1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 // Copyright (c) 2011-2016 Google Inc.
4 // Use of this source code is governed by a BSD-style license that can be
5 // found in the gfx/skia/LICENSE file.
7 #include "SkConvolver.h"
12 void convolve_vertically_avx2(
13 const SkConvolutionFilter1D::ConvolutionFixed
* filter
, int filterLen
,
14 unsigned char* const* srcRows
, int width
, unsigned char* out
,
16 // It's simpler to work with the output array in terms of 4-byte pixels.
17 auto* dst
= (int*)out
;
19 // Output up to eight pixels per iteration.
20 for (int x
= 0; x
< width
; x
+= 8) {
21 // Accumulated result for 4 (non-adjacent) pairs of pixels,
22 // with each channel in signed 17.14 fixed point.
23 auto accum04
= _mm256_setzero_si256(), accum15
= _mm256_setzero_si256(),
24 accum26
= _mm256_setzero_si256(), accum37
= _mm256_setzero_si256();
26 // Convolve with the filter. (This inner loop is where we spend ~all our
27 // time.) While we can, we consume 2 filter coefficients and 2 rows of 8
28 // pixels each at a time.
29 auto convolve_16_pixels
= [&](__m256i interlaced_coeffs
,
30 __m256i pixels_01234567
,
31 __m256i pixels_89ABCDEF
) {
32 // Interlaced R0R8 G0G8 B0B8 A0A8 R1R9 G1G9... 32 8-bit values each.
33 auto _08194C5D
= _mm256_unpacklo_epi8(pixels_01234567
, pixels_89ABCDEF
),
34 _2A3B6E7F
= _mm256_unpackhi_epi8(pixels_01234567
, pixels_89ABCDEF
);
36 // Still interlaced R0R8 G0G8... as above, each channel expanded to 16-bit
38 auto _084C
= _mm256_unpacklo_epi8(_08194C5D
, _mm256_setzero_si256()),
39 _195D
= _mm256_unpackhi_epi8(_08194C5D
, _mm256_setzero_si256()),
40 _2A6E
= _mm256_unpacklo_epi8(_2A3B6E7F
, _mm256_setzero_si256()),
41 _3B7F
= _mm256_unpackhi_epi8(_2A3B6E7F
, _mm256_setzero_si256());
43 // accum0_R += R0*coeff0 + R8*coeff1, etc.
44 accum04
= _mm256_add_epi32(accum04
,
45 _mm256_madd_epi16(_084C
, interlaced_coeffs
));
46 accum15
= _mm256_add_epi32(accum15
,
47 _mm256_madd_epi16(_195D
, interlaced_coeffs
));
48 accum26
= _mm256_add_epi32(accum26
,
49 _mm256_madd_epi16(_2A6E
, interlaced_coeffs
));
50 accum37
= _mm256_add_epi32(accum37
,
51 _mm256_madd_epi16(_3B7F
, interlaced_coeffs
));
55 for (; i
< filterLen
/ 2 * 2; i
+= 2) {
57 _mm256_set1_epi32(*(const int32_t*)(filter
+ i
)),
58 _mm256_loadu_si256((const __m256i
*)(srcRows
[i
+ 0] + x
* 4)),
59 _mm256_loadu_si256((const __m256i
*)(srcRows
[i
+ 1] + x
* 4)));
63 _mm256_set1_epi32(*(const int16_t*)(filter
+ i
)),
64 _mm256_loadu_si256((const __m256i
*)(srcRows
[i
] + x
* 4)),
65 _mm256_setzero_si256());
68 // Trim the fractional parts off the accumulators.
69 accum04
= _mm256_srai_epi32(accum04
, 14);
70 accum15
= _mm256_srai_epi32(accum15
, 14);
71 accum26
= _mm256_srai_epi32(accum26
, 14);
72 accum37
= _mm256_srai_epi32(accum37
, 14);
74 // Pack back down to 8-bit channels.
75 auto pixels
= _mm256_packus_epi16(_mm256_packs_epi32(accum04
, accum15
),
76 _mm256_packs_epi32(accum26
, accum37
));
79 // Clamp alpha to the max of r,g,b to make sure we stay premultiplied.
80 __m256i max_rg
= _mm256_max_epu8(pixels
, _mm256_srli_epi32(pixels
, 8)),
81 max_rgb
= _mm256_max_epu8(max_rg
, _mm256_srli_epi32(pixels
, 16));
82 pixels
= _mm256_max_epu8(pixels
, _mm256_slli_epi32(max_rgb
, 24));
85 pixels
= _mm256_or_si256(pixels
, _mm256_set1_epi32(0xff000000));
88 // Normal path to store 8 pixels.
90 _mm256_storeu_si256((__m256i
*)dst
, pixels
);
95 // Store one pixel at a time on the last iteration.
96 for (int i
= x
; i
< width
; i
++) {
97 *dst
++ = _mm_cvtsi128_si32(_mm256_castsi256_si128(pixels
));
98 pixels
= _mm256_permutevar8x32_epi32(
99 pixels
, _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 0));