Bug 1634272 - Don't use DocumentChannel for about:newtab r=mattwoodrow
[gecko.git] / gfx / 2d / Path.cpp
blob39a4aa5bdd2dc51133e244f6f5761b5e76802b9e
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 #include "2D.h"
8 #include "PathAnalysis.h"
9 #include "PathHelpers.h"
11 namespace mozilla {
12 namespace gfx {
14 static double CubicRoot(double aValue) {
15 if (aValue < 0.0) {
16 return -CubicRoot(-aValue);
17 } else {
18 return pow(aValue, 1.0 / 3.0);
22 struct PointD : public BasePoint<double, PointD> {
23 typedef BasePoint<double, PointD> Super;
25 PointD() : Super() {}
26 PointD(double aX, double aY) : Super(aX, aY) {}
27 MOZ_IMPLICIT PointD(const Point& aPoint) : Super(aPoint.x, aPoint.y) {}
29 Point ToPoint() const {
30 return Point(static_cast<Float>(x), static_cast<Float>(y));
34 struct BezierControlPoints {
35 BezierControlPoints() = default;
36 BezierControlPoints(const PointD& aCP1, const PointD& aCP2,
37 const PointD& aCP3, const PointD& aCP4)
38 : mCP1(aCP1), mCP2(aCP2), mCP3(aCP3), mCP4(aCP4) {}
40 PointD mCP1, mCP2, mCP3, mCP4;
43 void FlattenBezier(const BezierControlPoints& aPoints, PathSink* aSink,
44 double aTolerance);
46 Path::Path() = default;
48 Path::~Path() = default;
50 Float Path::ComputeLength() {
51 EnsureFlattenedPath();
52 return mFlattenedPath->ComputeLength();
55 Point Path::ComputePointAtLength(Float aLength, Point* aTangent) {
56 EnsureFlattenedPath();
57 return mFlattenedPath->ComputePointAtLength(aLength, aTangent);
60 void Path::EnsureFlattenedPath() {
61 if (!mFlattenedPath) {
62 mFlattenedPath = new FlattenedPath();
63 StreamToSink(mFlattenedPath);
67 // This is the maximum deviation we allow (with an additional ~20% margin of
68 // error) of the approximation from the actual Bezier curve.
69 const Float kFlatteningTolerance = 0.0001f;
71 void FlattenedPath::MoveTo(const Point& aPoint) {
72 MOZ_ASSERT(!mCalculatedLength);
73 FlatPathOp op;
74 op.mType = FlatPathOp::OP_MOVETO;
75 op.mPoint = aPoint;
76 mPathOps.push_back(op);
78 mBeginPoint = aPoint;
81 void FlattenedPath::LineTo(const Point& aPoint) {
82 MOZ_ASSERT(!mCalculatedLength);
83 FlatPathOp op;
84 op.mType = FlatPathOp::OP_LINETO;
85 op.mPoint = aPoint;
86 mPathOps.push_back(op);
89 void FlattenedPath::BezierTo(const Point& aCP1, const Point& aCP2,
90 const Point& aCP3) {
91 MOZ_ASSERT(!mCalculatedLength);
92 FlattenBezier(BezierControlPoints(CurrentPoint(), aCP1, aCP2, aCP3), this,
93 kFlatteningTolerance);
96 void FlattenedPath::QuadraticBezierTo(const Point& aCP1, const Point& aCP2) {
97 MOZ_ASSERT(!mCalculatedLength);
98 // We need to elevate the degree of this quadratic B�zier to cubic, so we're
99 // going to add an intermediate control point, and recompute control point 1.
100 // The first and last control points remain the same.
101 // This formula can be found on http://fontforge.sourceforge.net/bezier.html
102 Point CP0 = CurrentPoint();
103 Point CP1 = (CP0 + aCP1 * 2.0) / 3.0;
104 Point CP2 = (aCP2 + aCP1 * 2.0) / 3.0;
105 Point CP3 = aCP2;
107 BezierTo(CP1, CP2, CP3);
110 void FlattenedPath::Close() {
111 MOZ_ASSERT(!mCalculatedLength);
112 LineTo(mBeginPoint);
115 void FlattenedPath::Arc(const Point& aOrigin, float aRadius, float aStartAngle,
116 float aEndAngle, bool aAntiClockwise) {
117 ArcToBezier(this, aOrigin, Size(aRadius, aRadius), aStartAngle, aEndAngle,
118 aAntiClockwise);
121 Float FlattenedPath::ComputeLength() {
122 if (!mCalculatedLength) {
123 Point currentPoint;
125 for (uint32_t i = 0; i < mPathOps.size(); i++) {
126 if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) {
127 currentPoint = mPathOps[i].mPoint;
128 } else {
129 mCachedLength += Distance(currentPoint, mPathOps[i].mPoint);
130 currentPoint = mPathOps[i].mPoint;
134 mCalculatedLength = true;
137 return mCachedLength;
140 Point FlattenedPath::ComputePointAtLength(Float aLength, Point* aTangent) {
141 // We track the last point that -wasn't- in the same place as the current
142 // point so if we pass the edge of the path with a bunch of zero length
143 // paths we still get the correct tangent vector.
144 Point lastPointSinceMove;
145 Point currentPoint;
146 for (uint32_t i = 0; i < mPathOps.size(); i++) {
147 if (mPathOps[i].mType == FlatPathOp::OP_MOVETO) {
148 if (Distance(currentPoint, mPathOps[i].mPoint)) {
149 lastPointSinceMove = currentPoint;
151 currentPoint = mPathOps[i].mPoint;
152 } else {
153 Float segmentLength = Distance(currentPoint, mPathOps[i].mPoint);
155 if (segmentLength) {
156 lastPointSinceMove = currentPoint;
157 if (segmentLength > aLength) {
158 Point currentVector = mPathOps[i].mPoint - currentPoint;
159 Point tangent = currentVector / segmentLength;
160 if (aTangent) {
161 *aTangent = tangent;
163 return currentPoint + tangent * aLength;
167 aLength -= segmentLength;
168 currentPoint = mPathOps[i].mPoint;
172 Point currentVector = currentPoint - lastPointSinceMove;
173 if (aTangent) {
174 if (hypotf(currentVector.x, currentVector.y)) {
175 *aTangent = currentVector / hypotf(currentVector.x, currentVector.y);
176 } else {
177 *aTangent = Point();
180 return currentPoint;
183 // This function explicitly permits aControlPoints to refer to the same object
184 // as either of the other arguments.
185 static void SplitBezier(const BezierControlPoints& aControlPoints,
186 BezierControlPoints* aFirstSegmentControlPoints,
187 BezierControlPoints* aSecondSegmentControlPoints,
188 double t) {
189 MOZ_ASSERT(aSecondSegmentControlPoints);
191 *aSecondSegmentControlPoints = aControlPoints;
193 PointD cp1a =
194 aControlPoints.mCP1 + (aControlPoints.mCP2 - aControlPoints.mCP1) * t;
195 PointD cp2a =
196 aControlPoints.mCP2 + (aControlPoints.mCP3 - aControlPoints.mCP2) * t;
197 PointD cp1aa = cp1a + (cp2a - cp1a) * t;
198 PointD cp3a =
199 aControlPoints.mCP3 + (aControlPoints.mCP4 - aControlPoints.mCP3) * t;
200 PointD cp2aa = cp2a + (cp3a - cp2a) * t;
201 PointD cp1aaa = cp1aa + (cp2aa - cp1aa) * t;
202 aSecondSegmentControlPoints->mCP4 = aControlPoints.mCP4;
204 if (aFirstSegmentControlPoints) {
205 aFirstSegmentControlPoints->mCP1 = aControlPoints.mCP1;
206 aFirstSegmentControlPoints->mCP2 = cp1a;
207 aFirstSegmentControlPoints->mCP3 = cp1aa;
208 aFirstSegmentControlPoints->mCP4 = cp1aaa;
210 aSecondSegmentControlPoints->mCP1 = cp1aaa;
211 aSecondSegmentControlPoints->mCP2 = cp2aa;
212 aSecondSegmentControlPoints->mCP3 = cp3a;
215 static void FlattenBezierCurveSegment(const BezierControlPoints& aControlPoints,
216 PathSink* aSink, double aTolerance) {
217 /* The algorithm implemented here is based on:
218 * http://cis.usouthal.edu/~hain/general/Publications/Bezier/Bezier%20Offset%20Curves.pdf
220 * The basic premise is that for a small t the third order term in the
221 * equation of a cubic bezier curve is insignificantly small. This can
222 * then be approximated by a quadratic equation for which the maximum
223 * difference from a linear approximation can be much more easily determined.
225 BezierControlPoints currentCP = aControlPoints;
227 double t = 0;
228 double currentTolerance = aTolerance;
229 while (t < 1.0) {
230 PointD cp21 = currentCP.mCP2 - currentCP.mCP1;
231 PointD cp31 = currentCP.mCP3 - currentCP.mCP1;
233 /* To remove divisions and check for divide-by-zero, this is optimized from:
234 * Float s3 = (cp31.x * cp21.y - cp31.y * cp21.x) / hypotf(cp21.x, cp21.y);
235 * t = 2 * Float(sqrt(aTolerance / (3. * std::abs(s3))));
237 double cp21x31 = cp31.x * cp21.y - cp31.y * cp21.x;
238 double h = hypot(cp21.x, cp21.y);
239 if (cp21x31 * h == 0) {
240 break;
243 double s3inv = h / cp21x31;
244 t = 2 * sqrt(currentTolerance * std::abs(s3inv) / 3.);
245 currentTolerance *= 1 + aTolerance;
246 // Increase tolerance every iteration to prevent this loop from executing
247 // too many times. This approximates the length of large curves more
248 // roughly. In practice, aTolerance is the constant kFlatteningTolerance
249 // which has value 0.0001. With this value, it takes 6,932 splits to double
250 // currentTolerance (to 0.0002) and 23,028 splits to increase
251 // currentTolerance by an order of magnitude (to 0.001).
252 if (t >= 1.0) {
253 break;
256 SplitBezier(currentCP, nullptr, &currentCP, t);
258 aSink->LineTo(currentCP.mCP1.ToPoint());
261 aSink->LineTo(currentCP.mCP4.ToPoint());
264 static inline void FindInflectionApproximationRange(
265 BezierControlPoints aControlPoints, double* aMin, double* aMax, double aT,
266 double aTolerance) {
267 SplitBezier(aControlPoints, nullptr, &aControlPoints, aT);
269 PointD cp21 = aControlPoints.mCP2 - aControlPoints.mCP1;
270 PointD cp41 = aControlPoints.mCP4 - aControlPoints.mCP1;
272 if (cp21.x == 0. && cp21.y == 0.) {
273 cp21 = aControlPoints.mCP3 - aControlPoints.mCP1;
276 if (cp21.x == 0. && cp21.y == 0.) {
277 // In this case s3 becomes lim[n->0] (cp41.x * n) / n - (cp41.y * n) / n =
278 // cp41.x - cp41.y.
279 double s3 = cp41.x - cp41.y;
281 // Use the absolute value so that Min and Max will correspond with the
282 // minimum and maximum of the range.
283 if (s3 == 0) {
284 *aMin = -1.0;
285 *aMax = 2.0;
286 } else {
287 double r = CubicRoot(std::abs(aTolerance / s3));
288 *aMin = aT - r;
289 *aMax = aT + r;
291 return;
294 double s3 = (cp41.x * cp21.y - cp41.y * cp21.x) / hypot(cp21.x, cp21.y);
296 if (s3 == 0) {
297 // This means within the precision we have it can be approximated
298 // infinitely by a linear segment. Deal with this by specifying the
299 // approximation range as extending beyond the entire curve.
300 *aMin = -1.0;
301 *aMax = 2.0;
302 return;
305 double tf = CubicRoot(std::abs(aTolerance / s3));
307 *aMin = aT - tf * (1 - aT);
308 *aMax = aT + tf * (1 - aT);
311 /* Find the inflection points of a bezier curve. Will return false if the
312 * curve is degenerate in such a way that it is best approximated by a straight
313 * line.
315 * The below algorithm was written by Jeff Muizelaar <jmuizelaar@mozilla.com>,
316 * explanation follows:
318 * The lower inflection point is returned in aT1, the higher one in aT2. In the
319 * case of a single inflection point this will be in aT1.
321 * The method is inspired by the algorithm in "analysis of in?ection points for
322 * planar cubic bezier curve"
324 * Here are some differences between this algorithm and versions discussed
325 * elsewhere in the literature:
327 * zhang et. al compute a0, d0 and e0 incrementally using the follow formula:
329 * Point a0 = CP2 - CP1
330 * Point a1 = CP3 - CP2
331 * Point a2 = CP4 - CP1
333 * Point d0 = a1 - a0
334 * Point d1 = a2 - a1
336 * Point e0 = d1 - d0
338 * this avoids any multiplications and may or may not be faster than the
339 * approach take below.
341 * "fast, precise flattening of cubic bezier path and ofset curves" by hain et.
342 * al
343 * Point a = CP1 + 3 * CP2 - 3 * CP3 + CP4
344 * Point b = 3 * CP1 - 6 * CP2 + 3 * CP3
345 * Point c = -3 * CP1 + 3 * CP2
346 * Point d = CP1
347 * the a, b, c, d can be expressed in terms of a0, d0 and e0 defined above as:
348 * c = 3 * a0
349 * b = 3 * d0
350 * a = e0
353 * a = 3a = a.y * b.x - a.x * b.y
354 * b = 3b = a.y * c.x - a.x * c.y
355 * c = 9c = b.y * c.x - b.x * c.y
357 * The additional multiples of 3 cancel each other out as show below:
359 * x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a)
360 * x = (-3 * b + sqrt(3 * b * 3 * b - 4 * a * 3 * 9 * c / 3)) / (2 * 3 * a)
361 * x = 3 * (-b + sqrt(b * b - 4 * a * c)) / (2 * 3 * a)
362 * x = (-b + sqrt(b * b - 4 * a * c)) / (2 * a)
364 * I haven't looked into whether the formulation of the quadratic formula in
365 * hain has any numerical advantages over the one used below.
367 static inline void FindInflectionPoints(
368 const BezierControlPoints& aControlPoints, double* aT1, double* aT2,
369 uint32_t* aCount) {
370 // Find inflection points.
371 // See www.faculty.idc.ac.il/arik/quality/appendixa.html for an explanation
372 // of this approach.
373 PointD A = aControlPoints.mCP2 - aControlPoints.mCP1;
374 PointD B =
375 aControlPoints.mCP3 - (aControlPoints.mCP2 * 2) + aControlPoints.mCP1;
376 PointD C = aControlPoints.mCP4 - (aControlPoints.mCP3 * 3) +
377 (aControlPoints.mCP2 * 3) - aControlPoints.mCP1;
379 double a = B.x * C.y - B.y * C.x;
380 double b = A.x * C.y - A.y * C.x;
381 double c = A.x * B.y - A.y * B.x;
383 if (a == 0) {
384 // Not a quadratic equation.
385 if (b == 0) {
386 // Instead of a linear acceleration change we have a constant
387 // acceleration change. This means the equation has no solution
388 // and there are no inflection points, unless the constant is 0.
389 // In that case the curve is a straight line, essentially that means
390 // the easiest way to deal with is is by saying there's an inflection
391 // point at t == 0. The inflection point approximation range found will
392 // automatically extend into infinity.
393 if (c == 0) {
394 *aCount = 1;
395 *aT1 = 0;
396 return;
398 *aCount = 0;
399 return;
401 *aT1 = -c / b;
402 *aCount = 1;
403 return;
404 } else {
405 double discriminant = b * b - 4 * a * c;
407 if (discriminant < 0) {
408 // No inflection points.
409 *aCount = 0;
410 } else if (discriminant == 0) {
411 *aCount = 1;
412 *aT1 = -b / (2 * a);
413 } else {
414 /* Use the following formula for computing the roots:
416 * q = -1/2 * (b + sign(b) * sqrt(b^2 - 4ac))
417 * t1 = q / a
418 * t2 = c / q
420 double q = sqrt(discriminant);
421 if (b < 0) {
422 q = b - q;
423 } else {
424 q = b + q;
426 q *= -1. / 2;
428 *aT1 = q / a;
429 *aT2 = c / q;
430 if (*aT1 > *aT2) {
431 std::swap(*aT1, *aT2);
433 *aCount = 2;
438 void FlattenBezier(const BezierControlPoints& aControlPoints, PathSink* aSink,
439 double aTolerance) {
440 double t1;
441 double t2;
442 uint32_t count;
444 FindInflectionPoints(aControlPoints, &t1, &t2, &count);
446 // Check that at least one of the inflection points is inside [0..1]
447 if (count == 0 ||
448 ((t1 < 0.0 || t1 >= 1.0) && (count == 1 || (t2 < 0.0 || t2 >= 1.0)))) {
449 FlattenBezierCurveSegment(aControlPoints, aSink, aTolerance);
450 return;
453 double t1min = t1, t1max = t1, t2min = t2, t2max = t2;
455 BezierControlPoints remainingCP = aControlPoints;
457 // For both inflection points, calulate the range where they can be linearly
458 // approximated if they are positioned within [0,1]
459 if (count > 0 && t1 >= 0 && t1 < 1.0) {
460 FindInflectionApproximationRange(aControlPoints, &t1min, &t1max, t1,
461 aTolerance);
463 if (count > 1 && t2 >= 0 && t2 < 1.0) {
464 FindInflectionApproximationRange(aControlPoints, &t2min, &t2max, t2,
465 aTolerance);
467 BezierControlPoints nextCPs = aControlPoints;
468 BezierControlPoints prevCPs;
470 // Process ranges. [t1min, t1max] and [t2min, t2max] are approximated by line
471 // segments.
472 if (count == 1 && t1min <= 0 && t1max >= 1.0) {
473 // The whole range can be approximated by a line segment.
474 aSink->LineTo(aControlPoints.mCP4.ToPoint());
475 return;
478 if (t1min > 0) {
479 // Flatten the Bezier up until the first inflection point's approximation
480 // point.
481 SplitBezier(aControlPoints, &prevCPs, &remainingCP, t1min);
482 FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
484 if (t1max >= 0 && t1max < 1.0 && (count == 1 || t2min > t1max)) {
485 // The second inflection point's approximation range begins after the end
486 // of the first, approximate the first inflection point by a line and
487 // subsequently flatten up until the end or the next inflection point.
488 SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
490 aSink->LineTo(nextCPs.mCP1.ToPoint());
492 if (count == 1 || (count > 1 && t2min >= 1.0)) {
493 // No more inflection points to deal with, flatten the rest of the curve.
494 FlattenBezierCurveSegment(nextCPs, aSink, aTolerance);
496 } else if (count > 1 && t2min > 1.0) {
497 // We've already concluded t2min <= t1max, so if this is true the
498 // approximation range for the first inflection point runs past the
499 // end of the curve, draw a line to the end and we're done.
500 aSink->LineTo(aControlPoints.mCP4.ToPoint());
501 return;
504 if (count > 1 && t2min < 1.0 && t2max > 0) {
505 if (t2min > 0 && t2min < t1max) {
506 // In this case the t2 approximation range starts inside the t1
507 // approximation range.
508 SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
509 aSink->LineTo(nextCPs.mCP1.ToPoint());
510 } else if (t2min > 0 && t1max > 0) {
511 SplitBezier(aControlPoints, nullptr, &nextCPs, t1max);
513 // Find a control points describing the portion of the curve between t1max
514 // and t2min.
515 double t2mina = (t2min - t1max) / (1 - t1max);
516 SplitBezier(nextCPs, &prevCPs, &nextCPs, t2mina);
517 FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
518 } else if (t2min > 0) {
519 // We have nothing interesting before t2min, find that bit and flatten it.
520 SplitBezier(aControlPoints, &prevCPs, &nextCPs, t2min);
521 FlattenBezierCurveSegment(prevCPs, aSink, aTolerance);
523 if (t2max < 1.0) {
524 // Flatten the portion of the curve after t2max
525 SplitBezier(aControlPoints, nullptr, &nextCPs, t2max);
527 // Draw a line to the start, this is the approximation between t2min and
528 // t2max.
529 aSink->LineTo(nextCPs.mCP1.ToPoint());
530 FlattenBezierCurveSegment(nextCPs, aSink, aTolerance);
531 } else {
532 // Our approximation range extends beyond the end of the curve.
533 aSink->LineTo(aControlPoints.mCP4.ToPoint());
534 return;
539 } // namespace gfx
540 } // namespace mozilla