Bug 1608587 [wpt PR 21137] - Update wpt metadata, a=testonly
[gecko.git] / mfbt / Vector.h
blobe655efa8487db80e483e9921513bbd8e3ee9e1a0
1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
7 /* A type/length-parametrized vector class. */
9 #ifndef mozilla_Vector_h
10 #define mozilla_Vector_h
12 #include "mozilla/Alignment.h"
13 #include "mozilla/AllocPolicy.h"
14 #include "mozilla/ArrayUtils.h" // for PointerRangeSize
15 #include "mozilla/Assertions.h"
16 #include "mozilla/Attributes.h"
17 #include "mozilla/MathAlgorithms.h"
18 #include "mozilla/MemoryReporting.h"
19 #include "mozilla/Move.h"
20 #include "mozilla/OperatorNewExtensions.h"
21 #include "mozilla/ReentrancyGuard.h"
22 #include "mozilla/TemplateLib.h"
23 #include "mozilla/TypeTraits.h"
24 #include "mozilla/Span.h"
26 #include <new> // for placement new
28 namespace mozilla {
30 template <typename T, size_t N, class AllocPolicy>
31 class Vector;
33 namespace detail {
36 * Check that the given capacity wastes the minimal amount of space if
37 * allocated on the heap. This means that aCapacity*sizeof(T) is as close to a
38 * power-of-two as possible. growStorageBy() is responsible for ensuring this.
40 template <typename T>
41 static bool CapacityHasExcessSpace(size_t aCapacity) {
42 size_t size = aCapacity * sizeof(T);
43 return RoundUpPow2(size) - size >= sizeof(T);
47 * This template class provides a default implementation for vector operations
48 * when the element type is not known to be a POD, as judged by IsPod.
50 template <typename T, size_t N, class AP, bool IsPod>
51 struct VectorImpl {
53 * Constructs an object in the uninitialized memory at *aDst with aArgs.
55 template <typename... Args>
56 MOZ_NONNULL(1)
57 static inline void new_(T* aDst, Args&&... aArgs) {
58 new (KnownNotNull, aDst) T(std::forward<Args>(aArgs)...);
61 /* Destroys constructed objects in the range [aBegin, aEnd). */
62 static inline void destroy(T* aBegin, T* aEnd) {
63 MOZ_ASSERT(aBegin <= aEnd);
64 for (T* p = aBegin; p < aEnd; ++p) {
65 p->~T();
69 /* Constructs objects in the uninitialized range [aBegin, aEnd). */
70 static inline void initialize(T* aBegin, T* aEnd) {
71 MOZ_ASSERT(aBegin <= aEnd);
72 for (T* p = aBegin; p < aEnd; ++p) {
73 new_(p);
78 * Copy-constructs objects in the uninitialized range
79 * [aDst, aDst+(aSrcEnd-aSrcStart)) from the range [aSrcStart, aSrcEnd).
81 template <typename U>
82 static inline void copyConstruct(T* aDst, const U* aSrcStart,
83 const U* aSrcEnd) {
84 MOZ_ASSERT(aSrcStart <= aSrcEnd);
85 for (const U* p = aSrcStart; p < aSrcEnd; ++p, ++aDst) {
86 new_(aDst, *p);
91 * Move-constructs objects in the uninitialized range
92 * [aDst, aDst+(aSrcEnd-aSrcStart)) from the range [aSrcStart, aSrcEnd).
94 template <typename U>
95 static inline void moveConstruct(T* aDst, U* aSrcStart, U* aSrcEnd) {
96 MOZ_ASSERT(aSrcStart <= aSrcEnd);
97 for (U* p = aSrcStart; p < aSrcEnd; ++p, ++aDst) {
98 new_(aDst, std::move(*p));
103 * Copy-constructs objects in the uninitialized range [aDst, aDst+aN) from
104 * the same object aU.
106 template <typename U>
107 static inline void copyConstructN(T* aDst, size_t aN, const U& aU) {
108 for (T* end = aDst + aN; aDst < end; ++aDst) {
109 new_(aDst, aU);
114 * Grows the given buffer to have capacity aNewCap, preserving the objects
115 * constructed in the range [begin, end) and updating aV. Assumes that (1)
116 * aNewCap has not overflowed, and (2) multiplying aNewCap by sizeof(T) will
117 * not overflow.
119 static inline MOZ_MUST_USE bool growTo(Vector<T, N, AP>& aV, size_t aNewCap) {
120 MOZ_ASSERT(!aV.usingInlineStorage());
121 MOZ_ASSERT(!CapacityHasExcessSpace<T>(aNewCap));
122 T* newbuf = aV.template pod_malloc<T>(aNewCap);
123 if (MOZ_UNLIKELY(!newbuf)) {
124 return false;
126 T* dst = newbuf;
127 T* src = aV.beginNoCheck();
128 for (; src < aV.endNoCheck(); ++dst, ++src) {
129 new_(dst, std::move(*src));
131 VectorImpl::destroy(aV.beginNoCheck(), aV.endNoCheck());
132 aV.free_(aV.mBegin, aV.mTail.mCapacity);
133 aV.mBegin = newbuf;
134 /* aV.mLength is unchanged. */
135 aV.mTail.mCapacity = aNewCap;
136 return true;
141 * This partial template specialization provides a default implementation for
142 * vector operations when the element type is known to be a POD, as judged by
143 * IsPod.
145 template <typename T, size_t N, class AP>
146 struct VectorImpl<T, N, AP, true> {
147 template <typename... Args>
148 MOZ_NONNULL(1)
149 static inline void new_(T* aDst, Args&&... aArgs) {
150 // Explicitly construct a local object instead of using a temporary since
151 // T(args...) will be treated like a C-style cast in the unary case and
152 // allow unsafe conversions. Both forms should be equivalent to an
153 // optimizing compiler.
154 T temp(std::forward<Args>(aArgs)...);
155 *aDst = temp;
158 static inline void destroy(T*, T*) {}
160 static inline void initialize(T* aBegin, T* aEnd) {
162 * You would think that memset would be a big win (or even break even)
163 * when we know T is a POD. But currently it's not. This is probably
164 * because |append| tends to be given small ranges and memset requires
165 * a function call that doesn't get inlined.
167 * memset(aBegin, 0, sizeof(T) * (aEnd - aBegin));
169 MOZ_ASSERT(aBegin <= aEnd);
170 for (T* p = aBegin; p < aEnd; ++p) {
171 new_(p);
175 template <typename U>
176 static inline void copyConstruct(T* aDst, const U* aSrcStart,
177 const U* aSrcEnd) {
179 * See above memset comment. Also, notice that copyConstruct is
180 * currently templated (T != U), so memcpy won't work without
181 * requiring T == U.
183 * memcpy(aDst, aSrcStart, sizeof(T) * (aSrcEnd - aSrcStart));
185 MOZ_ASSERT(aSrcStart <= aSrcEnd);
186 for (const U* p = aSrcStart; p < aSrcEnd; ++p, ++aDst) {
187 new_(aDst, *p);
191 template <typename U>
192 static inline void moveConstruct(T* aDst, const U* aSrcStart,
193 const U* aSrcEnd) {
194 copyConstruct(aDst, aSrcStart, aSrcEnd);
197 static inline void copyConstructN(T* aDst, size_t aN, const T& aT) {
198 for (T* end = aDst + aN; aDst < end; ++aDst) {
199 new_(aDst, aT);
203 static inline MOZ_MUST_USE bool growTo(Vector<T, N, AP>& aV, size_t aNewCap) {
204 MOZ_ASSERT(!aV.usingInlineStorage());
205 MOZ_ASSERT(!CapacityHasExcessSpace<T>(aNewCap));
206 T* newbuf =
207 aV.template pod_realloc<T>(aV.mBegin, aV.mTail.mCapacity, aNewCap);
208 if (MOZ_UNLIKELY(!newbuf)) {
209 return false;
211 aV.mBegin = newbuf;
212 /* aV.mLength is unchanged. */
213 aV.mTail.mCapacity = aNewCap;
214 return true;
217 static inline void podResizeToFit(Vector<T, N, AP>& aV) {
218 if (aV.usingInlineStorage() || aV.mLength == aV.mTail.mCapacity) {
219 return;
221 if (!aV.mLength) {
222 aV.free_(aV.mBegin, aV.mTail.mCapacity);
223 aV.mBegin = aV.inlineStorage();
224 aV.mTail.mCapacity = aV.kInlineCapacity;
225 #ifdef DEBUG
226 aV.mTail.mReserved = 0;
227 #endif
228 return;
230 T* newbuf =
231 aV.template pod_realloc<T>(aV.mBegin, aV.mTail.mCapacity, aV.mLength);
232 if (MOZ_UNLIKELY(!newbuf)) {
233 return;
235 aV.mBegin = newbuf;
236 aV.mTail.mCapacity = aV.mLength;
237 #ifdef DEBUG
238 aV.mTail.mReserved = aV.mLength;
239 #endif
243 // A struct for TestVector.cpp to access private internal fields.
244 // DO NOT DEFINE IN YOUR OWN CODE.
245 struct VectorTesting;
247 } // namespace detail
250 * STL-like container providing a short-lived, dynamic buffer. Vector calls the
251 * constructors/destructors of all elements stored in its internal buffer, so
252 * non-PODs may be safely used. Additionally, Vector will store the first N
253 * elements in-place before resorting to dynamic allocation.
255 * T requirements:
256 * - default and copy constructible, assignable, destructible
257 * - operations do not throw
258 * MinInlineCapacity requirements:
259 * - any value, however, MinInlineCapacity is clamped to min/max values
260 * AllocPolicy:
261 * - see "Allocation policies" in AllocPolicy.h (defaults to
262 * mozilla::MallocAllocPolicy)
264 * Vector is not reentrant: T member functions called during Vector member
265 * functions must not call back into the same object!
267 template <typename T, size_t MinInlineCapacity = 0,
268 class AllocPolicy = MallocAllocPolicy>
269 class MOZ_NON_PARAM Vector final : private AllocPolicy {
270 /* utilities */
272 static const bool kElemIsPod = IsPod<T>::value;
273 typedef detail::VectorImpl<T, MinInlineCapacity, AllocPolicy, kElemIsPod>
274 Impl;
275 friend struct detail::VectorImpl<T, MinInlineCapacity, AllocPolicy,
276 kElemIsPod>;
278 friend struct detail::VectorTesting;
280 MOZ_MUST_USE bool growStorageBy(size_t aIncr);
281 MOZ_MUST_USE bool convertToHeapStorage(size_t aNewCap);
282 MOZ_MUST_USE bool maybeCheckSimulatedOOM(size_t aRequestedSize);
284 /* magic constants */
287 * The maximum space allocated for inline element storage.
289 * We reduce space by what the AllocPolicy base class and prior Vector member
290 * fields likely consume to attempt to play well with binary size classes.
292 static constexpr size_t kMaxInlineBytes =
293 1024 -
294 (sizeof(AllocPolicy) + sizeof(T*) + sizeof(size_t) + sizeof(size_t));
297 * The number of T elements of inline capacity built into this Vector. This
298 * is usually |MinInlineCapacity|, but it may be less (or zero!) for large T.
300 * We use a partially-specialized template (not explicit specialization, which
301 * is only allowed at namespace scope) to compute this value. The benefit is
302 * that |sizeof(T)| need not be computed, and |T| doesn't have to be fully
303 * defined at the time |Vector<T>| appears, if no inline storage is requested.
305 template <size_t MinimumInlineCapacity, size_t Dummy>
306 struct ComputeCapacity {
307 static constexpr size_t value =
308 tl::Min<MinimumInlineCapacity, kMaxInlineBytes / sizeof(T)>::value;
311 template <size_t Dummy>
312 struct ComputeCapacity<0, Dummy> {
313 static constexpr size_t value = 0;
316 /** The actual inline capacity in number of elements T. This may be zero! */
317 static constexpr size_t kInlineCapacity =
318 ComputeCapacity<MinInlineCapacity, 0>::value;
320 /* member data */
323 * Pointer to the buffer, be it inline or heap-allocated. Only [mBegin,
324 * mBegin + mLength) hold valid constructed T objects. The range [mBegin +
325 * mLength, mBegin + mCapacity) holds uninitialized memory. The range
326 * [mBegin + mLength, mBegin + mReserved) also holds uninitialized memory
327 * previously allocated by a call to reserve().
329 T* mBegin;
331 /* Number of elements in the vector. */
332 size_t mLength;
335 * Memory used to store capacity, reserved element count (debug builds only),
336 * and inline storage. The simple "answer" is:
338 * size_t mCapacity;
339 * #ifdef DEBUG
340 * size_t mReserved;
341 * #endif
342 * alignas(T) unsigned char mBytes[kInlineCapacity * sizeof(T)];
344 * but there are complications. First, C++ forbids zero-sized arrays that
345 * might result. Second, we don't want zero capacity to affect Vector's size
346 * (even empty classes take up a byte, unless they're base classes).
348 * Yet again, we eliminate the zero-sized array using partial specialization.
349 * And we eliminate potential size hit by putting capacity/reserved in one
350 * struct, then putting the array (if any) in a derived struct. If no array
351 * is needed, the derived struct won't consume extra space.
353 struct CapacityAndReserved {
354 explicit CapacityAndReserved(size_t aCapacity, size_t aReserved)
355 : mCapacity(aCapacity)
356 #ifdef DEBUG
358 mReserved(aReserved)
359 #endif
362 CapacityAndReserved() = default;
364 /* Max number of elements storable in the vector without resizing. */
365 size_t mCapacity;
367 #ifdef DEBUG
368 /* Max elements of reserved or used space in this vector. */
369 size_t mReserved;
370 #endif
373 // Silence warnings about this struct possibly being padded dued to the
374 // alignas() in it -- there's nothing we can do to avoid it.
375 #ifdef _MSC_VER
376 # pragma warning(push)
377 # pragma warning(disable : 4324)
378 #endif // _MSC_VER
380 template <size_t Capacity, size_t Dummy>
381 struct CRAndStorage : CapacityAndReserved {
382 explicit CRAndStorage(size_t aCapacity, size_t aReserved)
383 : CapacityAndReserved(aCapacity, aReserved) {}
384 CRAndStorage() = default;
386 alignas(T) unsigned char mBytes[Capacity * sizeof(T)];
388 // GCC fails due to -Werror=strict-aliasing if |mBytes| is directly cast to
389 // T*. Indirecting through this function addresses the problem.
390 void* data() { return mBytes; }
392 T* storage() { return static_cast<T*>(data()); }
395 template <size_t Dummy>
396 struct CRAndStorage<0, Dummy> : CapacityAndReserved {
397 explicit CRAndStorage(size_t aCapacity, size_t aReserved)
398 : CapacityAndReserved(aCapacity, aReserved) {}
399 CRAndStorage() = default;
401 T* storage() {
402 // If this returns |nullptr|, functions like |Vector::begin()| would too,
403 // breaking callers that pass a vector's elements as pointer/length to
404 // code that bounds its operation by length but (even just as a sanity
405 // check) always wants a non-null pointer. Fake up an aligned, non-null
406 // pointer to support these callers.
407 return reinterpret_cast<T*>(sizeof(T));
411 CRAndStorage<kInlineCapacity, 0> mTail;
413 #ifdef _MSC_VER
414 # pragma warning(pop)
415 #endif // _MSC_VER
417 #ifdef DEBUG
418 friend class ReentrancyGuard;
419 bool mEntered;
420 #endif
422 /* private accessors */
424 bool usingInlineStorage() const {
425 return mBegin == const_cast<Vector*>(this)->inlineStorage();
428 T* inlineStorage() { return mTail.storage(); }
430 T* beginNoCheck() const { return mBegin; }
432 T* endNoCheck() { return mBegin + mLength; }
434 const T* endNoCheck() const { return mBegin + mLength; }
436 #ifdef DEBUG
438 * The amount of explicitly allocated space in this vector that is immediately
439 * available to be filled by appending additional elements. This value is
440 * always greater than or equal to |length()| -- the vector's actual elements
441 * are implicitly reserved. This value is always less than or equal to
442 * |capacity()|. It may be explicitly increased using the |reserve()| method.
444 size_t reserved() const {
445 MOZ_ASSERT(mLength <= mTail.mReserved);
446 MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity);
447 return mTail.mReserved;
449 #endif
451 /* Append operations guaranteed to succeed due to pre-reserved space. */
452 template <typename U>
453 void internalAppend(U&& aU);
454 template <typename U, size_t O, class BP>
455 void internalAppendAll(const Vector<U, O, BP>& aU);
456 void internalAppendN(const T& aT, size_t aN);
457 template <typename U>
458 void internalAppend(const U* aBegin, size_t aLength);
460 public:
461 static const size_t sMaxInlineStorage = MinInlineCapacity;
463 typedef T ElementType;
465 explicit Vector(AllocPolicy = AllocPolicy());
466 Vector(Vector&&); /* Move constructor. */
467 Vector& operator=(Vector&&); /* Move assignment. */
468 ~Vector();
470 /* accessors */
472 const AllocPolicy& allocPolicy() const { return *this; }
474 AllocPolicy& allocPolicy() { return *this; }
476 enum { InlineLength = MinInlineCapacity };
478 size_t length() const { return mLength; }
480 bool empty() const { return mLength == 0; }
482 size_t capacity() const { return mTail.mCapacity; }
484 T* begin() {
485 MOZ_ASSERT(!mEntered);
486 return mBegin;
489 const T* begin() const {
490 MOZ_ASSERT(!mEntered);
491 return mBegin;
494 T* end() {
495 MOZ_ASSERT(!mEntered);
496 return mBegin + mLength;
499 const T* end() const {
500 MOZ_ASSERT(!mEntered);
501 return mBegin + mLength;
504 T& operator[](size_t aIndex) {
505 MOZ_ASSERT(!mEntered);
506 MOZ_ASSERT(aIndex < mLength);
507 return begin()[aIndex];
510 const T& operator[](size_t aIndex) const {
511 MOZ_ASSERT(!mEntered);
512 MOZ_ASSERT(aIndex < mLength);
513 return begin()[aIndex];
516 T& back() {
517 MOZ_ASSERT(!mEntered);
518 MOZ_ASSERT(!empty());
519 return *(end() - 1);
522 const T& back() const {
523 MOZ_ASSERT(!mEntered);
524 MOZ_ASSERT(!empty());
525 return *(end() - 1);
528 operator mozilla::Span<const T>() const {
529 return mozilla::MakeSpan(mBegin, mLength);
532 operator mozilla::Span<T>() { return mozilla::MakeSpan(mBegin, mLength); }
534 class Range {
535 friend class Vector;
536 T* mCur;
537 T* mEnd;
538 Range(T* aCur, T* aEnd) : mCur(aCur), mEnd(aEnd) {
539 MOZ_ASSERT(aCur <= aEnd);
542 public:
543 bool empty() const { return mCur == mEnd; }
544 size_t remain() const { return PointerRangeSize(mCur, mEnd); }
545 T& front() const {
546 MOZ_ASSERT(!empty());
547 return *mCur;
549 void popFront() {
550 MOZ_ASSERT(!empty());
551 ++mCur;
553 T popCopyFront() {
554 MOZ_ASSERT(!empty());
555 return *mCur++;
559 class ConstRange {
560 friend class Vector;
561 const T* mCur;
562 const T* mEnd;
563 ConstRange(const T* aCur, const T* aEnd) : mCur(aCur), mEnd(aEnd) {
564 MOZ_ASSERT(aCur <= aEnd);
567 public:
568 bool empty() const { return mCur == mEnd; }
569 size_t remain() const { return PointerRangeSize(mCur, mEnd); }
570 const T& front() const {
571 MOZ_ASSERT(!empty());
572 return *mCur;
574 void popFront() {
575 MOZ_ASSERT(!empty());
576 ++mCur;
578 T popCopyFront() {
579 MOZ_ASSERT(!empty());
580 return *mCur++;
584 Range all() { return Range(begin(), end()); }
585 ConstRange all() const { return ConstRange(begin(), end()); }
587 /* mutators */
590 * Reverse the order of the elements in the vector in place.
592 void reverse();
595 * Given that the vector is empty, grow the internal capacity to |aRequest|,
596 * keeping the length 0.
598 MOZ_MUST_USE bool initCapacity(size_t aRequest);
601 * Given that the vector is empty, grow the internal capacity and length to
602 * |aRequest| leaving the elements' memory completely uninitialized (with all
603 * the associated hazards and caveats). This avoids the usual allocation-size
604 * rounding that happens in resize and overhead of initialization for elements
605 * that are about to be overwritten.
607 MOZ_MUST_USE bool initLengthUninitialized(size_t aRequest);
610 * If reserve(aRequest) succeeds and |aRequest >= length()|, then appending
611 * |aRequest - length()| elements, in any sequence of append/appendAll calls,
612 * is guaranteed to succeed.
614 * A request to reserve an amount less than the current length does not affect
615 * reserved space.
617 MOZ_MUST_USE bool reserve(size_t aRequest);
620 * Destroy elements in the range [end() - aIncr, end()). Does not deallocate
621 * or unreserve storage for those elements.
623 void shrinkBy(size_t aIncr);
626 * Destroy elements in the range [aNewLength, end()). Does not deallocate
627 * or unreserve storage for those elements.
629 void shrinkTo(size_t aNewLength);
631 /** Grow the vector by aIncr elements. */
632 MOZ_MUST_USE bool growBy(size_t aIncr);
634 /** Call shrinkBy or growBy based on whether newSize > length(). */
635 MOZ_MUST_USE bool resize(size_t aNewLength);
638 * Increase the length of the vector, but don't initialize the new elements
639 * -- leave them as uninitialized memory.
641 MOZ_MUST_USE bool growByUninitialized(size_t aIncr);
642 void infallibleGrowByUninitialized(size_t aIncr);
643 MOZ_MUST_USE bool resizeUninitialized(size_t aNewLength);
645 /** Shorthand for shrinkBy(length()). */
646 void clear();
648 /** Clears and releases any heap-allocated storage. */
649 void clearAndFree();
652 * Calls the AllocPolicy's pod_realloc to release excess capacity. Since
653 * realloc is only safe on PODs, this method fails to compile if IsPod<T>
654 * is false.
656 void podResizeToFit();
659 * If true, appending |aNeeded| elements won't reallocate elements storage.
660 * This *doesn't* mean that infallibleAppend may be used! You still must
661 * reserve the extra space, even if this method indicates that appends won't
662 * need to reallocate elements storage.
664 bool canAppendWithoutRealloc(size_t aNeeded) const;
666 /** Potentially fallible append operations. */
669 * This can take either a T& or a T&&. Given a T&&, it moves |aU| into the
670 * vector, instead of copying it. If it fails, |aU| is left unmoved. ("We are
671 * not amused.")
673 template <typename U>
674 MOZ_MUST_USE bool append(U&& aU);
677 * Construct a T in-place as a new entry at the end of this vector.
679 template <typename... Args>
680 MOZ_MUST_USE bool emplaceBack(Args&&... aArgs) {
681 if (!growByUninitialized(1)) return false;
682 Impl::new_(&back(), std::forward<Args>(aArgs)...);
683 return true;
686 template <typename U, size_t O, class BP>
687 MOZ_MUST_USE bool appendAll(const Vector<U, O, BP>& aU);
688 MOZ_MUST_USE bool appendN(const T& aT, size_t aN);
689 template <typename U>
690 MOZ_MUST_USE bool append(const U* aBegin, const U* aEnd);
691 template <typename U>
692 MOZ_MUST_USE bool append(const U* aBegin, size_t aLength);
695 * Guaranteed-infallible append operations for use upon vectors whose
696 * memory has been pre-reserved. Don't use this if you haven't reserved the
697 * memory!
699 template <typename U>
700 void infallibleAppend(U&& aU) {
701 internalAppend(std::forward<U>(aU));
703 void infallibleAppendN(const T& aT, size_t aN) { internalAppendN(aT, aN); }
704 template <typename U>
705 void infallibleAppend(const U* aBegin, const U* aEnd) {
706 internalAppend(aBegin, PointerRangeSize(aBegin, aEnd));
708 template <typename U>
709 void infallibleAppend(const U* aBegin, size_t aLength) {
710 internalAppend(aBegin, aLength);
712 template <typename... Args>
713 void infallibleEmplaceBack(Args&&... aArgs) {
714 infallibleGrowByUninitialized(1);
715 Impl::new_(&back(), std::forward<Args>(aArgs)...);
718 void popBack();
720 T popCopy();
723 * If elements are stored in-place, return nullptr and leave this vector
724 * unmodified.
726 * Otherwise return this vector's elements buffer, and clear this vector as if
727 * by clearAndFree(). The caller now owns the buffer and is responsible for
728 * deallocating it consistent with this vector's AllocPolicy.
730 * N.B. Although a T*, only the range [0, length()) is constructed.
732 MOZ_MUST_USE T* extractRawBuffer();
735 * If elements are stored in-place, allocate a new buffer, move this vector's
736 * elements into it, and return that buffer.
738 * Otherwise return this vector's elements buffer. The caller now owns the
739 * buffer and is responsible for deallocating it consistent with this vector's
740 * AllocPolicy.
742 * This vector is cleared, as if by clearAndFree(), when this method
743 * succeeds. This method fails and returns nullptr only if new elements buffer
744 * allocation fails.
746 * N.B. Only the range [0, length()) of the returned buffer is constructed.
747 * If any of these elements are uninitialized (as growByUninitialized
748 * enables), behavior is undefined.
750 MOZ_MUST_USE T* extractOrCopyRawBuffer();
753 * Transfer ownership of an array of objects into the vector. The caller
754 * must have allocated the array in accordance with this vector's
755 * AllocPolicy.
757 * N.B. This call assumes that there are no uninitialized elements in the
758 * passed range [aP, aP + aLength). The range [aP + aLength, aP +
759 * aCapacity) must be allocated uninitialized memory.
761 void replaceRawBuffer(T* aP, size_t aLength, size_t aCapacity);
764 * Transfer ownership of an array of objects into the vector. The caller
765 * must have allocated the array in accordance with this vector's
766 * AllocPolicy.
768 * N.B. This call assumes that there are no uninitialized elements in the
769 * passed array.
771 void replaceRawBuffer(T* aP, size_t aLength);
774 * Places |aVal| at position |aP|, shifting existing elements from |aP| onward
775 * one position higher. On success, |aP| should not be reused because it'll
776 * be a dangling pointer if reallocation of the vector storage occurred; the
777 * return value should be used instead. On failure, nullptr is returned.
779 * Example usage:
781 * if (!(p = vec.insert(p, val))) {
782 * <handle failure>
784 * <keep working with p>
786 * This is inherently a linear-time operation. Be careful!
788 template <typename U>
789 MOZ_MUST_USE T* insert(T* aP, U&& aVal);
792 * Removes the element |aT|, which must fall in the bounds [begin, end),
793 * shifting existing elements from |aT + 1| onward one position lower.
795 void erase(T* aT);
798 * Removes the elements [|aBegin|, |aEnd|), which must fall in the bounds
799 * [begin, end), shifting existing elements from |aEnd| onward to aBegin's old
800 * position.
802 void erase(T* aBegin, T* aEnd);
805 * Removes all elements that satisfy the predicate, shifting existing elements
806 * lower to fill erased gaps.
808 template <typename Pred>
809 void eraseIf(Pred aPred);
812 * Removes all elements that compare equal to |aU|, shifting existing elements
813 * lower to fill erased gaps.
815 template <typename U>
816 void eraseIfEqual(const U& aU);
819 * Measure the size of the vector's heap-allocated storage.
821 size_t sizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const;
824 * Like sizeOfExcludingThis, but also measures the size of the vector
825 * object (which must be heap-allocated) itself.
827 size_t sizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const;
829 void swap(Vector& aOther);
831 private:
832 Vector(const Vector&) = delete;
833 void operator=(const Vector&) = delete;
836 /* This does the re-entrancy check plus several other sanity checks. */
837 #define MOZ_REENTRANCY_GUARD_ET_AL \
838 ReentrancyGuard g(*this); \
839 MOZ_ASSERT_IF(usingInlineStorage(), mTail.mCapacity == kInlineCapacity); \
840 MOZ_ASSERT(reserved() <= mTail.mCapacity); \
841 MOZ_ASSERT(mLength <= reserved()); \
842 MOZ_ASSERT(mLength <= mTail.mCapacity)
844 /* Vector Implementation */
846 template <typename T, size_t N, class AP>
847 MOZ_ALWAYS_INLINE Vector<T, N, AP>::Vector(AP aAP)
848 : AP(std::move(aAP)),
849 mLength(0),
850 mTail(kInlineCapacity, 0)
851 #ifdef DEBUG
853 mEntered(false)
854 #endif
856 mBegin = inlineStorage();
859 /* Move constructor. */
860 template <typename T, size_t N, class AllocPolicy>
861 MOZ_ALWAYS_INLINE Vector<T, N, AllocPolicy>::Vector(Vector&& aRhs)
862 : AllocPolicy(std::move(aRhs))
863 #ifdef DEBUG
865 mEntered(false)
866 #endif
868 mLength = aRhs.mLength;
869 mTail.mCapacity = aRhs.mTail.mCapacity;
870 #ifdef DEBUG
871 mTail.mReserved = aRhs.mTail.mReserved;
872 #endif
874 if (aRhs.usingInlineStorage()) {
875 /* We can't move the buffer over in this case, so copy elements. */
876 mBegin = inlineStorage();
877 Impl::moveConstruct(mBegin, aRhs.beginNoCheck(), aRhs.endNoCheck());
879 * Leave aRhs's mLength, mBegin, mCapacity, and mReserved as they are.
880 * The elements in its in-line storage still need to be destroyed.
882 } else {
884 * Take src's buffer, and turn src into an empty vector using
885 * in-line storage.
887 mBegin = aRhs.mBegin;
888 aRhs.mBegin = aRhs.inlineStorage();
889 aRhs.mTail.mCapacity = kInlineCapacity;
890 aRhs.mLength = 0;
891 #ifdef DEBUG
892 aRhs.mTail.mReserved = 0;
893 #endif
897 /* Move assignment. */
898 template <typename T, size_t N, class AP>
899 MOZ_ALWAYS_INLINE Vector<T, N, AP>& Vector<T, N, AP>::operator=(Vector&& aRhs) {
900 MOZ_ASSERT(this != &aRhs, "self-move assignment is prohibited");
901 this->~Vector();
902 new (KnownNotNull, this) Vector(std::move(aRhs));
903 return *this;
906 template <typename T, size_t N, class AP>
907 MOZ_ALWAYS_INLINE Vector<T, N, AP>::~Vector() {
908 MOZ_REENTRANCY_GUARD_ET_AL;
909 Impl::destroy(beginNoCheck(), endNoCheck());
910 if (!usingInlineStorage()) {
911 this->free_(beginNoCheck(), mTail.mCapacity);
915 template <typename T, size_t N, class AP>
916 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::reverse() {
917 MOZ_REENTRANCY_GUARD_ET_AL;
918 T* elems = mBegin;
919 size_t len = mLength;
920 size_t mid = len / 2;
921 for (size_t i = 0; i < mid; i++) {
922 Swap(elems[i], elems[len - i - 1]);
927 * This function will create a new heap buffer with capacity aNewCap,
928 * move all elements in the inline buffer to this new buffer,
929 * and fail on OOM.
931 template <typename T, size_t N, class AP>
932 inline bool Vector<T, N, AP>::convertToHeapStorage(size_t aNewCap) {
933 MOZ_ASSERT(usingInlineStorage());
935 /* Allocate buffer. */
936 MOZ_ASSERT(!detail::CapacityHasExcessSpace<T>(aNewCap));
937 T* newBuf = this->template pod_malloc<T>(aNewCap);
938 if (MOZ_UNLIKELY(!newBuf)) {
939 return false;
942 /* Copy inline elements into heap buffer. */
943 Impl::moveConstruct(newBuf, beginNoCheck(), endNoCheck());
944 Impl::destroy(beginNoCheck(), endNoCheck());
946 /* Switch in heap buffer. */
947 mBegin = newBuf;
948 /* mLength is unchanged. */
949 mTail.mCapacity = aNewCap;
950 return true;
953 template <typename T, size_t N, class AP>
954 MOZ_NEVER_INLINE bool Vector<T, N, AP>::growStorageBy(size_t aIncr) {
955 MOZ_ASSERT(mLength + aIncr > mTail.mCapacity);
958 * When choosing a new capacity, its size should is as close to 2**N bytes
959 * as possible. 2**N-sized requests are best because they are unlikely to
960 * be rounded up by the allocator. Asking for a 2**N number of elements
961 * isn't as good, because if sizeof(T) is not a power-of-two that would
962 * result in a non-2**N request size.
965 size_t newCap;
967 if (aIncr == 1) {
968 if (usingInlineStorage()) {
969 /* This case occurs in ~70--80% of the calls to this function. */
970 size_t newSize =
971 tl::RoundUpPow2<(kInlineCapacity + 1) * sizeof(T)>::value;
972 newCap = newSize / sizeof(T);
973 goto convert;
976 if (mLength == 0) {
977 /* This case occurs in ~0--10% of the calls to this function. */
978 newCap = 1;
979 goto grow;
982 /* This case occurs in ~15--20% of the calls to this function. */
985 * Will mLength * 4 *sizeof(T) overflow? This condition limits a vector
986 * to 1GB of memory on a 32-bit system, which is a reasonable limit. It
987 * also ensures that
989 * static_cast<char*>(end()) - static_cast<char*>(begin())
991 * doesn't overflow ptrdiff_t (see bug 510319).
993 if (MOZ_UNLIKELY(mLength & tl::MulOverflowMask<4 * sizeof(T)>::value)) {
994 this->reportAllocOverflow();
995 return false;
999 * If we reach here, the existing capacity will have a size that is already
1000 * as close to 2^N as sizeof(T) will allow. Just double the capacity, and
1001 * then there might be space for one more element.
1003 newCap = mLength * 2;
1004 if (detail::CapacityHasExcessSpace<T>(newCap)) {
1005 newCap += 1;
1007 } else {
1008 /* This case occurs in ~2% of the calls to this function. */
1009 size_t newMinCap = mLength + aIncr;
1011 /* Did mLength + aIncr overflow? Will newCap * sizeof(T) overflow? */
1012 if (MOZ_UNLIKELY(newMinCap < mLength ||
1013 newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::value)) {
1014 this->reportAllocOverflow();
1015 return false;
1018 size_t newMinSize = newMinCap * sizeof(T);
1019 size_t newSize = RoundUpPow2(newMinSize);
1020 newCap = newSize / sizeof(T);
1023 if (usingInlineStorage()) {
1024 convert:
1025 return convertToHeapStorage(newCap);
1028 grow:
1029 return Impl::growTo(*this, newCap);
1032 template <typename T, size_t N, class AP>
1033 inline bool Vector<T, N, AP>::initCapacity(size_t aRequest) {
1034 MOZ_ASSERT(empty());
1035 MOZ_ASSERT(usingInlineStorage());
1036 if (aRequest == 0) {
1037 return true;
1039 T* newbuf = this->template pod_malloc<T>(aRequest);
1040 if (MOZ_UNLIKELY(!newbuf)) {
1041 return false;
1043 mBegin = newbuf;
1044 mTail.mCapacity = aRequest;
1045 #ifdef DEBUG
1046 mTail.mReserved = aRequest;
1047 #endif
1048 return true;
1051 template <typename T, size_t N, class AP>
1052 inline bool Vector<T, N, AP>::initLengthUninitialized(size_t aRequest) {
1053 if (!initCapacity(aRequest)) {
1054 return false;
1056 infallibleGrowByUninitialized(aRequest);
1057 return true;
1060 template <typename T, size_t N, class AP>
1061 inline bool Vector<T, N, AP>::maybeCheckSimulatedOOM(size_t aRequestedSize) {
1062 if (aRequestedSize <= N) {
1063 return true;
1066 #ifdef DEBUG
1067 if (aRequestedSize <= mTail.mReserved) {
1068 return true;
1070 #endif
1072 return allocPolicy().checkSimulatedOOM();
1075 template <typename T, size_t N, class AP>
1076 inline bool Vector<T, N, AP>::reserve(size_t aRequest) {
1077 MOZ_REENTRANCY_GUARD_ET_AL;
1078 if (aRequest > mTail.mCapacity) {
1079 if (MOZ_UNLIKELY(!growStorageBy(aRequest - mLength))) {
1080 return false;
1082 } else if (!maybeCheckSimulatedOOM(aRequest)) {
1083 return false;
1085 #ifdef DEBUG
1086 if (aRequest > mTail.mReserved) {
1087 mTail.mReserved = aRequest;
1089 MOZ_ASSERT(mLength <= mTail.mReserved);
1090 MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity);
1091 #endif
1092 return true;
1095 template <typename T, size_t N, class AP>
1096 inline void Vector<T, N, AP>::shrinkBy(size_t aIncr) {
1097 MOZ_REENTRANCY_GUARD_ET_AL;
1098 MOZ_ASSERT(aIncr <= mLength);
1099 Impl::destroy(endNoCheck() - aIncr, endNoCheck());
1100 mLength -= aIncr;
1103 template <typename T, size_t N, class AP>
1104 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::shrinkTo(size_t aNewLength) {
1105 MOZ_ASSERT(aNewLength <= mLength);
1106 shrinkBy(mLength - aNewLength);
1109 template <typename T, size_t N, class AP>
1110 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::growBy(size_t aIncr) {
1111 MOZ_REENTRANCY_GUARD_ET_AL;
1112 if (aIncr > mTail.mCapacity - mLength) {
1113 if (MOZ_UNLIKELY(!growStorageBy(aIncr))) {
1114 return false;
1116 } else if (!maybeCheckSimulatedOOM(mLength + aIncr)) {
1117 return false;
1119 MOZ_ASSERT(mLength + aIncr <= mTail.mCapacity);
1120 T* newend = endNoCheck() + aIncr;
1121 Impl::initialize(endNoCheck(), newend);
1122 mLength += aIncr;
1123 #ifdef DEBUG
1124 if (mLength > mTail.mReserved) {
1125 mTail.mReserved = mLength;
1127 #endif
1128 return true;
1131 template <typename T, size_t N, class AP>
1132 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::growByUninitialized(size_t aIncr) {
1133 MOZ_REENTRANCY_GUARD_ET_AL;
1134 if (aIncr > mTail.mCapacity - mLength) {
1135 if (MOZ_UNLIKELY(!growStorageBy(aIncr))) {
1136 return false;
1138 } else if (!maybeCheckSimulatedOOM(mLength + aIncr)) {
1139 return false;
1141 #ifdef DEBUG
1142 if (mLength + aIncr > mTail.mReserved) {
1143 mTail.mReserved = mLength + aIncr;
1145 #endif
1146 infallibleGrowByUninitialized(aIncr);
1147 return true;
1150 template <typename T, size_t N, class AP>
1151 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::infallibleGrowByUninitialized(
1152 size_t aIncr) {
1153 MOZ_ASSERT(mLength + aIncr <= reserved());
1154 mLength += aIncr;
1157 template <typename T, size_t N, class AP>
1158 inline bool Vector<T, N, AP>::resize(size_t aNewLength) {
1159 size_t curLength = mLength;
1160 if (aNewLength > curLength) {
1161 return growBy(aNewLength - curLength);
1163 shrinkBy(curLength - aNewLength);
1164 return true;
1167 template <typename T, size_t N, class AP>
1168 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::resizeUninitialized(
1169 size_t aNewLength) {
1170 size_t curLength = mLength;
1171 if (aNewLength > curLength) {
1172 return growByUninitialized(aNewLength - curLength);
1174 shrinkBy(curLength - aNewLength);
1175 return true;
1178 template <typename T, size_t N, class AP>
1179 inline void Vector<T, N, AP>::clear() {
1180 MOZ_REENTRANCY_GUARD_ET_AL;
1181 Impl::destroy(beginNoCheck(), endNoCheck());
1182 mLength = 0;
1185 template <typename T, size_t N, class AP>
1186 inline void Vector<T, N, AP>::clearAndFree() {
1187 clear();
1189 if (usingInlineStorage()) {
1190 return;
1192 this->free_(beginNoCheck(), mTail.mCapacity);
1193 mBegin = inlineStorage();
1194 mTail.mCapacity = kInlineCapacity;
1195 #ifdef DEBUG
1196 mTail.mReserved = 0;
1197 #endif
1200 template <typename T, size_t N, class AP>
1201 inline void Vector<T, N, AP>::podResizeToFit() {
1202 // This function is only defined if IsPod is true and will fail to compile
1203 // otherwise.
1204 Impl::podResizeToFit(*this);
1207 template <typename T, size_t N, class AP>
1208 inline bool Vector<T, N, AP>::canAppendWithoutRealloc(size_t aNeeded) const {
1209 return mLength + aNeeded <= mTail.mCapacity;
1212 template <typename T, size_t N, class AP>
1213 template <typename U, size_t O, class BP>
1214 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::internalAppendAll(
1215 const Vector<U, O, BP>& aOther) {
1216 internalAppend(aOther.begin(), aOther.length());
1219 template <typename T, size_t N, class AP>
1220 template <typename U>
1221 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::internalAppend(U&& aU) {
1222 MOZ_ASSERT(mLength + 1 <= mTail.mReserved);
1223 MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity);
1224 Impl::new_(endNoCheck(), std::forward<U>(aU));
1225 ++mLength;
1228 template <typename T, size_t N, class AP>
1229 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::appendN(const T& aT, size_t aNeeded) {
1230 MOZ_REENTRANCY_GUARD_ET_AL;
1231 if (mLength + aNeeded > mTail.mCapacity) {
1232 if (MOZ_UNLIKELY(!growStorageBy(aNeeded))) {
1233 return false;
1235 } else if (!maybeCheckSimulatedOOM(mLength + aNeeded)) {
1236 return false;
1238 #ifdef DEBUG
1239 if (mLength + aNeeded > mTail.mReserved) {
1240 mTail.mReserved = mLength + aNeeded;
1242 #endif
1243 internalAppendN(aT, aNeeded);
1244 return true;
1247 template <typename T, size_t N, class AP>
1248 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::internalAppendN(const T& aT,
1249 size_t aNeeded) {
1250 MOZ_ASSERT(mLength + aNeeded <= mTail.mReserved);
1251 MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity);
1252 Impl::copyConstructN(endNoCheck(), aNeeded, aT);
1253 mLength += aNeeded;
1256 template <typename T, size_t N, class AP>
1257 template <typename U>
1258 inline T* Vector<T, N, AP>::insert(T* aP, U&& aVal) {
1259 MOZ_ASSERT(begin() <= aP);
1260 MOZ_ASSERT(aP <= end());
1261 size_t pos = aP - begin();
1262 MOZ_ASSERT(pos <= mLength);
1263 size_t oldLength = mLength;
1264 if (pos == oldLength) {
1265 if (!append(std::forward<U>(aVal))) {
1266 return nullptr;
1268 } else {
1269 T oldBack = std::move(back());
1270 if (!append(std::move(oldBack))) {
1271 return nullptr;
1273 for (size_t i = oldLength - 1; i > pos; --i) {
1274 (*this)[i] = std::move((*this)[i - 1]);
1276 (*this)[pos] = std::forward<U>(aVal);
1278 return begin() + pos;
1281 template <typename T, size_t N, class AP>
1282 inline void Vector<T, N, AP>::erase(T* aIt) {
1283 MOZ_ASSERT(begin() <= aIt);
1284 MOZ_ASSERT(aIt < end());
1285 while (aIt + 1 < end()) {
1286 *aIt = std::move(*(aIt + 1));
1287 ++aIt;
1289 popBack();
1292 template <typename T, size_t N, class AP>
1293 inline void Vector<T, N, AP>::erase(T* aBegin, T* aEnd) {
1294 MOZ_ASSERT(begin() <= aBegin);
1295 MOZ_ASSERT(aBegin <= aEnd);
1296 MOZ_ASSERT(aEnd <= end());
1297 while (aEnd < end()) {
1298 *aBegin++ = std::move(*aEnd++);
1300 shrinkBy(aEnd - aBegin);
1303 template <typename T, size_t N, class AP>
1304 template <typename Pred>
1305 void Vector<T, N, AP>::eraseIf(Pred aPred) {
1306 // remove_if finds the first element to be erased, and then efficiently move-
1307 // assigns elements to effectively overwrite elements that satisfy the
1308 // predicate. It returns the new end pointer, after which there are only
1309 // moved-from elements ready to be destroyed, so we just need to shrink the
1310 // vector accordingly.
1311 T* newEnd = std::remove_if(begin(), end(),
1312 [&aPred](const T& aT) { return aPred(aT); });
1313 MOZ_ASSERT(newEnd <= end());
1314 shrinkBy(end() - newEnd);
1317 template <typename T, size_t N, class AP>
1318 template <typename U>
1319 void Vector<T, N, AP>::eraseIfEqual(const U& aU) {
1320 return eraseIf([&aU](const T& aT) { return aT == aU; });
1323 template <typename T, size_t N, class AP>
1324 template <typename U>
1325 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::append(const U* aInsBegin,
1326 const U* aInsEnd) {
1327 MOZ_REENTRANCY_GUARD_ET_AL;
1328 size_t aNeeded = PointerRangeSize(aInsBegin, aInsEnd);
1329 if (mLength + aNeeded > mTail.mCapacity) {
1330 if (MOZ_UNLIKELY(!growStorageBy(aNeeded))) {
1331 return false;
1333 } else if (!maybeCheckSimulatedOOM(mLength + aNeeded)) {
1334 return false;
1336 #ifdef DEBUG
1337 if (mLength + aNeeded > mTail.mReserved) {
1338 mTail.mReserved = mLength + aNeeded;
1340 #endif
1341 internalAppend(aInsBegin, aNeeded);
1342 return true;
1345 template <typename T, size_t N, class AP>
1346 template <typename U>
1347 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::internalAppend(const U* aInsBegin,
1348 size_t aInsLength) {
1349 MOZ_ASSERT(mLength + aInsLength <= mTail.mReserved);
1350 MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity);
1351 Impl::copyConstruct(endNoCheck(), aInsBegin, aInsBegin + aInsLength);
1352 mLength += aInsLength;
1355 template <typename T, size_t N, class AP>
1356 template <typename U>
1357 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::append(U&& aU) {
1358 MOZ_REENTRANCY_GUARD_ET_AL;
1359 if (mLength == mTail.mCapacity) {
1360 if (MOZ_UNLIKELY(!growStorageBy(1))) {
1361 return false;
1363 } else if (!maybeCheckSimulatedOOM(mLength + 1)) {
1364 return false;
1366 #ifdef DEBUG
1367 if (mLength + 1 > mTail.mReserved) {
1368 mTail.mReserved = mLength + 1;
1370 #endif
1371 internalAppend(std::forward<U>(aU));
1372 return true;
1375 template <typename T, size_t N, class AP>
1376 template <typename U, size_t O, class BP>
1377 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::appendAll(
1378 const Vector<U, O, BP>& aOther) {
1379 return append(aOther.begin(), aOther.length());
1382 template <typename T, size_t N, class AP>
1383 template <class U>
1384 MOZ_ALWAYS_INLINE bool Vector<T, N, AP>::append(const U* aInsBegin,
1385 size_t aInsLength) {
1386 return append(aInsBegin, aInsBegin + aInsLength);
1389 template <typename T, size_t N, class AP>
1390 MOZ_ALWAYS_INLINE void Vector<T, N, AP>::popBack() {
1391 MOZ_REENTRANCY_GUARD_ET_AL;
1392 MOZ_ASSERT(!empty());
1393 --mLength;
1394 endNoCheck()->~T();
1397 template <typename T, size_t N, class AP>
1398 MOZ_ALWAYS_INLINE T Vector<T, N, AP>::popCopy() {
1399 T ret = back();
1400 popBack();
1401 return ret;
1404 template <typename T, size_t N, class AP>
1405 inline T* Vector<T, N, AP>::extractRawBuffer() {
1406 MOZ_REENTRANCY_GUARD_ET_AL;
1408 if (usingInlineStorage()) {
1409 return nullptr;
1412 T* ret = mBegin;
1413 mBegin = inlineStorage();
1414 mLength = 0;
1415 mTail.mCapacity = kInlineCapacity;
1416 #ifdef DEBUG
1417 mTail.mReserved = 0;
1418 #endif
1419 return ret;
1422 template <typename T, size_t N, class AP>
1423 inline T* Vector<T, N, AP>::extractOrCopyRawBuffer() {
1424 if (T* ret = extractRawBuffer()) {
1425 return ret;
1428 MOZ_REENTRANCY_GUARD_ET_AL;
1430 T* copy = this->template pod_malloc<T>(mLength);
1431 if (!copy) {
1432 return nullptr;
1435 Impl::moveConstruct(copy, beginNoCheck(), endNoCheck());
1436 Impl::destroy(beginNoCheck(), endNoCheck());
1437 mBegin = inlineStorage();
1438 mLength = 0;
1439 mTail.mCapacity = kInlineCapacity;
1440 #ifdef DEBUG
1441 mTail.mReserved = 0;
1442 #endif
1443 return copy;
1446 template <typename T, size_t N, class AP>
1447 inline void Vector<T, N, AP>::replaceRawBuffer(T* aP, size_t aLength,
1448 size_t aCapacity) {
1449 MOZ_REENTRANCY_GUARD_ET_AL;
1451 /* Destroy what we have. */
1452 Impl::destroy(beginNoCheck(), endNoCheck());
1453 if (!usingInlineStorage()) {
1454 this->free_(beginNoCheck(), mTail.mCapacity);
1457 /* Take in the new buffer. */
1458 if (aCapacity <= kInlineCapacity) {
1460 * We convert to inline storage if possible, even though aP might
1461 * otherwise be acceptable. Maybe this behaviour should be
1462 * specifiable with an argument to this function.
1464 mBegin = inlineStorage();
1465 mLength = aLength;
1466 mTail.mCapacity = kInlineCapacity;
1467 Impl::moveConstruct(mBegin, aP, aP + aLength);
1468 Impl::destroy(aP, aP + aLength);
1469 this->free_(aP, aCapacity);
1470 } else {
1471 mBegin = aP;
1472 mLength = aLength;
1473 mTail.mCapacity = aCapacity;
1475 #ifdef DEBUG
1476 mTail.mReserved = aCapacity;
1477 #endif
1480 template <typename T, size_t N, class AP>
1481 inline void Vector<T, N, AP>::replaceRawBuffer(T* aP, size_t aLength) {
1482 replaceRawBuffer(aP, aLength, aLength);
1485 template <typename T, size_t N, class AP>
1486 inline size_t Vector<T, N, AP>::sizeOfExcludingThis(
1487 MallocSizeOf aMallocSizeOf) const {
1488 return usingInlineStorage() ? 0 : aMallocSizeOf(beginNoCheck());
1491 template <typename T, size_t N, class AP>
1492 inline size_t Vector<T, N, AP>::sizeOfIncludingThis(
1493 MallocSizeOf aMallocSizeOf) const {
1494 return aMallocSizeOf(this) + sizeOfExcludingThis(aMallocSizeOf);
1497 template <typename T, size_t N, class AP>
1498 inline void Vector<T, N, AP>::swap(Vector& aOther) {
1499 static_assert(N == 0, "still need to implement this for N != 0");
1501 // This only works when inline storage is always empty.
1502 if (!usingInlineStorage() && aOther.usingInlineStorage()) {
1503 aOther.mBegin = mBegin;
1504 mBegin = inlineStorage();
1505 } else if (usingInlineStorage() && !aOther.usingInlineStorage()) {
1506 mBegin = aOther.mBegin;
1507 aOther.mBegin = aOther.inlineStorage();
1508 } else if (!usingInlineStorage() && !aOther.usingInlineStorage()) {
1509 Swap(mBegin, aOther.mBegin);
1510 } else {
1511 // This case is a no-op, since we'd set both to use their inline storage.
1514 Swap(mLength, aOther.mLength);
1515 Swap(mTail.mCapacity, aOther.mTail.mCapacity);
1516 #ifdef DEBUG
1517 Swap(mTail.mReserved, aOther.mTail.mReserved);
1518 #endif
1521 } // namespace mozilla
1523 #endif /* mozilla_Vector_h */