
, const D
&> aD1
)
356 : mTuple(aPtr
, aD1
) {}
358 UniquePtr(Pointer aPtr
, std::remove_reference_t
<D
>&& aD2
)
359 : mTuple(aPtr
, std::move(aD2
)) {
360 static_assert(!std::is_reference_v
<D
>,
361 "rvalue deleter can't be stored by reference");
364 // Forbidden for the same reasons as stated above.
365 template <typename U
, typename V
>
366 UniquePtr(U
&& aU
, V
&& aV
,
368 std::is_pointer_v
<U
> && std::is_convertible_v
<U
, Pointer
>, int>
369 aDummy
= 0) = delete;
371 UniquePtr(UniquePtr
&& aOther
)
372 : mTuple(aOther
.release(),
373 std::forward
<DeleterType
>(aOther
.get_deleter())) {}
376 UniquePtr(decltype(nullptr)) : mTuple(nullptr, DeleterType()) {
377 static_assert(!std::is_pointer_v
<D
>, "must provide a deleter instance");
378 static_assert(!std::is_reference_v
<D
>, "must provide a deleter instance");
381 ~UniquePtr() { reset(nullptr); }
383 UniquePtr
& operator=(UniquePtr
&& aOther
) {
384 reset(aOther
.release());
385 get_deleter() = std::forward
<DeleterType
>(aOther
.get_deleter());
389 UniquePtr
& operator=(decltype(nullptr)) {
394 explicit operator bool() const { return get() != nullptr; }
396 T
& operator[](decltype(sizeof(int)) aIndex
) const { return get()[aIndex
]; }
397 Pointer
get() const { return mTuple
.first(); }
399 DeleterType
& get_deleter() { return mTuple
.second(); }
400 const DeleterType
& get_deleter() const { return mTuple
.second(); }
402 [[nodiscard
]] Pointer
release() {
403 Pointer p
= mTuple
.first();
404 mTuple
.first() = nullptr;
408 void reset(Pointer aPtr
= Pointer()) {
409 Pointer old
= mTuple
.first();
410 mTuple
.first() = aPtr
;
411 if (old
!= nullptr) {
412 mTuple
.second()(old
);
416 void reset(decltype(nullptr)) {
417 Pointer old
= mTuple
.first();
418 mTuple
.first() = nullptr;
419 if (old
!= nullptr) {
420 mTuple
.second()(old
);
424 template <typename U
>
425 void reset(U
) = delete;
427 void swap(UniquePtr
& aOther
) { mTuple
.swap(aOther
.mTuple
); }
429 UniquePtr(const UniquePtr
& aOther
) = delete; // construct using std::move()!
430 void operator=(const UniquePtr
& aOther
) =
431 delete; // assign using std::move()!
435 * A default deletion policy using plain old operator delete.
437 * Note that this type can be specialized, but authors should beware of the risk
438 * that the specialization may at some point cease to match (either because it
439 * gets moved to a different compilation unit or the signature changes). If the
440 * non-specialized (|delete|-based) version compiles for that type but does the
441 * wrong thing, bad things could happen.
443 * This is a non-issue for types which are always incomplete (i.e. opaque handle
444 * types), since |delete|-ing such a type will always trigger a compilation
447 template <typename T
>
448 class DefaultDelete
{
450 constexpr DefaultDelete() = default;
452 template <typename U
>
453 MOZ_IMPLICIT
DefaultDelete(
454 const DefaultDelete
<U
>& aOther
,
455 std::enable_if_t
<std::is_convertible_v
<U
*, T
*>, int> aDummy
= 0) {}
457 void operator()(T
* aPtr
) const {
458 static_assert(sizeof(T
) > 0, "T must be complete");
463 /** A default deletion policy using operator delete[]. */
464 template <typename T
>
465 class DefaultDelete
<T
[]> {
467 constexpr DefaultDelete() = default;
469 void operator()(T
* aPtr
) const {
470 static_assert(sizeof(T
) > 0, "T must be complete");
474 template <typename U
>
475 void operator()(U
* aPtr
) const = delete;
478 template <typename T
, class D
, typename U
, class E
>
479 bool operator==(const UniquePtr
<T
, D
>& aX
, const UniquePtr
<U
, E
>& aY
) {
480 return aX
.get() == aY
.get();
483 template <typename T
, class D
, typename U
, class E
>
484 bool operator!=(const UniquePtr
<T
, D
>& aX
, const UniquePtr
<U
, E
>& aY
) {
485 return aX
.get() != aY
.get();
488 template <typename T
, class D
>
489 bool operator==(const UniquePtr
<T
, D
>& aX
, const T
* aY
) {
490 return aX
.get() == aY
;
493 template <typename T
, class D
>
494 bool operator==(const T
* aY
, const UniquePtr
<T
, D
>& aX
) {
495 return aY
== aX
.get();
498 template <typename T
, class D
>
499 bool operator!=(const UniquePtr
<T
, D
>& aX
, const T
* aY
) {
500 return aX
.get() != aY
;
503 template <typename T
, class D
>
504 bool operator!=(const T
* aY
, const UniquePtr
<T
, D
>& aX
) {
505 return aY
!= aX
.get();
508 template <typename T
, class D
>
509 bool operator==(const UniquePtr
<T
, D
>& aX
, decltype(nullptr)) {
513 template <typename T
, class D
>
514 bool operator==(decltype(nullptr), const UniquePtr
<T
, D
>& aX
) {
518 template <typename T
, class D
>
519 bool operator!=(const UniquePtr
<T
, D
>& aX
, decltype(nullptr)) {
523 template <typename T
, class D
>
524 bool operator!=(decltype(nullptr), const UniquePtr
<T
, D
>& aX
) {
528 // No operator<, operator>, operator<=, operator>= for now because simplicity.
532 template <typename T
>
533 struct UniqueSelector
{
534 typedef UniquePtr
<T
> SingleObject
;
537 template <typename T
>
538 struct UniqueSelector
<T
[]> {
539 typedef UniquePtr
<T
[]> UnknownBound
;
542 template <typename T
, decltype(sizeof(int)) N
>
543 struct UniqueSelector
<T
[N
]> {
544 typedef UniquePtr
<T
[N
]> KnownBound
;
547 } // namespace detail
550 * MakeUnique is a helper function for allocating new'd objects and arrays,
551 * returning a UniquePtr containing the resulting pointer. The semantics of
552 * MakeUnique<Type>(...) are as follows.
554 * If Type is an array T[n]:
555 * Disallowed, deleted, no overload for you!
556 * If Type is an array T[]:
557 * MakeUnique<T[]>(size_t) is the only valid overload. The pointer returned
558 * is as if by |new T[n]()|, which value-initializes each element. (If T
559 * isn't a class type, this will zero each element. If T is a class type,
560 * then roughly speaking, each element will be constructed using its default
561 * constructor. See C++11 [dcl.init]p7 for the full gory details.)
562 * If Type is non-array T:
563 * The arguments passed to MakeUnique<T>(...) are forwarded into a
564 * |new T(...)| call, initializing the T as would happen if executing
567 * There are various benefits to using MakeUnique instead of |new| expressions.
569 * First, MakeUnique eliminates use of |new| from code entirely. If objects are
570 * only created through UniquePtr, then (assuming all explicit release() calls
571 * are safe, including transitively, and no type-safety casting funniness)
572 * correctly maintained ownership of the UniquePtr guarantees no leaks are
573 * possible. (This pays off best if a class is only ever created through a
574 * factory method on the class, using a private constructor.)
576 * Second, initializing a UniquePtr using a |new| expression requires repeating
577 * the name of the new'd type, whereas MakeUnique in concert with the |auto|
578 * keyword names it only once:
580 * UniquePtr<char> ptr1(new char()); // repetitive
581 * auto ptr2 = MakeUnique<char>(); // shorter
583 * Of course this assumes the reader understands the operation MakeUnique
584 * performs. In the long run this is probably a reasonable assumption. In the
585 * short run you'll have to use your judgment about what readers can be expected
586 * to know, or to quickly look up.
588 * Third, a call to MakeUnique can be assigned directly to a UniquePtr. In
589 * contrast you can't assign a pointer into a UniquePtr without using the
590 * cumbersome reset().
593 * p = new char; // ERROR
594 * p.reset(new char); // works, but fugly
595 * p = MakeUnique<char>(); // preferred
597 * (And third, although not relevant to Mozilla: MakeUnique is exception-safe.
598 * An exception thrown after |new T| succeeds will leak that memory, unless the
599 * pointer is assigned to an object that will manage its ownership. UniquePtr
600 * ably serves this function.)
603 template <typename T
, typename
... Args
>
604 typename
detail::UniqueSelector
<T
>::SingleObject
MakeUnique(Args
&&... aArgs
) {
605 return UniquePtr
<T
>(new T(std::forward
<Args
>(aArgs
)...));
608 template <typename T
>
609 typename
detail::UniqueSelector
<T
>::UnknownBound
MakeUnique(
610 decltype(sizeof(int)) aN
) {
611 using ArrayType
= std::remove_extent_t
<T
>;
612 return UniquePtr
<T
>(new ArrayType
[aN
]());
615 template <typename T
, typename
... Args
>
616 typename
detail::UniqueSelector
<T
>::KnownBound
MakeUnique(Args
&&... aArgs
) =
620 * WrapUnique is a helper function to transfer ownership from a raw pointer
621 * into a UniquePtr<T>. It can only be used with a single non-array type.
623 * It is generally used this way:
625 * auto p = WrapUnique(new char);
627 * It can be used when MakeUnique is not usable, for example, when the
628 * constructor you are using is private, or you want to use aggregate
632 template <typename T
>
633 typename
detail::UniqueSelector
<T
>::SingleObject
WrapUnique(T
* aPtr
) {
634 return UniquePtr
<T
>(aPtr
);
637 } // namespace mozilla
641 template <typename T
, class D
>
642 void swap(mozilla::UniquePtr
<T
, D
>& aX
, mozilla::UniquePtr
<T
, D
>& aY
) {
648 #endif /* mozilla_UniquePtr_h */