Bug 1613876 [wpt PR 21654] - Reland "Move SMIL events tests to WPT", a=testonly
[gecko.git] / mfbt / FloatingPoint.h
blobda206ebea33db7e140dfbb85b4ecaf052ffa64f1
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* Various predicates and operations on IEEE-754 floating point types. */
9 #ifndef mozilla_FloatingPoint_h
10 #define mozilla_FloatingPoint_h
12 #include "mozilla/Assertions.h"
13 #include "mozilla/Attributes.h"
14 #include "mozilla/Casting.h"
15 #include "mozilla/MathAlgorithms.h"
16 #include "mozilla/MemoryChecking.h"
17 #include "mozilla/Types.h"
18 #include "mozilla/TypeTraits.h"
20 #include <limits>
21 #include <stdint.h>
23 namespace mozilla {
26 * It's reasonable to ask why we have this header at all. Don't isnan,
27 * copysign, the built-in comparison operators, and the like solve these
28 * problems? Unfortunately, they don't. We've found that various compilers
29 * (MSVC, MSVC when compiling with PGO, and GCC on OS X, at least) miscompile
30 * the standard methods in various situations, so we can't use them. Some of
31 * these compilers even have problems compiling seemingly reasonable bitwise
32 * algorithms! But with some care we've found algorithms that seem to not
33 * trigger those compiler bugs.
35 * For the aforementioned reasons, be very wary of making changes to any of
36 * these algorithms. If you must make changes, keep a careful eye out for
37 * compiler bustage, particularly PGO-specific bustage.
40 namespace detail {
43 * These implementations assume float/double are 32/64-bit single/double
44 * format number types compatible with the IEEE-754 standard. C++ doesn't
45 * require this, but we required it in implementations of these algorithms that
46 * preceded this header, so we shouldn't break anything to continue doing so.
48 template <typename T>
49 struct FloatingPointTrait;
51 template <>
52 struct FloatingPointTrait<float> {
53 protected:
54 using Bits = uint32_t;
56 static constexpr unsigned kExponentWidth = 8;
57 static constexpr unsigned kSignificandWidth = 23;
60 template <>
61 struct FloatingPointTrait<double> {
62 protected:
63 using Bits = uint64_t;
65 static constexpr unsigned kExponentWidth = 11;
66 static constexpr unsigned kSignificandWidth = 52;
69 } // namespace detail
72 * This struct contains details regarding the encoding of floating-point
73 * numbers that can be useful for direct bit manipulation. As of now, the
74 * template parameter has to be float or double.
76 * The nested typedef |Bits| is the unsigned integral type with the same size
77 * as T: uint32_t for float and uint64_t for double (static assertions
78 * double-check these assumptions).
80 * kExponentBias is the offset that is subtracted from the exponent when
81 * computing the value, i.e. one plus the opposite of the mininum possible
82 * exponent.
83 * kExponentShift is the shift that one needs to apply to retrieve the
84 * exponent component of the value.
86 * kSignBit contains a bits mask. Bit-and-ing with this mask will result in
87 * obtaining the sign bit.
88 * kExponentBits contains the mask needed for obtaining the exponent bits and
89 * kSignificandBits contains the mask needed for obtaining the significand
90 * bits.
92 * Full details of how floating point number formats are encoded are beyond
93 * the scope of this comment. For more information, see
94 * http://en.wikipedia.org/wiki/IEEE_floating_point
95 * http://en.wikipedia.org/wiki/Floating_point#IEEE_754:_floating_point_in_modern_computers
97 template <typename T>
98 struct FloatingPoint final : private detail::FloatingPointTrait<T> {
99 private:
100 using Base = detail::FloatingPointTrait<T>;
102 public:
104 * An unsigned integral type suitable for accessing the bitwise representation
105 * of T.
107 using Bits = typename Base::Bits;
109 static_assert(sizeof(T) == sizeof(Bits), "Bits must be same size as T");
111 /** The bit-width of the exponent component of T. */
112 using Base::kExponentWidth;
114 /** The bit-width of the significand component of T. */
115 using Base::kSignificandWidth;
117 static_assert(1 + kExponentWidth + kSignificandWidth == CHAR_BIT * sizeof(T),
118 "sign bit plus bit widths should sum to overall bit width");
121 * The exponent field in an IEEE-754 floating point number consists of bits
122 * encoding an unsigned number. The *actual* represented exponent (for all
123 * values finite and not denormal) is that value, minus a bias |kExponentBias|
124 * so that a useful range of numbers is represented.
126 static constexpr unsigned kExponentBias = (1U << (kExponentWidth - 1)) - 1;
129 * The amount by which the bits of the exponent-field in an IEEE-754 floating
130 * point number are shifted from the LSB of the floating point type.
132 static constexpr unsigned kExponentShift = kSignificandWidth;
134 /** The sign bit in the floating point representation. */
135 static constexpr Bits kSignBit = static_cast<Bits>(1)
136 << (CHAR_BIT * sizeof(Bits) - 1);
138 /** The exponent bits in the floating point representation. */
139 static constexpr Bits kExponentBits =
140 ((static_cast<Bits>(1) << kExponentWidth) - 1) << kSignificandWidth;
142 /** The significand bits in the floating point representation. */
143 static constexpr Bits kSignificandBits =
144 (static_cast<Bits>(1) << kSignificandWidth) - 1;
146 static_assert((kSignBit & kExponentBits) == 0,
147 "sign bit shouldn't overlap exponent bits");
148 static_assert((kSignBit & kSignificandBits) == 0,
149 "sign bit shouldn't overlap significand bits");
150 static_assert((kExponentBits & kSignificandBits) == 0,
151 "exponent bits shouldn't overlap significand bits");
153 static_assert((kSignBit | kExponentBits | kSignificandBits) == ~Bits(0),
154 "all bits accounted for");
157 /** Determines whether a float/double is NaN. */
158 template <typename T>
159 static MOZ_ALWAYS_INLINE bool IsNaN(T aValue) {
161 * A float/double is NaN if all exponent bits are 1 and the significand
162 * contains at least one non-zero bit.
164 typedef FloatingPoint<T> Traits;
165 typedef typename Traits::Bits Bits;
166 return (BitwiseCast<Bits>(aValue) & Traits::kExponentBits) ==
167 Traits::kExponentBits &&
168 (BitwiseCast<Bits>(aValue) & Traits::kSignificandBits) != 0;
171 /** Determines whether a float/double is +Infinity or -Infinity. */
172 template <typename T>
173 static MOZ_ALWAYS_INLINE bool IsInfinite(T aValue) {
174 /* Infinities have all exponent bits set to 1 and an all-0 significand. */
175 typedef FloatingPoint<T> Traits;
176 typedef typename Traits::Bits Bits;
177 Bits bits = BitwiseCast<Bits>(aValue);
178 return (bits & ~Traits::kSignBit) == Traits::kExponentBits;
181 /** Determines whether a float/double is not NaN or infinite. */
182 template <typename T>
183 static MOZ_ALWAYS_INLINE bool IsFinite(T aValue) {
185 * NaN and Infinities are the only non-finite floats/doubles, and both have
186 * all exponent bits set to 1.
188 typedef FloatingPoint<T> Traits;
189 typedef typename Traits::Bits Bits;
190 Bits bits = BitwiseCast<Bits>(aValue);
191 return (bits & Traits::kExponentBits) != Traits::kExponentBits;
195 * Determines whether a float/double is negative or -0. It is an error
196 * to call this method on a float/double which is NaN.
198 template <typename T>
199 static MOZ_ALWAYS_INLINE bool IsNegative(T aValue) {
200 MOZ_ASSERT(!IsNaN(aValue), "NaN does not have a sign");
202 /* The sign bit is set if the double is negative. */
203 typedef FloatingPoint<T> Traits;
204 typedef typename Traits::Bits Bits;
205 Bits bits = BitwiseCast<Bits>(aValue);
206 return (bits & Traits::kSignBit) != 0;
209 /** Determines whether a float/double represents -0. */
210 template <typename T>
211 static MOZ_ALWAYS_INLINE bool IsNegativeZero(T aValue) {
212 /* Only the sign bit is set if the value is -0. */
213 typedef FloatingPoint<T> Traits;
214 typedef typename Traits::Bits Bits;
215 Bits bits = BitwiseCast<Bits>(aValue);
216 return bits == Traits::kSignBit;
219 /** Determines wether a float/double represents +0. */
220 template <typename T>
221 static MOZ_ALWAYS_INLINE bool IsPositiveZero(T aValue) {
222 /* All bits are zero if the value is +0. */
223 typedef FloatingPoint<T> Traits;
224 typedef typename Traits::Bits Bits;
225 Bits bits = BitwiseCast<Bits>(aValue);
226 return bits == 0;
230 * Returns 0 if a float/double is NaN or infinite;
231 * otherwise, the float/double is returned.
233 template <typename T>
234 static MOZ_ALWAYS_INLINE T ToZeroIfNonfinite(T aValue) {
235 return IsFinite(aValue) ? aValue : 0;
239 * Returns the exponent portion of the float/double.
241 * Zero is not special-cased, so ExponentComponent(0.0) is
242 * -int_fast16_t(Traits::kExponentBias).
244 template <typename T>
245 static MOZ_ALWAYS_INLINE int_fast16_t ExponentComponent(T aValue) {
247 * The exponent component of a float/double is an unsigned number, biased
248 * from its actual value. Subtract the bias to retrieve the actual exponent.
250 typedef FloatingPoint<T> Traits;
251 typedef typename Traits::Bits Bits;
252 Bits bits = BitwiseCast<Bits>(aValue);
253 return int_fast16_t((bits & Traits::kExponentBits) >>
254 Traits::kExponentShift) -
255 int_fast16_t(Traits::kExponentBias);
258 /** Returns +Infinity. */
259 template <typename T>
260 static MOZ_ALWAYS_INLINE T PositiveInfinity() {
262 * Positive infinity has all exponent bits set, sign bit set to 0, and no
263 * significand.
265 typedef FloatingPoint<T> Traits;
266 return BitwiseCast<T>(Traits::kExponentBits);
269 /** Returns -Infinity. */
270 template <typename T>
271 static MOZ_ALWAYS_INLINE T NegativeInfinity() {
273 * Negative infinity has all exponent bits set, sign bit set to 1, and no
274 * significand.
276 typedef FloatingPoint<T> Traits;
277 return BitwiseCast<T>(Traits::kSignBit | Traits::kExponentBits);
281 * Computes the bit pattern for an infinity with the specified sign bit.
283 template <typename T, int SignBit>
284 struct InfinityBits {
285 using Traits = FloatingPoint<T>;
287 static_assert(SignBit == 0 || SignBit == 1, "bad sign bit");
288 static constexpr typename Traits::Bits value =
289 (SignBit * Traits::kSignBit) | Traits::kExponentBits;
293 * Computes the bit pattern for a NaN with the specified sign bit and
294 * significand bits.
296 template <typename T, int SignBit, typename FloatingPoint<T>::Bits Significand>
297 struct SpecificNaNBits {
298 using Traits = FloatingPoint<T>;
300 static_assert(SignBit == 0 || SignBit == 1, "bad sign bit");
301 static_assert((Significand & ~Traits::kSignificandBits) == 0,
302 "significand must only have significand bits set");
303 static_assert(Significand & Traits::kSignificandBits,
304 "significand must be nonzero");
306 static constexpr typename Traits::Bits value =
307 (SignBit * Traits::kSignBit) | Traits::kExponentBits | Significand;
311 * Constructs a NaN value with the specified sign bit and significand bits.
313 * There is also a variant that returns the value directly. In most cases, the
314 * two variants should be identical. However, in the specific case of x86
315 * chips, the behavior differs: returning floating-point values directly is done
316 * through the x87 stack, and x87 loads and stores turn signaling NaNs into
317 * quiet NaNs... silently. Returning floating-point values via outparam,
318 * however, is done entirely within the SSE registers when SSE2 floating-point
319 * is enabled in the compiler, which has semantics-preserving behavior you would
320 * expect.
322 * If preserving the distinction between signaling NaNs and quiet NaNs is
323 * important to you, you should use the outparam version. In all other cases,
324 * you should use the direct return version.
326 template <typename T>
327 static MOZ_ALWAYS_INLINE void SpecificNaN(
328 int signbit, typename FloatingPoint<T>::Bits significand, T* result) {
329 typedef FloatingPoint<T> Traits;
330 MOZ_ASSERT(signbit == 0 || signbit == 1);
331 MOZ_ASSERT((significand & ~Traits::kSignificandBits) == 0);
332 MOZ_ASSERT(significand & Traits::kSignificandBits);
334 BitwiseCast<T>(
335 (signbit ? Traits::kSignBit : 0) | Traits::kExponentBits | significand,
336 result);
337 MOZ_ASSERT(IsNaN(*result));
340 template <typename T>
341 static MOZ_ALWAYS_INLINE T
342 SpecificNaN(int signbit, typename FloatingPoint<T>::Bits significand) {
343 T t;
344 SpecificNaN(signbit, significand, &t);
345 return t;
348 /** Computes the smallest non-zero positive float/double value. */
349 template <typename T>
350 static MOZ_ALWAYS_INLINE T MinNumberValue() {
351 typedef FloatingPoint<T> Traits;
352 typedef typename Traits::Bits Bits;
353 return BitwiseCast<T>(Bits(1));
356 namespace detail {
358 template <typename Float, typename SignedInteger>
359 inline bool NumberEqualsSignedInteger(Float aValue, SignedInteger* aInteger) {
360 static_assert(IsSame<Float, float>::value || IsSame<Float, double>::value,
361 "Float must be an IEEE-754 floating point type");
362 static_assert(IsSigned<SignedInteger>::value,
363 "this algorithm only works for signed types: a different one "
364 "will be required for unsigned types");
365 static_assert(sizeof(SignedInteger) >= sizeof(int),
366 "this function *might* require some finessing for signed types "
367 "subject to integral promotion before it can be used on them");
369 MOZ_MAKE_MEM_UNDEFINED(aInteger, sizeof(*aInteger));
371 // NaNs and infinities are not integers.
372 if (!IsFinite(aValue)) {
373 return false;
376 // Otherwise do direct comparisons against the minimum/maximum |SignedInteger|
377 // values that can be encoded in |Float|.
379 constexpr SignedInteger MaxIntValue =
380 std::numeric_limits<SignedInteger>::max(); // e.g. INT32_MAX
381 constexpr SignedInteger MinValue =
382 std::numeric_limits<SignedInteger>::min(); // e.g. INT32_MIN
384 static_assert(IsPowerOfTwo(Abs(MinValue)),
385 "MinValue should be is a small power of two, thus exactly "
386 "representable in float/double both");
388 constexpr unsigned SignedIntegerWidth = CHAR_BIT * sizeof(SignedInteger);
389 constexpr unsigned ExponentShift = FloatingPoint<Float>::kExponentShift;
391 // Careful! |MaxIntValue| may not be the maximum |SignedInteger| value that
392 // can be encoded in |Float|. Its |SignedIntegerWidth - 1| bits of precision
393 // may exceed |Float|'s |ExponentShift + 1| bits of precision. If necessary,
394 // compute the maximum |SignedInteger| that fits in |Float| from IEEE-754
395 // first principles. (|MinValue| doesn't have this problem because as a
396 // [relatively] small power of two it's always representable in |Float|.)
398 // Per C++11 [expr.const]p2, unevaluated subexpressions of logical AND/OR and
399 // conditional expressions *may* contain non-constant expressions, without
400 // making the enclosing expression not constexpr. MSVC implements this -- but
401 // it sometimes warns about undefined behavior in unevaluated subexpressions.
402 // This bites us if we initialize |MaxValue| the obvious way including an
403 // |uint64_t(1) << (SignedIntegerWidth - 2 - ExponentShift)| subexpression.
404 // Pull that shift-amount out and give it a not-too-huge value when it's in an
405 // unevaluated subexpression. 🙄
406 constexpr unsigned PrecisionExceededShiftAmount =
407 ExponentShift > SignedIntegerWidth - 1
409 : SignedIntegerWidth - 2 - ExponentShift;
411 constexpr SignedInteger MaxValue =
412 ExponentShift > SignedIntegerWidth - 1
413 ? MaxIntValue
414 : SignedInteger((uint64_t(1) << (SignedIntegerWidth - 1)) -
415 (uint64_t(1) << PrecisionExceededShiftAmount));
417 if (static_cast<Float>(MinValue) <= aValue &&
418 aValue <= static_cast<Float>(MaxValue)) {
419 auto possible = static_cast<SignedInteger>(aValue);
420 if (static_cast<Float>(possible) == aValue) {
421 *aInteger = possible;
422 return true;
426 return false;
429 template <typename Float, typename SignedInteger>
430 inline bool NumberIsSignedInteger(Float aValue, SignedInteger* aInteger) {
431 static_assert(IsSame<Float, float>::value || IsSame<Float, double>::value,
432 "Float must be an IEEE-754 floating point type");
433 static_assert(IsSigned<SignedInteger>::value,
434 "this algorithm only works for signed types: a different one "
435 "will be required for unsigned types");
436 static_assert(sizeof(SignedInteger) >= sizeof(int),
437 "this function *might* require some finessing for signed types "
438 "subject to integral promotion before it can be used on them");
440 MOZ_MAKE_MEM_UNDEFINED(aInteger, sizeof(*aInteger));
442 if (IsNegativeZero(aValue)) {
443 return false;
446 return NumberEqualsSignedInteger(aValue, aInteger);
449 } // namespace detail
452 * If |aValue| is identical to some |int32_t| value, set |*aInt32| to that value
453 * and return true. Otherwise return false, leaving |*aInt32| in an
454 * indeterminate state.
456 * This method returns false for negative zero. If you want to consider -0 to
457 * be 0, use NumberEqualsInt32 below.
459 template <typename T>
460 static MOZ_ALWAYS_INLINE bool NumberIsInt32(T aValue, int32_t* aInt32) {
461 return detail::NumberIsSignedInteger(aValue, aInt32);
465 * If |aValue| is equal to some int32_t value (where -0 and +0 are considered
466 * equal), set |*aInt32| to that value and return true. Otherwise return false,
467 * leaving |*aInt32| in an indeterminate state.
469 * |NumberEqualsInt32(-0.0, ...)| will return true. To test whether a value can
470 * be losslessly converted to |int32_t| and back, use NumberIsInt32 above.
472 template <typename T>
473 static MOZ_ALWAYS_INLINE bool NumberEqualsInt32(T aValue, int32_t* aInt32) {
474 return detail::NumberEqualsSignedInteger(aValue, aInt32);
478 * Computes a NaN value. Do not use this method if you depend upon a particular
479 * NaN value being returned.
481 template <typename T>
482 static MOZ_ALWAYS_INLINE T UnspecifiedNaN() {
484 * If we can use any quiet NaN, we might as well use the all-ones NaN,
485 * since it's cheap to materialize on common platforms (such as x64, where
486 * this value can be represented in a 32-bit signed immediate field, allowing
487 * it to be stored to memory in a single instruction).
489 typedef FloatingPoint<T> Traits;
490 return SpecificNaN<T>(1, Traits::kSignificandBits);
494 * Compare two doubles for equality, *without* equating -0 to +0, and equating
495 * any NaN value to any other NaN value. (The normal equality operators equate
496 * -0 with +0, and they equate NaN to no other value.)
498 template <typename T>
499 static inline bool NumbersAreIdentical(T aValue1, T aValue2) {
500 typedef FloatingPoint<T> Traits;
501 typedef typename Traits::Bits Bits;
502 if (IsNaN(aValue1)) {
503 return IsNaN(aValue2);
505 return BitwiseCast<Bits>(aValue1) == BitwiseCast<Bits>(aValue2);
509 * Return true iff |aValue| and |aValue2| are equal (ignoring sign if both are
510 * zero) or both NaN.
512 template <typename T>
513 static inline bool EqualOrBothNaN(T aValue1, T aValue2) {
514 if (IsNaN(aValue1)) {
515 return IsNaN(aValue2);
517 return aValue1 == aValue2;
520 namespace detail {
522 template <typename T>
523 struct FuzzyEqualsEpsilon;
525 template <>
526 struct FuzzyEqualsEpsilon<float> {
527 // A number near 1e-5 that is exactly representable in a float.
528 static float value() { return 1.0f / (1 << 17); }
531 template <>
532 struct FuzzyEqualsEpsilon<double> {
533 // A number near 1e-12 that is exactly representable in a double.
534 static double value() { return 1.0 / (1LL << 40); }
537 } // namespace detail
540 * Compare two floating point values for equality, modulo rounding error. That
541 * is, the two values are considered equal if they are both not NaN and if they
542 * are less than or equal to aEpsilon apart. The default value of aEpsilon is
543 * near 1e-5.
545 * For most scenarios you will want to use FuzzyEqualsMultiplicative instead,
546 * as it is more reasonable over the entire range of floating point numbers.
547 * This additive version should only be used if you know the range of the
548 * numbers you are dealing with is bounded and stays around the same order of
549 * magnitude.
551 template <typename T>
552 static MOZ_ALWAYS_INLINE bool FuzzyEqualsAdditive(
553 T aValue1, T aValue2, T aEpsilon = detail::FuzzyEqualsEpsilon<T>::value()) {
554 static_assert(IsFloatingPoint<T>::value, "floating point type required");
555 return Abs(aValue1 - aValue2) <= aEpsilon;
559 * Compare two floating point values for equality, allowing for rounding error
560 * relative to the magnitude of the values. That is, the two values are
561 * considered equal if they are both not NaN and they are less than or equal to
562 * some aEpsilon apart, where the aEpsilon is scaled by the smaller of the two
563 * argument values.
565 * In most cases you will want to use this rather than FuzzyEqualsAdditive, as
566 * this function effectively masks out differences in the bottom few bits of
567 * the floating point numbers being compared, regardless of what order of
568 * magnitude those numbers are at.
570 template <typename T>
571 static MOZ_ALWAYS_INLINE bool FuzzyEqualsMultiplicative(
572 T aValue1, T aValue2, T aEpsilon = detail::FuzzyEqualsEpsilon<T>::value()) {
573 static_assert(IsFloatingPoint<T>::value, "floating point type required");
574 // can't use std::min because of bug 965340
575 T smaller = Abs(aValue1) < Abs(aValue2) ? Abs(aValue1) : Abs(aValue2);
576 return Abs(aValue1 - aValue2) <= aEpsilon * smaller;
580 * Returns true if |aValue| can be losslessly represented as an IEEE-754 single
581 * precision number, false otherwise. All NaN values are considered
582 * representable (even though the bit patterns of double precision NaNs can't
583 * all be exactly represented in single precision).
585 MOZ_MUST_USE
586 extern MFBT_API bool IsFloat32Representable(double aValue);
588 } /* namespace mozilla */
590 #endif /* mozilla_FloatingPoint_h */