no bug - Import translations from android-l10n r=release a=l10n CLOSED TREE
[gecko.git] / gfx / 2d / FilterNodeD2D1.cpp
blobbc9026a8b84c080fd212fbab536fd21c185ec0e1
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 #include "FilterNodeD2D1.h"
9 #include "Logging.h"
11 #include "SourceSurfaceD2D1.h"
12 #include "DrawTargetD2D1.h"
13 #include "ExtendInputEffectD2D1.h"
15 namespace mozilla {
16 namespace gfx {
18 D2D1_COLORMATRIX_ALPHA_MODE D2DAlphaMode(uint32_t aMode) {
19 switch (aMode) {
20 case ALPHA_MODE_PREMULTIPLIED:
21 return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED;
22 case ALPHA_MODE_STRAIGHT:
23 return D2D1_COLORMATRIX_ALPHA_MODE_STRAIGHT;
24 default:
25 MOZ_CRASH("GFX: Unknown enum value D2DAlphaMode!");
28 return D2D1_COLORMATRIX_ALPHA_MODE_PREMULTIPLIED;
31 D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE D2DAffineTransformInterpolationMode(
32 SamplingFilter aSamplingFilter) {
33 switch (aSamplingFilter) {
34 case SamplingFilter::GOOD:
35 return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
36 case SamplingFilter::LINEAR:
37 return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
38 case SamplingFilter::POINT:
39 return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_NEAREST_NEIGHBOR;
40 default:
41 MOZ_CRASH("GFX: Unknown enum value D2DAffineTIM!");
44 return D2D1_2DAFFINETRANSFORM_INTERPOLATION_MODE_LINEAR;
47 D2D1_BLEND_MODE D2DBlendMode(uint32_t aMode) {
48 switch (aMode) {
49 case BLEND_MODE_DARKEN:
50 return D2D1_BLEND_MODE_DARKEN;
51 case BLEND_MODE_LIGHTEN:
52 return D2D1_BLEND_MODE_LIGHTEN;
53 case BLEND_MODE_MULTIPLY:
54 return D2D1_BLEND_MODE_MULTIPLY;
55 case BLEND_MODE_SCREEN:
56 return D2D1_BLEND_MODE_SCREEN;
57 case BLEND_MODE_OVERLAY:
58 return D2D1_BLEND_MODE_OVERLAY;
59 case BLEND_MODE_COLOR_DODGE:
60 return D2D1_BLEND_MODE_COLOR_DODGE;
61 case BLEND_MODE_COLOR_BURN:
62 return D2D1_BLEND_MODE_COLOR_BURN;
63 case BLEND_MODE_HARD_LIGHT:
64 return D2D1_BLEND_MODE_HARD_LIGHT;
65 case BLEND_MODE_SOFT_LIGHT:
66 return D2D1_BLEND_MODE_SOFT_LIGHT;
67 case BLEND_MODE_DIFFERENCE:
68 return D2D1_BLEND_MODE_DIFFERENCE;
69 case BLEND_MODE_EXCLUSION:
70 return D2D1_BLEND_MODE_EXCLUSION;
71 case BLEND_MODE_HUE:
72 return D2D1_BLEND_MODE_HUE;
73 case BLEND_MODE_SATURATION:
74 return D2D1_BLEND_MODE_SATURATION;
75 case BLEND_MODE_COLOR:
76 return D2D1_BLEND_MODE_COLOR;
77 case BLEND_MODE_LUMINOSITY:
78 return D2D1_BLEND_MODE_LUMINOSITY;
80 default:
81 MOZ_CRASH("GFX: Unknown enum value D2DBlendMode!");
84 return D2D1_BLEND_MODE_DARKEN;
87 D2D1_MORPHOLOGY_MODE D2DMorphologyMode(uint32_t aMode) {
88 switch (aMode) {
89 case MORPHOLOGY_OPERATOR_DILATE:
90 return D2D1_MORPHOLOGY_MODE_DILATE;
91 case MORPHOLOGY_OPERATOR_ERODE:
92 return D2D1_MORPHOLOGY_MODE_ERODE;
95 MOZ_CRASH("GFX: Unknown enum value D2DMorphologyMode!");
96 return D2D1_MORPHOLOGY_MODE_DILATE;
99 D2D1_TURBULENCE_NOISE D2DTurbulenceNoise(uint32_t aMode) {
100 switch (aMode) {
101 case TURBULENCE_TYPE_FRACTAL_NOISE:
102 return D2D1_TURBULENCE_NOISE_FRACTAL_SUM;
103 case TURBULENCE_TYPE_TURBULENCE:
104 return D2D1_TURBULENCE_NOISE_TURBULENCE;
107 MOZ_CRASH("GFX: Unknown enum value D2DTurbulenceNoise!");
108 return D2D1_TURBULENCE_NOISE_TURBULENCE;
111 D2D1_COMPOSITE_MODE D2DFilterCompositionMode(uint32_t aMode) {
112 switch (aMode) {
113 case COMPOSITE_OPERATOR_OVER:
114 return D2D1_COMPOSITE_MODE_SOURCE_OVER;
115 case COMPOSITE_OPERATOR_IN:
116 return D2D1_COMPOSITE_MODE_SOURCE_IN;
117 case COMPOSITE_OPERATOR_OUT:
118 return D2D1_COMPOSITE_MODE_SOURCE_OUT;
119 case COMPOSITE_OPERATOR_ATOP:
120 return D2D1_COMPOSITE_MODE_SOURCE_ATOP;
121 case COMPOSITE_OPERATOR_XOR:
122 return D2D1_COMPOSITE_MODE_XOR;
123 case COMPOSITE_OPERATOR_LIGHTER:
124 return D2D1_COMPOSITE_MODE_PLUS;
127 MOZ_CRASH("GFX: Unknown enum value D2DFilterCompositionMode!");
128 return D2D1_COMPOSITE_MODE_SOURCE_OVER;
131 D2D1_CHANNEL_SELECTOR D2DChannelSelector(uint32_t aMode) {
132 switch (aMode) {
133 case COLOR_CHANNEL_R:
134 return D2D1_CHANNEL_SELECTOR_R;
135 case COLOR_CHANNEL_G:
136 return D2D1_CHANNEL_SELECTOR_G;
137 case COLOR_CHANNEL_B:
138 return D2D1_CHANNEL_SELECTOR_B;
139 case COLOR_CHANNEL_A:
140 return D2D1_CHANNEL_SELECTOR_A;
143 MOZ_CRASH("GFX: Unknown enum value D2DChannelSelector!");
144 return D2D1_CHANNEL_SELECTOR_R;
147 already_AddRefed<ID2D1Image> GetImageForSourceSurface(DrawTarget* aDT,
148 SourceSurface* aSurface) {
149 if (aDT->IsTiledDrawTarget()) {
150 gfxDevCrash(LogReason::FilterNodeD2D1Target)
151 << "Incompatible draw target type! " << (int)aDT->IsTiledDrawTarget();
152 return nullptr;
154 switch (aDT->GetBackendType()) {
155 case BackendType::DIRECT2D1_1:
156 return static_cast<DrawTargetD2D1*>(aDT)->GetImageForSurface(
157 aSurface, ExtendMode::CLAMP);
158 default:
159 gfxDevCrash(LogReason::FilterNodeD2D1Backend)
160 << "Unknown draw target type! " << (int)aDT->GetBackendType();
161 return nullptr;
165 uint32_t ConvertValue(FilterType aType, uint32_t aAttribute, uint32_t aValue) {
166 switch (aType) {
167 case FilterType::COLOR_MATRIX:
168 if (aAttribute == ATT_COLOR_MATRIX_ALPHA_MODE) {
169 aValue = D2DAlphaMode(aValue);
171 break;
172 case FilterType::TRANSFORM:
173 if (aAttribute == ATT_TRANSFORM_FILTER) {
174 aValue = D2DAffineTransformInterpolationMode(SamplingFilter(aValue));
176 break;
177 case FilterType::BLEND:
178 if (aAttribute == ATT_BLEND_BLENDMODE) {
179 aValue = D2DBlendMode(aValue);
181 break;
182 case FilterType::MORPHOLOGY:
183 if (aAttribute == ATT_MORPHOLOGY_OPERATOR) {
184 aValue = D2DMorphologyMode(aValue);
186 break;
187 case FilterType::DISPLACEMENT_MAP:
188 if (aAttribute == ATT_DISPLACEMENT_MAP_X_CHANNEL ||
189 aAttribute == ATT_DISPLACEMENT_MAP_Y_CHANNEL) {
190 aValue = D2DChannelSelector(aValue);
192 break;
193 case FilterType::TURBULENCE:
194 if (aAttribute == ATT_TURBULENCE_TYPE) {
195 aValue = D2DTurbulenceNoise(aValue);
197 break;
198 case FilterType::COMPOSITE:
199 if (aAttribute == ATT_COMPOSITE_OPERATOR) {
200 aValue = D2DFilterCompositionMode(aValue);
202 break;
203 default:
204 break;
207 return aValue;
210 void ConvertValue(FilterType aType, uint32_t aAttribute, IntSize& aValue) {
211 switch (aType) {
212 case FilterType::MORPHOLOGY:
213 if (aAttribute == ATT_MORPHOLOGY_RADII) {
214 aValue.width *= 2;
215 aValue.width += 1;
216 aValue.height *= 2;
217 aValue.height += 1;
219 break;
220 default:
221 break;
225 UINT32
226 GetD2D1InputForInput(FilterType aType, uint32_t aIndex) { return aIndex; }
228 #define CONVERT_PROP(moz2dname, d2dname) \
229 case ATT_##moz2dname: \
230 return D2D1_##d2dname
232 UINT32
233 GetD2D1PropForAttribute(FilterType aType, uint32_t aIndex) {
234 switch (aType) {
235 case FilterType::COLOR_MATRIX:
236 switch (aIndex) {
237 CONVERT_PROP(COLOR_MATRIX_MATRIX, COLORMATRIX_PROP_COLOR_MATRIX);
238 CONVERT_PROP(COLOR_MATRIX_ALPHA_MODE, COLORMATRIX_PROP_ALPHA_MODE);
240 break;
241 case FilterType::TRANSFORM:
242 switch (aIndex) {
243 CONVERT_PROP(TRANSFORM_MATRIX, 2DAFFINETRANSFORM_PROP_TRANSFORM_MATRIX);
244 CONVERT_PROP(TRANSFORM_FILTER,
245 2DAFFINETRANSFORM_PROP_INTERPOLATION_MODE);
247 case FilterType::BLEND:
248 switch (aIndex) { CONVERT_PROP(BLEND_BLENDMODE, BLEND_PROP_MODE); }
249 break;
250 case FilterType::MORPHOLOGY:
251 switch (aIndex) {
252 CONVERT_PROP(MORPHOLOGY_OPERATOR, MORPHOLOGY_PROP_MODE);
254 break;
255 case FilterType::FLOOD:
256 switch (aIndex) { CONVERT_PROP(FLOOD_COLOR, FLOOD_PROP_COLOR); }
257 break;
258 case FilterType::TILE:
259 switch (aIndex) { CONVERT_PROP(TILE_SOURCE_RECT, TILE_PROP_RECT); }
260 break;
261 case FilterType::TABLE_TRANSFER:
262 switch (aIndex) {
263 CONVERT_PROP(TABLE_TRANSFER_DISABLE_R, TABLETRANSFER_PROP_RED_DISABLE);
264 CONVERT_PROP(TABLE_TRANSFER_DISABLE_G,
265 TABLETRANSFER_PROP_GREEN_DISABLE);
266 CONVERT_PROP(TABLE_TRANSFER_DISABLE_B, TABLETRANSFER_PROP_BLUE_DISABLE);
267 CONVERT_PROP(TABLE_TRANSFER_DISABLE_A,
268 TABLETRANSFER_PROP_ALPHA_DISABLE);
269 CONVERT_PROP(TABLE_TRANSFER_TABLE_R, TABLETRANSFER_PROP_RED_TABLE);
270 CONVERT_PROP(TABLE_TRANSFER_TABLE_G, TABLETRANSFER_PROP_GREEN_TABLE);
271 CONVERT_PROP(TABLE_TRANSFER_TABLE_B, TABLETRANSFER_PROP_BLUE_TABLE);
272 CONVERT_PROP(TABLE_TRANSFER_TABLE_A, TABLETRANSFER_PROP_ALPHA_TABLE);
274 break;
275 case FilterType::DISCRETE_TRANSFER:
276 switch (aIndex) {
277 CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_R,
278 DISCRETETRANSFER_PROP_RED_DISABLE);
279 CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_G,
280 DISCRETETRANSFER_PROP_GREEN_DISABLE);
281 CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_B,
282 DISCRETETRANSFER_PROP_BLUE_DISABLE);
283 CONVERT_PROP(DISCRETE_TRANSFER_DISABLE_A,
284 DISCRETETRANSFER_PROP_ALPHA_DISABLE);
285 CONVERT_PROP(DISCRETE_TRANSFER_TABLE_R,
286 DISCRETETRANSFER_PROP_RED_TABLE);
287 CONVERT_PROP(DISCRETE_TRANSFER_TABLE_G,
288 DISCRETETRANSFER_PROP_GREEN_TABLE);
289 CONVERT_PROP(DISCRETE_TRANSFER_TABLE_B,
290 DISCRETETRANSFER_PROP_BLUE_TABLE);
291 CONVERT_PROP(DISCRETE_TRANSFER_TABLE_A,
292 DISCRETETRANSFER_PROP_ALPHA_TABLE);
294 break;
295 case FilterType::LINEAR_TRANSFER:
296 switch (aIndex) {
297 CONVERT_PROP(LINEAR_TRANSFER_DISABLE_R,
298 LINEARTRANSFER_PROP_RED_DISABLE);
299 CONVERT_PROP(LINEAR_TRANSFER_DISABLE_G,
300 LINEARTRANSFER_PROP_GREEN_DISABLE);
301 CONVERT_PROP(LINEAR_TRANSFER_DISABLE_B,
302 LINEARTRANSFER_PROP_BLUE_DISABLE);
303 CONVERT_PROP(LINEAR_TRANSFER_DISABLE_A,
304 LINEARTRANSFER_PROP_ALPHA_DISABLE);
305 CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_R,
306 LINEARTRANSFER_PROP_RED_Y_INTERCEPT);
307 CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_G,
308 LINEARTRANSFER_PROP_GREEN_Y_INTERCEPT);
309 CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_B,
310 LINEARTRANSFER_PROP_BLUE_Y_INTERCEPT);
311 CONVERT_PROP(LINEAR_TRANSFER_INTERCEPT_A,
312 LINEARTRANSFER_PROP_ALPHA_Y_INTERCEPT);
313 CONVERT_PROP(LINEAR_TRANSFER_SLOPE_R, LINEARTRANSFER_PROP_RED_SLOPE);
314 CONVERT_PROP(LINEAR_TRANSFER_SLOPE_G, LINEARTRANSFER_PROP_GREEN_SLOPE);
315 CONVERT_PROP(LINEAR_TRANSFER_SLOPE_B, LINEARTRANSFER_PROP_BLUE_SLOPE);
316 CONVERT_PROP(LINEAR_TRANSFER_SLOPE_A, LINEARTRANSFER_PROP_ALPHA_SLOPE);
318 break;
319 case FilterType::GAMMA_TRANSFER:
320 switch (aIndex) {
321 CONVERT_PROP(GAMMA_TRANSFER_DISABLE_R, GAMMATRANSFER_PROP_RED_DISABLE);
322 CONVERT_PROP(GAMMA_TRANSFER_DISABLE_G,
323 GAMMATRANSFER_PROP_GREEN_DISABLE);
324 CONVERT_PROP(GAMMA_TRANSFER_DISABLE_B, GAMMATRANSFER_PROP_BLUE_DISABLE);
325 CONVERT_PROP(GAMMA_TRANSFER_DISABLE_A,
326 GAMMATRANSFER_PROP_ALPHA_DISABLE);
327 CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_R,
328 GAMMATRANSFER_PROP_RED_AMPLITUDE);
329 CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_G,
330 GAMMATRANSFER_PROP_GREEN_AMPLITUDE);
331 CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_B,
332 GAMMATRANSFER_PROP_BLUE_AMPLITUDE);
333 CONVERT_PROP(GAMMA_TRANSFER_AMPLITUDE_A,
334 GAMMATRANSFER_PROP_ALPHA_AMPLITUDE);
335 CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_R,
336 GAMMATRANSFER_PROP_RED_EXPONENT);
337 CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_G,
338 GAMMATRANSFER_PROP_GREEN_EXPONENT);
339 CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_B,
340 GAMMATRANSFER_PROP_BLUE_EXPONENT);
341 CONVERT_PROP(GAMMA_TRANSFER_EXPONENT_A,
342 GAMMATRANSFER_PROP_ALPHA_EXPONENT);
343 CONVERT_PROP(GAMMA_TRANSFER_OFFSET_R, GAMMATRANSFER_PROP_RED_OFFSET);
344 CONVERT_PROP(GAMMA_TRANSFER_OFFSET_G, GAMMATRANSFER_PROP_GREEN_OFFSET);
345 CONVERT_PROP(GAMMA_TRANSFER_OFFSET_B, GAMMATRANSFER_PROP_BLUE_OFFSET);
346 CONVERT_PROP(GAMMA_TRANSFER_OFFSET_A, GAMMATRANSFER_PROP_ALPHA_OFFSET);
348 break;
349 case FilterType::CONVOLVE_MATRIX:
350 switch (aIndex) {
351 CONVERT_PROP(CONVOLVE_MATRIX_BIAS, CONVOLVEMATRIX_PROP_BIAS);
352 CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_MATRIX,
353 CONVOLVEMATRIX_PROP_KERNEL_MATRIX);
354 CONVERT_PROP(CONVOLVE_MATRIX_DIVISOR, CONVOLVEMATRIX_PROP_DIVISOR);
355 CONVERT_PROP(CONVOLVE_MATRIX_KERNEL_UNIT_LENGTH,
356 CONVOLVEMATRIX_PROP_KERNEL_UNIT_LENGTH);
357 CONVERT_PROP(CONVOLVE_MATRIX_PRESERVE_ALPHA,
358 CONVOLVEMATRIX_PROP_PRESERVE_ALPHA);
360 case FilterType::DISPLACEMENT_MAP:
361 switch (aIndex) {
362 CONVERT_PROP(DISPLACEMENT_MAP_SCALE, DISPLACEMENTMAP_PROP_SCALE);
363 CONVERT_PROP(DISPLACEMENT_MAP_X_CHANNEL,
364 DISPLACEMENTMAP_PROP_X_CHANNEL_SELECT);
365 CONVERT_PROP(DISPLACEMENT_MAP_Y_CHANNEL,
366 DISPLACEMENTMAP_PROP_Y_CHANNEL_SELECT);
368 break;
369 case FilterType::TURBULENCE:
370 switch (aIndex) {
371 CONVERT_PROP(TURBULENCE_BASE_FREQUENCY, TURBULENCE_PROP_BASE_FREQUENCY);
372 CONVERT_PROP(TURBULENCE_NUM_OCTAVES, TURBULENCE_PROP_NUM_OCTAVES);
373 CONVERT_PROP(TURBULENCE_SEED, TURBULENCE_PROP_SEED);
374 CONVERT_PROP(TURBULENCE_STITCHABLE, TURBULENCE_PROP_STITCHABLE);
375 CONVERT_PROP(TURBULENCE_TYPE, TURBULENCE_PROP_NOISE);
377 break;
378 case FilterType::ARITHMETIC_COMBINE:
379 switch (aIndex) {
380 CONVERT_PROP(ARITHMETIC_COMBINE_COEFFICIENTS,
381 ARITHMETICCOMPOSITE_PROP_COEFFICIENTS);
383 break;
384 case FilterType::COMPOSITE:
385 switch (aIndex) { CONVERT_PROP(COMPOSITE_OPERATOR, COMPOSITE_PROP_MODE); }
386 break;
387 case FilterType::GAUSSIAN_BLUR:
388 switch (aIndex) {
389 CONVERT_PROP(GAUSSIAN_BLUR_STD_DEVIATION,
390 GAUSSIANBLUR_PROP_STANDARD_DEVIATION);
392 break;
393 case FilterType::DIRECTIONAL_BLUR:
394 switch (aIndex) {
395 CONVERT_PROP(DIRECTIONAL_BLUR_STD_DEVIATION,
396 DIRECTIONALBLUR_PROP_STANDARD_DEVIATION);
397 CONVERT_PROP(DIRECTIONAL_BLUR_DIRECTION, DIRECTIONALBLUR_PROP_ANGLE);
399 break;
400 case FilterType::POINT_DIFFUSE:
401 switch (aIndex) {
402 CONVERT_PROP(POINT_DIFFUSE_DIFFUSE_CONSTANT,
403 POINTDIFFUSE_PROP_DIFFUSE_CONSTANT);
404 CONVERT_PROP(POINT_DIFFUSE_POSITION, POINTDIFFUSE_PROP_LIGHT_POSITION);
405 CONVERT_PROP(POINT_DIFFUSE_COLOR, POINTDIFFUSE_PROP_COLOR);
406 CONVERT_PROP(POINT_DIFFUSE_SURFACE_SCALE,
407 POINTDIFFUSE_PROP_SURFACE_SCALE);
408 CONVERT_PROP(POINT_DIFFUSE_KERNEL_UNIT_LENGTH,
409 POINTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
411 break;
412 case FilterType::SPOT_DIFFUSE:
413 switch (aIndex) {
414 CONVERT_PROP(SPOT_DIFFUSE_DIFFUSE_CONSTANT,
415 SPOTDIFFUSE_PROP_DIFFUSE_CONSTANT);
416 CONVERT_PROP(SPOT_DIFFUSE_POINTS_AT, SPOTDIFFUSE_PROP_POINTS_AT);
417 CONVERT_PROP(SPOT_DIFFUSE_FOCUS, SPOTDIFFUSE_PROP_FOCUS);
418 CONVERT_PROP(SPOT_DIFFUSE_LIMITING_CONE_ANGLE,
419 SPOTDIFFUSE_PROP_LIMITING_CONE_ANGLE);
420 CONVERT_PROP(SPOT_DIFFUSE_POSITION, SPOTDIFFUSE_PROP_LIGHT_POSITION);
421 CONVERT_PROP(SPOT_DIFFUSE_COLOR, SPOTDIFFUSE_PROP_COLOR);
422 CONVERT_PROP(SPOT_DIFFUSE_SURFACE_SCALE,
423 SPOTDIFFUSE_PROP_SURFACE_SCALE);
424 CONVERT_PROP(SPOT_DIFFUSE_KERNEL_UNIT_LENGTH,
425 SPOTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
427 break;
428 case FilterType::DISTANT_DIFFUSE:
429 switch (aIndex) {
430 CONVERT_PROP(DISTANT_DIFFUSE_DIFFUSE_CONSTANT,
431 DISTANTDIFFUSE_PROP_DIFFUSE_CONSTANT);
432 CONVERT_PROP(DISTANT_DIFFUSE_AZIMUTH, DISTANTDIFFUSE_PROP_AZIMUTH);
433 CONVERT_PROP(DISTANT_DIFFUSE_ELEVATION, DISTANTDIFFUSE_PROP_ELEVATION);
434 CONVERT_PROP(DISTANT_DIFFUSE_COLOR, DISTANTDIFFUSE_PROP_COLOR);
435 CONVERT_PROP(DISTANT_DIFFUSE_SURFACE_SCALE,
436 DISTANTDIFFUSE_PROP_SURFACE_SCALE);
437 CONVERT_PROP(DISTANT_DIFFUSE_KERNEL_UNIT_LENGTH,
438 DISTANTDIFFUSE_PROP_KERNEL_UNIT_LENGTH);
440 break;
441 case FilterType::POINT_SPECULAR:
442 switch (aIndex) {
443 CONVERT_PROP(POINT_SPECULAR_SPECULAR_CONSTANT,
444 POINTSPECULAR_PROP_SPECULAR_CONSTANT);
445 CONVERT_PROP(POINT_SPECULAR_SPECULAR_EXPONENT,
446 POINTSPECULAR_PROP_SPECULAR_EXPONENT);
447 CONVERT_PROP(POINT_SPECULAR_POSITION,
448 POINTSPECULAR_PROP_LIGHT_POSITION);
449 CONVERT_PROP(POINT_SPECULAR_COLOR, POINTSPECULAR_PROP_COLOR);
450 CONVERT_PROP(POINT_SPECULAR_SURFACE_SCALE,
451 POINTSPECULAR_PROP_SURFACE_SCALE);
452 CONVERT_PROP(POINT_SPECULAR_KERNEL_UNIT_LENGTH,
453 POINTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
455 break;
456 case FilterType::SPOT_SPECULAR:
457 switch (aIndex) {
458 CONVERT_PROP(SPOT_SPECULAR_SPECULAR_CONSTANT,
459 SPOTSPECULAR_PROP_SPECULAR_CONSTANT);
460 CONVERT_PROP(SPOT_SPECULAR_SPECULAR_EXPONENT,
461 SPOTSPECULAR_PROP_SPECULAR_EXPONENT);
462 CONVERT_PROP(SPOT_SPECULAR_POINTS_AT, SPOTSPECULAR_PROP_POINTS_AT);
463 CONVERT_PROP(SPOT_SPECULAR_FOCUS, SPOTSPECULAR_PROP_FOCUS);
464 CONVERT_PROP(SPOT_SPECULAR_LIMITING_CONE_ANGLE,
465 SPOTSPECULAR_PROP_LIMITING_CONE_ANGLE);
466 CONVERT_PROP(SPOT_SPECULAR_POSITION, SPOTSPECULAR_PROP_LIGHT_POSITION);
467 CONVERT_PROP(SPOT_SPECULAR_COLOR, SPOTSPECULAR_PROP_COLOR);
468 CONVERT_PROP(SPOT_SPECULAR_SURFACE_SCALE,
469 SPOTSPECULAR_PROP_SURFACE_SCALE);
470 CONVERT_PROP(SPOT_SPECULAR_KERNEL_UNIT_LENGTH,
471 SPOTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
473 break;
474 case FilterType::DISTANT_SPECULAR:
475 switch (aIndex) {
476 CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_CONSTANT,
477 DISTANTSPECULAR_PROP_SPECULAR_CONSTANT);
478 CONVERT_PROP(DISTANT_SPECULAR_SPECULAR_EXPONENT,
479 DISTANTSPECULAR_PROP_SPECULAR_EXPONENT);
480 CONVERT_PROP(DISTANT_SPECULAR_AZIMUTH, DISTANTSPECULAR_PROP_AZIMUTH);
481 CONVERT_PROP(DISTANT_SPECULAR_ELEVATION,
482 DISTANTSPECULAR_PROP_ELEVATION);
483 CONVERT_PROP(DISTANT_SPECULAR_COLOR, DISTANTSPECULAR_PROP_COLOR);
484 CONVERT_PROP(DISTANT_SPECULAR_SURFACE_SCALE,
485 DISTANTSPECULAR_PROP_SURFACE_SCALE);
486 CONVERT_PROP(DISTANT_SPECULAR_KERNEL_UNIT_LENGTH,
487 DISTANTSPECULAR_PROP_KERNEL_UNIT_LENGTH);
489 break;
490 case FilterType::CROP:
491 switch (aIndex) { CONVERT_PROP(CROP_RECT, CROP_PROP_RECT); }
492 break;
493 default:
494 break;
497 return UINT32_MAX;
500 bool GetD2D1PropsForIntSize(FilterType aType, uint32_t aIndex,
501 UINT32* aPropWidth, UINT32* aPropHeight) {
502 switch (aType) {
503 case FilterType::MORPHOLOGY:
504 if (aIndex == ATT_MORPHOLOGY_RADII) {
505 *aPropWidth = D2D1_MORPHOLOGY_PROP_WIDTH;
506 *aPropHeight = D2D1_MORPHOLOGY_PROP_HEIGHT;
507 return true;
509 break;
510 default:
511 break;
513 return false;
516 static inline REFCLSID GetCLDIDForFilterType(FilterType aType) {
517 switch (aType) {
518 case FilterType::OPACITY:
519 case FilterType::COLOR_MATRIX:
520 return CLSID_D2D1ColorMatrix;
521 case FilterType::TRANSFORM:
522 return CLSID_D2D12DAffineTransform;
523 case FilterType::BLEND:
524 return CLSID_D2D1Blend;
525 case FilterType::MORPHOLOGY:
526 return CLSID_D2D1Morphology;
527 case FilterType::FLOOD:
528 return CLSID_D2D1Flood;
529 case FilterType::TILE:
530 return CLSID_D2D1Tile;
531 case FilterType::TABLE_TRANSFER:
532 return CLSID_D2D1TableTransfer;
533 case FilterType::LINEAR_TRANSFER:
534 return CLSID_D2D1LinearTransfer;
535 case FilterType::DISCRETE_TRANSFER:
536 return CLSID_D2D1DiscreteTransfer;
537 case FilterType::GAMMA_TRANSFER:
538 return CLSID_D2D1GammaTransfer;
539 case FilterType::DISPLACEMENT_MAP:
540 return CLSID_D2D1DisplacementMap;
541 case FilterType::TURBULENCE:
542 return CLSID_D2D1Turbulence;
543 case FilterType::ARITHMETIC_COMBINE:
544 return CLSID_D2D1ArithmeticComposite;
545 case FilterType::COMPOSITE:
546 return CLSID_D2D1Composite;
547 case FilterType::GAUSSIAN_BLUR:
548 return CLSID_D2D1GaussianBlur;
549 case FilterType::DIRECTIONAL_BLUR:
550 return CLSID_D2D1DirectionalBlur;
551 case FilterType::POINT_DIFFUSE:
552 return CLSID_D2D1PointDiffuse;
553 case FilterType::POINT_SPECULAR:
554 return CLSID_D2D1PointSpecular;
555 case FilterType::SPOT_DIFFUSE:
556 return CLSID_D2D1SpotDiffuse;
557 case FilterType::SPOT_SPECULAR:
558 return CLSID_D2D1SpotSpecular;
559 case FilterType::DISTANT_DIFFUSE:
560 return CLSID_D2D1DistantDiffuse;
561 case FilterType::DISTANT_SPECULAR:
562 return CLSID_D2D1DistantSpecular;
563 case FilterType::CROP:
564 return CLSID_D2D1Crop;
565 case FilterType::PREMULTIPLY:
566 return CLSID_D2D1Premultiply;
567 case FilterType::UNPREMULTIPLY:
568 return CLSID_D2D1UnPremultiply;
569 default:
570 break;
572 return GUID_NULL;
575 static bool IsTransferFilterType(FilterType aType) {
576 switch (aType) {
577 case FilterType::LINEAR_TRANSFER:
578 case FilterType::GAMMA_TRANSFER:
579 case FilterType::TABLE_TRANSFER:
580 case FilterType::DISCRETE_TRANSFER:
581 return true;
582 default:
583 return false;
587 static bool HasUnboundedOutputRegion(FilterType aType) {
588 if (IsTransferFilterType(aType)) {
589 return true;
592 switch (aType) {
593 case FilterType::COLOR_MATRIX:
594 case FilterType::POINT_DIFFUSE:
595 case FilterType::SPOT_DIFFUSE:
596 case FilterType::DISTANT_DIFFUSE:
597 case FilterType::POINT_SPECULAR:
598 case FilterType::SPOT_SPECULAR:
599 case FilterType::DISTANT_SPECULAR:
600 return true;
601 default:
602 return false;
606 /* static */
607 already_AddRefed<FilterNode> FilterNodeD2D1::Create(ID2D1DeviceContext* aDC,
608 FilterType aType) {
609 if (aType == FilterType::CONVOLVE_MATRIX) {
610 return MakeAndAddRef<FilterNodeConvolveD2D1>(aDC);
613 RefPtr<ID2D1Effect> effect;
614 HRESULT hr;
616 hr = aDC->CreateEffect(GetCLDIDForFilterType(aType), getter_AddRefs(effect));
618 if (FAILED(hr) || !effect) {
619 gfxCriticalErrorOnce() << "Failed to create effect for FilterType: "
620 << hexa(hr);
621 return nullptr;
624 if (aType == FilterType::ARITHMETIC_COMBINE) {
625 effect->SetValue(D2D1_ARITHMETICCOMPOSITE_PROP_CLAMP_OUTPUT, TRUE);
628 if (aType == FilterType::OPACITY) {
629 return MakeAndAddRef<FilterNodeOpacityD2D1>(effect, aType);
632 RefPtr<FilterNodeD2D1> filter = new FilterNodeD2D1(effect, aType);
634 if (HasUnboundedOutputRegion(aType)) {
635 // These filters can produce non-transparent output from transparent
636 // input pixels, and we want them to have an unbounded output region.
637 filter = new FilterNodeExtendInputAdapterD2D1(aDC, filter, aType);
640 if (IsTransferFilterType(aType)) {
641 // Component transfer filters should appear to apply on unpremultiplied
642 // colors, but the D2D1 effects apply on premultiplied colors.
643 filter = new FilterNodePremultiplyAdapterD2D1(aDC, filter, aType);
646 return filter.forget();
649 void FilterNodeD2D1::InitUnmappedProperties() {
650 switch (mType) {
651 case FilterType::COLOR_MATRIX:
652 mEffect->SetValue(D2D1_COLORMATRIX_PROP_CLAMP_OUTPUT, TRUE);
653 break;
654 case FilterType::TRANSFORM:
655 mEffect->SetValue(D2D1_2DAFFINETRANSFORM_PROP_BORDER_MODE,
656 D2D1_BORDER_MODE_HARD);
657 break;
658 default:
659 break;
663 void FilterNodeD2D1::SetInput(uint32_t aIndex, SourceSurface* aSurface) {
664 UINT32 input = GetD2D1InputForInput(mType, aIndex);
665 ID2D1Effect* effect = InputEffect();
667 if (mType == FilterType::COMPOSITE) {
668 UINT32 inputCount = effect->GetInputCount();
670 if (aIndex == inputCount - 1 && aSurface == nullptr) {
671 effect->SetInputCount(inputCount - 1);
672 } else if (aIndex >= inputCount && aSurface) {
673 effect->SetInputCount(aIndex + 1);
677 auto inputCount = effect->GetInputCount();
678 MOZ_RELEASE_ASSERT(input < inputCount);
680 mInputSurfaces.resize(inputCount);
681 mInputFilters.resize(inputCount);
683 // In order to convert aSurface into an ID2D1Image, we need to know what
684 // DrawTarget we paint into. However, the same FilterNode object can be
685 // used on different DrawTargets, so we need to hold on to the SourceSurface
686 // objects and delay the conversion until we're actually painted and know
687 // our target DrawTarget.
688 // The conversion happens in WillDraw().
690 mInputSurfaces[input] = aSurface;
691 mInputFilters[input] = nullptr;
693 // Clear the existing image from the effect.
694 effect->SetInput(input, nullptr);
697 void FilterNodeD2D1::SetInput(uint32_t aIndex, FilterNode* aFilter) {
698 UINT32 input = GetD2D1InputForInput(mType, aIndex);
699 ID2D1Effect* effect = InputEffect();
701 if (mType == FilterType::COMPOSITE) {
702 UINT32 inputCount = effect->GetInputCount();
704 if (aIndex == inputCount - 1 && aFilter == nullptr) {
705 effect->SetInputCount(inputCount - 1);
706 } else if (aIndex >= inputCount && aFilter) {
707 effect->SetInputCount(aIndex + 1);
711 auto inputCount = effect->GetInputCount();
712 MOZ_RELEASE_ASSERT(input < inputCount);
714 if (aFilter && aFilter->GetBackendType() != FILTER_BACKEND_DIRECT2D1_1) {
715 gfxWarning() << "Unknown input FilterNode set on effect.";
716 MOZ_ASSERT(0);
717 return;
720 FilterNodeD2D1* filter = static_cast<FilterNodeD2D1*>(aFilter);
722 mInputSurfaces.resize(inputCount);
723 mInputFilters.resize(inputCount);
725 // We hold on to the FilterNode object so that we can call WillDraw() on it.
726 mInputSurfaces[input] = nullptr;
727 mInputFilters[input] = filter;
729 if (filter) {
730 effect->SetInputEffect(input, filter->OutputEffect());
734 void FilterNodeD2D1::WillDraw(DrawTarget* aDT) {
735 // Convert input SourceSurfaces into ID2D1Images and set them on the effect.
736 for (size_t inputIndex = 0; inputIndex < mInputSurfaces.size();
737 inputIndex++) {
738 if (mInputSurfaces[inputIndex]) {
739 ID2D1Effect* effect = InputEffect();
740 RefPtr<ID2D1Image> image =
741 GetImageForSourceSurface(aDT, mInputSurfaces[inputIndex]);
742 effect->SetInput(inputIndex, image);
746 // Call WillDraw() on our input filters.
747 for (std::vector<RefPtr<FilterNodeD2D1>>::iterator it = mInputFilters.begin();
748 it != mInputFilters.end(); it++) {
749 if (*it) {
750 (*it)->WillDraw(aDT);
755 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue) {
756 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
757 MOZ_ASSERT(input < mEffect->GetPropertyCount());
759 if (mType == FilterType::TURBULENCE &&
760 aIndex == ATT_TURBULENCE_BASE_FREQUENCY) {
761 mEffect->SetValue(input, D2D1::Vector2F(FLOAT(aValue), FLOAT(aValue)));
762 return;
763 } else if (mType == FilterType::DIRECTIONAL_BLUR &&
764 aIndex == ATT_DIRECTIONAL_BLUR_DIRECTION) {
765 mEffect->SetValue(input, aValue == BLUR_DIRECTION_X ? 0 : 90.0f);
766 return;
769 mEffect->SetValue(input, ConvertValue(mType, aIndex, aValue));
772 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, Float aValue) {
773 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
774 MOZ_ASSERT(input < mEffect->GetPropertyCount());
776 mEffect->SetValue(input, aValue);
779 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point& aValue) {
780 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
781 MOZ_ASSERT(input < mEffect->GetPropertyCount());
783 mEffect->SetValue(input, D2DPoint(aValue));
786 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix5x4& aValue) {
787 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
788 MOZ_ASSERT(input < mEffect->GetPropertyCount());
790 mEffect->SetValue(input, D2DMatrix5x4(aValue));
793 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Point3D& aValue) {
794 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
795 MOZ_ASSERT(input < mEffect->GetPropertyCount());
797 mEffect->SetValue(input, D2DVector3D(aValue));
800 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Size& aValue) {
801 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
802 MOZ_ASSERT(input < mEffect->GetPropertyCount());
804 mEffect->SetValue(input, D2D1::Vector2F(aValue.width, aValue.height));
807 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntSize& aValue) {
808 UINT32 widthProp, heightProp;
810 if (!GetD2D1PropsForIntSize(mType, aIndex, &widthProp, &heightProp)) {
811 return;
814 IntSize value = aValue;
815 ConvertValue(mType, aIndex, value);
817 mEffect->SetValue(widthProp, (UINT)value.width);
818 mEffect->SetValue(heightProp, (UINT)value.height);
821 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const DeviceColor& aValue) {
822 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
823 MOZ_ASSERT(input < mEffect->GetPropertyCount());
825 switch (mType) {
826 case FilterType::POINT_DIFFUSE:
827 case FilterType::SPOT_DIFFUSE:
828 case FilterType::DISTANT_DIFFUSE:
829 case FilterType::POINT_SPECULAR:
830 case FilterType::SPOT_SPECULAR:
831 case FilterType::DISTANT_SPECULAR:
832 mEffect->SetValue(input, D2D1::Vector3F(aValue.r, aValue.g, aValue.b));
833 break;
834 default:
835 mEffect->SetValue(input,
836 D2D1::Vector4F(aValue.r * aValue.a, aValue.g * aValue.a,
837 aValue.b * aValue.a, aValue.a));
841 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Rect& aValue) {
842 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
843 MOZ_ASSERT(input < mEffect->GetPropertyCount());
845 mEffect->SetValue(input, D2DRect(aValue));
848 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntRect& aValue) {
849 if (mType == FilterType::TURBULENCE) {
850 MOZ_ASSERT(aIndex == ATT_TURBULENCE_RECT);
852 mEffect->SetValue(D2D1_TURBULENCE_PROP_OFFSET,
853 D2D1::Vector2F(Float(aValue.X()), Float(aValue.Y())));
854 mEffect->SetValue(
855 D2D1_TURBULENCE_PROP_SIZE,
856 D2D1::Vector2F(Float(aValue.Width()), Float(aValue.Height())));
857 return;
860 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
861 MOZ_ASSERT(input < mEffect->GetPropertyCount());
863 mEffect->SetValue(input,
864 D2D1::RectF(Float(aValue.X()), Float(aValue.Y()),
865 Float(aValue.XMost()), Float(aValue.YMost())));
868 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, bool aValue) {
869 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
870 MOZ_ASSERT(input < mEffect->GetPropertyCount());
872 mEffect->SetValue(input, (BOOL)aValue);
875 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Float* aValues,
876 uint32_t aSize) {
877 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
878 MOZ_ASSERT(input < mEffect->GetPropertyCount());
880 mEffect->SetValue(input, (BYTE*)aValues, sizeof(Float) * aSize);
883 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const IntPoint& aValue) {
884 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
885 MOZ_ASSERT(input < mEffect->GetPropertyCount());
887 mEffect->SetValue(input, D2DPoint(aValue));
890 void FilterNodeD2D1::SetAttribute(uint32_t aIndex, const Matrix& aMatrix) {
891 UINT32 input = GetD2D1PropForAttribute(mType, aIndex);
892 MOZ_ASSERT(input < mEffect->GetPropertyCount());
894 mEffect->SetValue(input, D2DMatrix(aMatrix));
897 void FilterNodeOpacityD2D1::SetAttribute(uint32_t aIndex, Float aValue) {
898 D2D1_MATRIX_5X4_F matrix =
899 D2D1::Matrix5x4F(aValue, 0, 0, 0, 0, aValue, 0, 0, 0, 0, aValue, 0, 0, 0,
900 0, aValue, 0, 0, 0, 0);
902 mEffect->SetValue(D2D1_COLORMATRIX_PROP_COLOR_MATRIX, matrix);
903 mEffect->SetValue(D2D1_COLORMATRIX_PROP_ALPHA_MODE,
904 D2D1_COLORMATRIX_ALPHA_MODE_STRAIGHT);
907 FilterNodeConvolveD2D1::FilterNodeConvolveD2D1(ID2D1DeviceContext* aDC)
908 : FilterNodeD2D1(nullptr, FilterType::CONVOLVE_MATRIX),
909 mEdgeMode(EDGE_MODE_DUPLICATE) {
910 // Correctly handling the interaction of edge mode and source rect is a bit
911 // tricky with D2D1 effects. We want the edge mode to only apply outside of
912 // the source rect (as specified by the ATT_CONVOLVE_MATRIX_SOURCE_RECT
913 // attribute). So if our input surface or filter is smaller than the source
914 // rect, we need to add transparency around it until we reach the edges of
915 // the source rect, and only then do any repeating or edge duplicating.
916 // Unfortunately, the border effect does not have a source rect attribute -
917 // it only looks at the output rect of its input filter or surface. So we use
918 // our custom ExtendInput effect to adjust the output rect of our input.
919 // All of this is only necessary when our edge mode is not EDGE_MODE_NONE, so
920 // we update the filter chain dynamically in UpdateChain().
922 HRESULT hr;
924 hr = aDC->CreateEffect(CLSID_D2D1ConvolveMatrix, getter_AddRefs(mEffect));
926 if (FAILED(hr) || !mEffect) {
927 gfxWarning() << "Failed to create ConvolveMatrix filter!";
928 return;
931 mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_BORDER_MODE,
932 D2D1_BORDER_MODE_SOFT);
934 hr = aDC->CreateEffect(CLSID_ExtendInputEffect,
935 getter_AddRefs(mExtendInputEffect));
937 if (FAILED(hr) || !mExtendInputEffect) {
938 gfxWarning() << "Failed to create ConvolveMatrix filter!";
939 return;
942 hr = aDC->CreateEffect(CLSID_D2D1Border, getter_AddRefs(mBorderEffect));
944 if (FAILED(hr) || !mBorderEffect) {
945 gfxWarning() << "Failed to create ConvolveMatrix filter!";
946 return;
949 mBorderEffect->SetInputEffect(0, mExtendInputEffect.get());
951 UpdateChain();
952 UpdateSourceRect();
955 void FilterNodeConvolveD2D1::SetInput(uint32_t aIndex, FilterNode* aFilter) {
956 FilterNodeD2D1::SetInput(aIndex, aFilter);
958 UpdateChain();
961 void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex, uint32_t aValue) {
962 if (aIndex != ATT_CONVOLVE_MATRIX_EDGE_MODE) {
963 return FilterNodeD2D1::SetAttribute(aIndex, aValue);
966 mEdgeMode = (ConvolveMatrixEdgeMode)aValue;
968 UpdateChain();
971 ID2D1Effect* FilterNodeConvolveD2D1::InputEffect() {
972 return mEdgeMode == EDGE_MODE_NONE ? mEffect.get() : mExtendInputEffect.get();
975 void FilterNodeConvolveD2D1::UpdateChain() {
976 // The shape of the filter graph:
978 // EDGE_MODE_NONE:
979 // input --> convolvematrix
981 // EDGE_MODE_DUPLICATE or EDGE_MODE_WRAP:
982 // input --> extendinput --> border --> convolvematrix
984 // mEffect is convolvematrix.
986 if (mEdgeMode != EDGE_MODE_NONE) {
987 mEffect->SetInputEffect(0, mBorderEffect.get());
990 RefPtr<ID2D1Effect> inputEffect;
991 if (mInputFilters.size() > 0 && mInputFilters[0]) {
992 inputEffect = mInputFilters[0]->OutputEffect();
994 InputEffect()->SetInputEffect(0, inputEffect);
996 if (mEdgeMode == EDGE_MODE_DUPLICATE) {
997 mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X,
998 D2D1_BORDER_EDGE_MODE_CLAMP);
999 mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y,
1000 D2D1_BORDER_EDGE_MODE_CLAMP);
1001 } else if (mEdgeMode == EDGE_MODE_WRAP) {
1002 mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_X,
1003 D2D1_BORDER_EDGE_MODE_WRAP);
1004 mBorderEffect->SetValue(D2D1_BORDER_PROP_EDGE_MODE_Y,
1005 D2D1_BORDER_EDGE_MODE_WRAP);
1009 void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex,
1010 const IntSize& aValue) {
1011 if (aIndex != ATT_CONVOLVE_MATRIX_KERNEL_SIZE) {
1012 MOZ_ASSERT(false);
1013 return;
1016 mKernelSize = aValue;
1018 mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_X, aValue.width);
1019 mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_SIZE_Y, aValue.height);
1021 UpdateOffset();
1024 void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex,
1025 const IntPoint& aValue) {
1026 if (aIndex != ATT_CONVOLVE_MATRIX_TARGET) {
1027 MOZ_ASSERT(false);
1028 return;
1031 mTarget = aValue;
1033 UpdateOffset();
1036 void FilterNodeConvolveD2D1::SetAttribute(uint32_t aIndex,
1037 const IntRect& aValue) {
1038 if (aIndex != ATT_CONVOLVE_MATRIX_SOURCE_RECT) {
1039 MOZ_ASSERT(false);
1040 return;
1043 mSourceRect = aValue;
1045 UpdateSourceRect();
1048 void FilterNodeConvolveD2D1::UpdateOffset() {
1049 D2D1_VECTOR_2F vector = D2D1::Vector2F(
1050 (Float(mKernelSize.width) - 1.0f) / 2.0f - Float(mTarget.x),
1051 (Float(mKernelSize.height) - 1.0f) / 2.0f - Float(mTarget.y));
1053 mEffect->SetValue(D2D1_CONVOLVEMATRIX_PROP_KERNEL_OFFSET, vector);
1056 void FilterNodeConvolveD2D1::UpdateSourceRect() {
1057 mExtendInputEffect->SetValue(
1058 EXTENDINPUT_PROP_OUTPUT_RECT,
1059 D2D1::Vector4F(Float(mSourceRect.X()), Float(mSourceRect.Y()),
1060 Float(mSourceRect.XMost()), Float(mSourceRect.YMost())));
1063 FilterNodeExtendInputAdapterD2D1::FilterNodeExtendInputAdapterD2D1(
1064 ID2D1DeviceContext* aDC, FilterNodeD2D1* aFilterNode, FilterType aType)
1065 : FilterNodeD2D1(aFilterNode->MainEffect(), aType),
1066 mWrappedFilterNode(aFilterNode) {
1067 // We have an mEffect that looks at the bounds of the input effect, and we
1068 // want mEffect to regard its input as unbounded. So we take the input,
1069 // pipe it through an ExtendInput effect (which has an infinite output rect
1070 // by default), and feed the resulting unbounded composition into mEffect.
1072 HRESULT hr;
1074 hr = aDC->CreateEffect(CLSID_ExtendInputEffect,
1075 getter_AddRefs(mExtendInputEffect));
1077 if (FAILED(hr) || !mExtendInputEffect) {
1078 gfxWarning() << "Failed to create extend input effect for filter: "
1079 << hexa(hr);
1080 return;
1083 aFilterNode->InputEffect()->SetInputEffect(0, mExtendInputEffect.get());
1086 FilterNodePremultiplyAdapterD2D1::FilterNodePremultiplyAdapterD2D1(
1087 ID2D1DeviceContext* aDC, FilterNodeD2D1* aFilterNode, FilterType aType)
1088 : FilterNodeD2D1(aFilterNode->MainEffect(), aType) {
1089 // D2D1 component transfer effects do strange things when it comes to
1090 // premultiplication.
1091 // For our purposes we only need the transfer filters to apply straight to
1092 // unpremultiplied source channels and output unpremultiplied results.
1093 // However, the D2D1 effects are designed differently: They can apply to both
1094 // premultiplied and unpremultiplied inputs, and they always premultiply
1095 // their result - at least in those color channels that have not been
1096 // disabled.
1097 // In order to determine whether the input needs to be unpremultiplied as
1098 // part of the transfer, the effect consults the alpha mode metadata of the
1099 // input surface or the input effect. We don't have such a concept in Moz2D,
1100 // and giving Moz2D users different results based on something that cannot be
1101 // influenced through Moz2D APIs seems like a bad idea.
1102 // We solve this by applying a premultiply effect to the input before feeding
1103 // it into the transfer effect. The premultiply effect always premultiplies
1104 // regardless of any alpha mode metadata on inputs, and it always marks its
1105 // output as premultiplied so that the transfer effect will unpremultiply
1106 // consistently. Feeding always-premultiplied input into the transfer effect
1107 // also avoids another problem that would appear when individual color
1108 // channels disable the transfer: In that case, the disabled channels would
1109 // pass through unchanged in their unpremultiplied form and the other
1110 // channels would be premultiplied, giving a mixed result.
1111 // But since we now ensure that the input is premultiplied, disabled channels
1112 // will pass premultiplied values through to the result, which is consistent
1113 // with the enabled channels.
1114 // We also add an unpremultiply effect that postprocesses the result of the
1115 // transfer effect because getting unpremultiplied results from the transfer
1116 // filters is part of the FilterNode API.
1117 HRESULT hr;
1119 hr = aDC->CreateEffect(CLSID_D2D1Premultiply,
1120 getter_AddRefs(mPrePremultiplyEffect));
1122 if (FAILED(hr) || !mPrePremultiplyEffect) {
1123 gfxWarning() << "Failed to create ComponentTransfer filter!";
1124 return;
1127 hr = aDC->CreateEffect(CLSID_D2D1UnPremultiply,
1128 getter_AddRefs(mPostUnpremultiplyEffect));
1130 if (FAILED(hr) || !mPostUnpremultiplyEffect) {
1131 gfxWarning() << "Failed to create ComponentTransfer filter!";
1132 return;
1135 aFilterNode->InputEffect()->SetInputEffect(0, mPrePremultiplyEffect.get());
1136 mPostUnpremultiplyEffect->SetInputEffect(0, aFilterNode->OutputEffect());
1139 } // namespace gfx
1140 } // namespace mozilla