1 /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 * This Source Code Form is subject to the terms of the Mozilla Public
3 * License, v. 2.0. If a copy of the MPL was not distributed with this
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6 #include "mozilla/ArrayUtils.h"
7 #include "gfxCoreTextShaper.h"
8 #include "gfxMacFont.h"
9 #include "gfxFontUtils.h"
10 #include "gfxTextRun.h"
11 #include "mozilla/gfx/2D.h"
12 #include "mozilla/UniquePtrExtensions.h"
18 using namespace mozilla
;
20 // standard font descriptors that we construct the first time they're needed
21 CTFontDescriptorRef
gfxCoreTextShaper::sFeaturesDescriptor
[kMaxFontInstances
];
23 // Helper to create a CFDictionary with the right attributes for shaping our
24 // text, including imposing the given directionality.
25 CFDictionaryRef
gfxCoreTextShaper::CreateAttrDict(bool aRightToLeft
) {
26 // Because we always shape unidirectional runs, and may have applied
27 // directional overrides, we want to force a direction rather than
28 // allowing CoreText to do its own unicode-based bidi processing.
29 SInt16 dirOverride
= kCTWritingDirectionOverride
|
30 (aRightToLeft
? kCTWritingDirectionRightToLeft
31 : kCTWritingDirectionLeftToRight
);
32 CFNumberRef dirNumber
=
33 ::CFNumberCreate(kCFAllocatorDefault
, kCFNumberSInt16Type
, &dirOverride
);
34 CFArrayRef dirArray
= ::CFArrayCreate(
35 kCFAllocatorDefault
, (const void**)&dirNumber
, 1, &kCFTypeArrayCallBacks
);
36 ::CFRelease(dirNumber
);
37 CFTypeRef attrs
[] = {kCTFontAttributeName
, kCTWritingDirectionAttributeName
};
38 CFTypeRef values
[] = {mCTFont
[0], dirArray
};
39 CFDictionaryRef attrDict
= ::CFDictionaryCreate(
40 kCFAllocatorDefault
, attrs
, values
, ArrayLength(attrs
),
41 &kCFTypeDictionaryKeyCallBacks
, &kCFTypeDictionaryValueCallBacks
);
42 ::CFRelease(dirArray
);
46 gfxCoreTextShaper::gfxCoreTextShaper(gfxMacFont
* aFont
)
47 : gfxFontShaper(aFont
),
48 mAttributesDictLTR(nullptr),
49 mAttributesDictRTL(nullptr) {
50 for (size_t i
= 0; i
< kMaxFontInstances
; i
++) {
53 // Create our default CTFontRef
54 mCTFont
[0] = CreateCTFontWithFeatures(
55 aFont
->GetAdjustedSize(), GetFeaturesDescriptor(kDefaultFeatures
));
58 gfxCoreTextShaper::~gfxCoreTextShaper() {
59 if (mAttributesDictLTR
) {
60 ::CFRelease(mAttributesDictLTR
);
62 if (mAttributesDictRTL
) {
63 ::CFRelease(mAttributesDictRTL
);
65 for (size_t i
= 0; i
< kMaxFontInstances
; i
++) {
67 ::CFRelease(mCTFont
[i
]);
72 static bool IsBuggyIndicScript(unicode::Script aScript
) {
73 return aScript
== unicode::Script::BENGALI
||
74 aScript
== unicode::Script::KANNADA
||
75 aScript
== unicode::Script::ORIYA
|| aScript
== unicode::Script::KHMER
;
78 bool gfxCoreTextShaper::ShapeText(DrawTarget
* aDrawTarget
,
79 const char16_t
* aText
, uint32_t aOffset
,
80 uint32_t aLength
, Script aScript
,
81 nsAtom
* aLanguage
, bool aVertical
,
82 RoundingFlags aRounding
,
83 gfxShapedText
* aShapedText
) {
84 // Create a CFAttributedString with text and style info, so we can use
85 // CoreText to lay it out.
86 bool isRightToLeft
= aShapedText
->IsRightToLeft();
87 const UniChar
* text
= reinterpret_cast<const UniChar
*>(aText
);
89 CFStringRef stringObj
= ::CFStringCreateWithCharactersNoCopy(
90 kCFAllocatorDefault
, text
, aLength
, kCFAllocatorNull
);
92 // Figure out whether we should try to set the AAT small-caps feature:
93 // examine OpenType tags for the requested style, and see if 'smcp' is
95 const gfxFontStyle
* style
= mFont
->GetStyle();
96 gfxFontEntry
* entry
= mFont
->GetFontEntry();
97 auto handleFeatureTag
= [](const uint32_t& aTag
, uint32_t& aValue
,
98 void* aUserArg
) -> void {
99 if (aTag
== HB_TAG('s', 'm', 'c', 'p') && aValue
) {
100 *static_cast<bool*>(aUserArg
) = true;
103 bool addSmallCaps
= false;
104 MergeFontFeatures(style
, entry
->mFeatureSettings
, false, entry
->FamilyName(),
105 false, handleFeatureTag
, &addSmallCaps
);
107 // Get an attributes dictionary suitable for shaping text in the
108 // current direction, creating it if necessary.
109 CFDictionaryRef attrObj
=
110 isRightToLeft
? mAttributesDictRTL
: mAttributesDictLTR
;
112 attrObj
= CreateAttrDict(isRightToLeft
);
113 (isRightToLeft
? mAttributesDictRTL
: mAttributesDictLTR
) = attrObj
;
116 FeatureFlags featureFlags
= kDefaultFeatures
;
117 if (IsBuggyIndicScript(aScript
)) {
118 // To work around buggy Indic AAT fonts shipped with OS X,
119 // we re-enable the Line Initial Smart Swashes feature that is needed
120 // for "split vowels" to work in at least Bengali and Kannada fonts.
121 // Affected fonts include Bangla MN, Bangla Sangam MN, Kannada MN,
122 // Kannada Sangam MN. See bugs 686225, 728557, 953231, 1145515.
123 // Also applies to Oriya and Khmer, see bug 1370927 and bug 1403166.
124 featureFlags
|= kIndicFeatures
;
126 if (aShapedText
->DisableLigatures()) {
127 // For letterspacing (or maybe other situations) we need to make
128 // a copy of the CTFont with the ligature feature disabled.
129 featureFlags
|= kDisableLigatures
;
132 featureFlags
|= kAddSmallCaps
;
135 // For the disabled-ligature, buggy-indic-font or small-caps case, replace
136 // the default CTFont in the attribute dictionary with a tweaked version.
137 CFMutableDictionaryRef mutableAttr
= nullptr;
138 if (featureFlags
!= 0) {
139 if (!mCTFont
[featureFlags
]) {
140 mCTFont
[featureFlags
] = CreateCTFontWithFeatures(
141 mFont
->GetAdjustedSize(), GetFeaturesDescriptor(featureFlags
));
144 ::CFDictionaryCreateMutableCopy(kCFAllocatorDefault
, 2, attrObj
);
145 ::CFDictionaryReplaceValue(mutableAttr
, kCTFontAttributeName
,
146 mCTFont
[featureFlags
]);
147 attrObj
= mutableAttr
;
150 // Now we can create an attributed string
151 CFAttributedStringRef attrStringObj
=
152 ::CFAttributedStringCreate(kCFAllocatorDefault
, stringObj
, attrObj
);
153 ::CFRelease(stringObj
);
155 // Create the CoreText line from our string, then we're done with it
156 CTLineRef line
= ::CTLineCreateWithAttributedString(attrStringObj
);
157 ::CFRelease(attrStringObj
);
159 // and finally retrieve the glyph data and store into the gfxTextRun
160 CFArrayRef glyphRuns
= ::CTLineGetGlyphRuns(line
);
161 uint32_t numRuns
= ::CFArrayGetCount(glyphRuns
);
163 // Iterate through the glyph runs.
165 for (uint32_t runIndex
= 0; runIndex
< numRuns
; runIndex
++) {
166 CTRunRef aCTRun
= (CTRunRef
)::CFArrayGetValueAtIndex(glyphRuns
, runIndex
);
167 CFRange range
= ::CTRunGetStringRange(aCTRun
);
168 CFDictionaryRef runAttr
= ::CTRunGetAttributes(aCTRun
);
169 if (runAttr
!= attrObj
) {
170 // If Core Text manufactured a new dictionary, this may indicate
171 // unexpected font substitution. In that case, we fail (and fall
172 // back to harfbuzz shaping)...
173 const void* font1
= ::CFDictionaryGetValue(attrObj
, kCTFontAttributeName
);
174 const void* font2
= ::CFDictionaryGetValue(runAttr
, kCTFontAttributeName
);
175 if (font1
!= font2
) {
176 // ...except that if the fallback was only for a variation
177 // selector or join control that is otherwise unsupported,
178 // we just ignore it.
179 if (range
.length
== 1) {
180 char16_t ch
= aText
[range
.location
];
181 if (gfxFontUtils::IsJoinControl(ch
) ||
182 gfxFontUtils::IsVarSelector(ch
)) {
186 NS_WARNING("unexpected font fallback in Core Text");
191 if (SetGlyphsFromRun(aShapedText
, aOffset
, aLength
, aCTRun
) != NS_OK
) {
198 ::CFRelease(mutableAttr
);
205 #define SMALL_GLYPH_RUN \
206 128 // preallocated size of our auto arrays for per-glyph data;
207 // some testing indicates that 90%+ of glyph runs will fit
208 // without requiring a separate allocation
210 nsresult
gfxCoreTextShaper::SetGlyphsFromRun(gfxShapedText
* aShapedText
,
211 uint32_t aOffset
, uint32_t aLength
,
213 typedef gfxShapedText::CompressedGlyph CompressedGlyph
;
215 int32_t direction
= aShapedText
->IsRightToLeft() ? -1 : 1;
217 int32_t numGlyphs
= ::CTRunGetGlyphCount(aCTRun
);
218 if (numGlyphs
== 0) {
222 int32_t wordLength
= aLength
;
224 // character offsets get really confusing here, as we have to keep track of
225 // (a) the text in the actual textRun we're constructing
226 // (c) the string that was handed to CoreText, which contains the text of
228 // (d) the CTRun currently being processed, which may be a sub-run of the
231 // get the source string range within the CTLine's text
232 CFRange stringRange
= ::CTRunGetStringRange(aCTRun
);
233 // skip the run if it is entirely outside the actual range of the font run
234 if (stringRange
.location
+ stringRange
.length
<= 0 ||
235 stringRange
.location
>= wordLength
) {
239 // retrieve the laid-out glyph data from the CTRun
240 UniquePtr
<CGGlyph
[]> glyphsArray
;
241 UniquePtr
<CGPoint
[]> positionsArray
;
242 UniquePtr
<CFIndex
[]> glyphToCharArray
;
243 const CGGlyph
* glyphs
= nullptr;
244 const CGPoint
* positions
= nullptr;
245 const CFIndex
* glyphToChar
= nullptr;
247 // Testing indicates that CTRunGetGlyphsPtr (almost?) always succeeds,
248 // and so allocating a new array and copying data with CTRunGetGlyphs
249 // will be extremely rare.
250 // If this were not the case, we could use an AutoTArray<> to
251 // try and avoid the heap allocation for small runs.
252 // It's possible that some future change to CoreText will mean that
253 // CTRunGetGlyphsPtr fails more often; if this happens, AutoTArray<>
254 // may become an attractive option.
255 glyphs
= ::CTRunGetGlyphsPtr(aCTRun
);
257 glyphsArray
= MakeUniqueFallible
<CGGlyph
[]>(numGlyphs
);
259 return NS_ERROR_OUT_OF_MEMORY
;
261 ::CTRunGetGlyphs(aCTRun
, ::CFRangeMake(0, 0), glyphsArray
.get());
262 glyphs
= glyphsArray
.get();
265 positions
= ::CTRunGetPositionsPtr(aCTRun
);
267 positionsArray
= MakeUniqueFallible
<CGPoint
[]>(numGlyphs
);
268 if (!positionsArray
) {
269 return NS_ERROR_OUT_OF_MEMORY
;
271 ::CTRunGetPositions(aCTRun
, ::CFRangeMake(0, 0), positionsArray
.get());
272 positions
= positionsArray
.get();
275 // Remember that the glyphToChar indices relate to the CoreText line,
276 // not to the beginning of the textRun, the font run,
277 // or the stringRange of the glyph run
278 glyphToChar
= ::CTRunGetStringIndicesPtr(aCTRun
);
280 glyphToCharArray
= MakeUniqueFallible
<CFIndex
[]>(numGlyphs
);
281 if (!glyphToCharArray
) {
282 return NS_ERROR_OUT_OF_MEMORY
;
284 ::CTRunGetStringIndices(aCTRun
, ::CFRangeMake(0, 0),
285 glyphToCharArray
.get());
286 glyphToChar
= glyphToCharArray
.get();
289 double runWidth
= ::CTRunGetTypographicBounds(aCTRun
, ::CFRangeMake(0, 0),
290 nullptr, nullptr, nullptr);
292 AutoTArray
<gfxShapedText::DetailedGlyph
, 1> detailedGlyphs
;
293 CompressedGlyph
* charGlyphs
= aShapedText
->GetCharacterGlyphs() + aOffset
;
295 // CoreText gives us the glyphindex-to-charindex mapping, which relates each
296 // glyph to a source text character; we also need the charindex-to-glyphindex
297 // mapping to find the glyph for a given char. Note that some chars may not
298 // map to any glyph (ligature continuations), and some may map to several
299 // glyphs (eg Indic split vowels). We set the glyph index to NO_GLYPH for
300 // chars that have no associated glyph, and we record the last glyph index for
301 // cases where the char maps to several glyphs, so that our clumping will
302 // include all the glyph fragments for the character.
304 // The charToGlyph array is indexed by char position within the stringRange of
307 static const int32_t NO_GLYPH
= -1;
308 AutoTArray
<int32_t, SMALL_GLYPH_RUN
> charToGlyphArray
;
309 if (!charToGlyphArray
.SetLength(stringRange
.length
, fallible
)) {
310 return NS_ERROR_OUT_OF_MEMORY
;
312 int32_t* charToGlyph
= charToGlyphArray
.Elements();
313 for (int32_t offset
= 0; offset
< stringRange
.length
; ++offset
) {
314 charToGlyph
[offset
] = NO_GLYPH
;
316 for (int32_t i
= 0; i
< numGlyphs
; ++i
) {
317 int32_t loc
= glyphToChar
[i
] - stringRange
.location
;
318 if (loc
>= 0 && loc
< stringRange
.length
) {
319 charToGlyph
[loc
] = i
;
323 // Find character and glyph clumps that correspond, allowing for ligatures,
324 // indic reordering, split glyphs, etc.
326 // The idea is that we'll find a character sequence starting at the first char
327 // of stringRange, and extend it until it includes the character associated
328 // with the first glyph; we also extend it as long as there are "holes" in the
329 // range of glyphs. So we will eventually have a contiguous sequence of
330 // characters, starting at the beginning of the range, that map to a
331 // contiguous sequence of glyphs, starting at the beginning of the glyph
332 // array. That's a clump; then we update the starting positions and repeat.
334 // NB: In the case of RTL layouts, we iterate over the stringRange in reverse.
337 // This may find characters that fall outside the range 0:wordLength,
338 // so we won't necessarily use everything we find here.
340 bool isRightToLeft
= aShapedText
->IsRightToLeft();
342 0; // looking for a clump that starts at this glyph index
345 ? stringRange
.length
- 1
346 : 0; // and this char index (in the stringRange of the glyph run)
349 numGlyphs
) { // keep finding groups until all glyphs are accounted for
351 int32_t charEnd
= glyphToChar
[glyphStart
] - stringRange
.location
;
352 NS_WARNING_ASSERTION(charEnd
>= 0 && charEnd
< stringRange
.length
,
353 "glyph-to-char mapping points outside string range");
354 // clamp charEnd to the valid range of the string
355 charEnd
= std::max(charEnd
, 0);
356 charEnd
= std::min(charEnd
, int32_t(stringRange
.length
));
358 int32_t glyphEnd
= glyphStart
;
359 int32_t charLimit
= isRightToLeft
? -1 : stringRange
.length
;
361 // This is normally executed once for each iteration of the outer loop,
362 // but in unusual cases where the character/glyph association is complex,
363 // the initial character range might correspond to a non-contiguous
364 // glyph range with "holes" in it. If so, we will repeat this loop to
365 // extend the character range until we have a contiguous glyph sequence.
366 NS_ASSERTION((direction
> 0 && charEnd
< charLimit
) ||
367 (direction
< 0 && charEnd
> charLimit
),
368 "no characters left in range?");
369 charEnd
+= direction
;
370 while (charEnd
!= charLimit
&& charToGlyph
[charEnd
] == NO_GLYPH
) {
371 charEnd
+= direction
;
374 // find the maximum glyph index covered by the clump so far
376 for (int32_t i
= charStart
; i
> charEnd
; --i
) {
377 if (charToGlyph
[i
] != NO_GLYPH
) {
378 // update extent of glyph range
379 glyphEnd
= std::max(glyphEnd
, charToGlyph
[i
] + 1);
383 for (int32_t i
= charStart
; i
< charEnd
; ++i
) {
384 if (charToGlyph
[i
] != NO_GLYPH
) {
385 // update extent of glyph range
386 glyphEnd
= std::max(glyphEnd
, charToGlyph
[i
] + 1);
391 if (glyphEnd
== glyphStart
+ 1) {
392 // for the common case of a single-glyph clump, we can skip the
397 if (glyphEnd
== glyphStart
) {
398 // no glyphs, try to extend the clump
402 // check whether all glyphs in the range are associated with the
403 // characters in our clump; if not, we have a discontinuous range, and
404 // should extend it unless we've reached the end of the text
405 bool allGlyphsAreWithinCluster
= true;
406 int32_t prevGlyphCharIndex
= charStart
;
407 for (int32_t i
= glyphStart
; i
< glyphEnd
; ++i
) {
408 int32_t glyphCharIndex
= glyphToChar
[i
] - stringRange
.location
;
410 if (glyphCharIndex
> charStart
|| glyphCharIndex
<= charEnd
) {
411 allGlyphsAreWithinCluster
= false;
414 if (glyphCharIndex
> prevGlyphCharIndex
) {
417 prevGlyphCharIndex
= glyphCharIndex
;
419 if (glyphCharIndex
< charStart
|| glyphCharIndex
>= charEnd
) {
420 allGlyphsAreWithinCluster
= false;
423 if (glyphCharIndex
< prevGlyphCharIndex
) {
426 prevGlyphCharIndex
= glyphCharIndex
;
429 if (allGlyphsAreWithinCluster
) {
432 } while (charEnd
!= charLimit
);
434 NS_WARNING_ASSERTION(glyphStart
< glyphEnd
,
435 "character/glyph clump contains no glyphs!");
436 if (glyphStart
== glyphEnd
) {
437 ++glyphStart
; // make progress - avoid potential infinite loop
442 NS_WARNING_ASSERTION(charStart
!= charEnd
,
443 "character/glyph clump contains no characters!");
444 if (charStart
== charEnd
) {
445 glyphStart
= glyphEnd
; // this is bad - we'll discard the glyph(s),
446 // as there's nowhere to attach them
450 // Now charStart..charEnd is a ligature clump, corresponding to
451 // glyphStart..glyphEnd; Set baseCharIndex to the char we'll actually attach
452 // the glyphs to (1st of ligature), and endCharIndex to the limit (position
453 // beyond the last char), adjusting for the offset of the stringRange
454 // relative to the textRun.
455 int32_t baseCharIndex
, endCharIndex
;
457 while (charEnd
>= 0 && charToGlyph
[charEnd
] == NO_GLYPH
) {
460 baseCharIndex
= charEnd
+ stringRange
.location
+ 1;
461 endCharIndex
= charStart
+ stringRange
.location
+ 1;
463 while (charEnd
< stringRange
.length
&& charToGlyph
[charEnd
] == NO_GLYPH
) {
466 baseCharIndex
= charStart
+ stringRange
.location
;
467 endCharIndex
= charEnd
+ stringRange
.location
;
470 // Then we check if the clump falls outside our actual string range; if so,
471 // just go to the next.
472 if (endCharIndex
<= 0 || baseCharIndex
>= wordLength
) {
473 glyphStart
= glyphEnd
;
477 // Ensure we won't try to go beyond the valid length of the word's text
478 baseCharIndex
= std::max(baseCharIndex
, 0);
479 endCharIndex
= std::min(endCharIndex
, wordLength
);
481 // Now we're ready to set the glyph info in the textRun; measure the glyph
482 // width of the first (perhaps only) glyph, to see if it is "Simple"
483 int32_t appUnitsPerDevUnit
= aShapedText
->GetAppUnitsPerDevUnit();
485 if (glyphStart
< numGlyphs
- 1) {
486 toNextGlyph
= positions
[glyphStart
+ 1].x
- positions
[glyphStart
].x
;
488 toNextGlyph
= positions
[0].x
+ runWidth
- positions
[glyphStart
].x
;
490 int32_t advance
= int32_t(toNextGlyph
* appUnitsPerDevUnit
);
492 // Check if it's a simple one-to-one mapping
493 int32_t glyphsInClump
= glyphEnd
- glyphStart
;
494 if (glyphsInClump
== 1 &&
495 gfxTextRun::CompressedGlyph::IsSimpleGlyphID(glyphs
[glyphStart
]) &&
496 gfxTextRun::CompressedGlyph::IsSimpleAdvance(advance
) &&
497 charGlyphs
[baseCharIndex
].IsClusterStart() &&
498 positions
[glyphStart
].y
== 0.0) {
499 charGlyphs
[baseCharIndex
].SetSimpleGlyph(advance
, glyphs
[glyphStart
]);
501 // collect all glyphs in a list to be assigned to the first char;
502 // there must be at least one in the clump, and we already measured its
503 // advance, hence the placement of the loop-exit test and the measurement
506 gfxTextRun::DetailedGlyph
* details
= detailedGlyphs
.AppendElement();
507 details
->mGlyphID
= glyphs
[glyphStart
];
508 details
->mOffset
.y
= -positions
[glyphStart
].y
* appUnitsPerDevUnit
;
509 details
->mAdvance
= advance
;
510 if (++glyphStart
>= glyphEnd
) {
513 if (glyphStart
< numGlyphs
- 1) {
514 toNextGlyph
= positions
[glyphStart
+ 1].x
- positions
[glyphStart
].x
;
516 toNextGlyph
= positions
[0].x
+ runWidth
- positions
[glyphStart
].x
;
518 advance
= int32_t(toNextGlyph
* appUnitsPerDevUnit
);
521 aShapedText
->SetDetailedGlyphs(aOffset
+ baseCharIndex
,
522 detailedGlyphs
.Length(),
523 detailedGlyphs
.Elements());
525 detailedGlyphs
.Clear();
528 // the rest of the chars in the group are ligature continuations, no
530 while (++baseCharIndex
!= endCharIndex
&& baseCharIndex
< wordLength
) {
531 CompressedGlyph
& shapedTextGlyph
= charGlyphs
[baseCharIndex
];
532 NS_ASSERTION(!shapedTextGlyph
.IsSimpleGlyph(),
533 "overwriting a simple glyph");
534 shapedTextGlyph
.SetComplex(inOrder
&& shapedTextGlyph
.IsClusterStart(),
538 glyphStart
= glyphEnd
;
545 #undef SMALL_GLYPH_RUN
547 // Construct the font attribute descriptor that we'll apply by default when
548 // creating a CTFontRef. This will turn off line-edge swashes by default,
549 // because we don't know the actual line breaks when doing glyph shaping.
551 // We also cache feature descriptors for shaping with disabled ligatures, and
552 // for buggy Indic AAT font workarounds, created on an as-needed basis.
554 #define MAX_FEATURES 5 // max used by any of our Get*Descriptor functions
556 CTFontDescriptorRef
gfxCoreTextShaper::CreateFontFeaturesDescriptor(
557 const std::pair
<SInt16
, SInt16
>* aFeatures
, size_t aCount
) {
558 MOZ_ASSERT(aCount
<= MAX_FEATURES
);
560 CFDictionaryRef featureSettings
[MAX_FEATURES
];
562 for (size_t i
= 0; i
< aCount
; i
++) {
563 CFNumberRef type
= ::CFNumberCreate(
564 kCFAllocatorDefault
, kCFNumberSInt16Type
, &aFeatures
[i
].first
);
565 CFNumberRef selector
= ::CFNumberCreate(
566 kCFAllocatorDefault
, kCFNumberSInt16Type
, &aFeatures
[i
].second
);
568 CFTypeRef keys
[] = {kCTFontFeatureTypeIdentifierKey
,
569 kCTFontFeatureSelectorIdentifierKey
};
570 CFTypeRef values
[] = {type
, selector
};
571 featureSettings
[i
] = ::CFDictionaryCreate(
572 kCFAllocatorDefault
, (const void**)keys
, (const void**)values
,
573 ArrayLength(keys
), &kCFTypeDictionaryKeyCallBacks
,
574 &kCFTypeDictionaryValueCallBacks
);
576 ::CFRelease(selector
);
580 CFArrayRef featuresArray
=
581 ::CFArrayCreate(kCFAllocatorDefault
, (const void**)featureSettings
,
582 aCount
, // not ArrayLength(featureSettings), as we
583 // may not have used all the allocated slots
584 &kCFTypeArrayCallBacks
);
586 for (size_t i
= 0; i
< aCount
; i
++) {
587 ::CFRelease(featureSettings
[i
]);
590 const CFTypeRef attrKeys
[] = {kCTFontFeatureSettingsAttribute
};
591 const CFTypeRef attrValues
[] = {featuresArray
};
592 CFDictionaryRef attributesDict
= ::CFDictionaryCreate(
593 kCFAllocatorDefault
, (const void**)attrKeys
, (const void**)attrValues
,
594 ArrayLength(attrKeys
), &kCFTypeDictionaryKeyCallBacks
,
595 &kCFTypeDictionaryValueCallBacks
);
596 ::CFRelease(featuresArray
);
598 CTFontDescriptorRef descriptor
=
599 ::CTFontDescriptorCreateWithAttributes(attributesDict
);
600 ::CFRelease(attributesDict
);
605 CTFontDescriptorRef
gfxCoreTextShaper::GetFeaturesDescriptor(
606 FeatureFlags aFeatureFlags
) {
607 MOZ_ASSERT(aFeatureFlags
< kMaxFontInstances
);
608 if (!sFeaturesDescriptor
[aFeatureFlags
]) {
609 typedef std::pair
<SInt16
, SInt16
> FeatT
;
610 AutoTArray
<FeatT
, MAX_FEATURES
> features
;
611 features
.AppendElement(
612 FeatT(kSmartSwashType
, kLineFinalSwashesOffSelector
));
613 if ((aFeatureFlags
& kIndicFeatures
) == 0) {
614 features
.AppendElement(
615 FeatT(kSmartSwashType
, kLineInitialSwashesOffSelector
));
617 if (aFeatureFlags
& kAddSmallCaps
) {
618 features
.AppendElement(FeatT(kLetterCaseType
, kSmallCapsSelector
));
619 features
.AppendElement(
620 FeatT(kLowerCaseType
, kLowerCaseSmallCapsSelector
));
622 if (aFeatureFlags
& kDisableLigatures
) {
623 features
.AppendElement(
624 FeatT(kLigaturesType
, kCommonLigaturesOffSelector
));
626 MOZ_ASSERT(features
.Length() <= MAX_FEATURES
);
627 sFeaturesDescriptor
[aFeatureFlags
] =
628 CreateFontFeaturesDescriptor(features
.Elements(), features
.Length());
630 return sFeaturesDescriptor
[aFeatureFlags
];
633 CTFontRef
gfxCoreTextShaper::CreateCTFontWithFeatures(
634 CGFloat aSize
, CTFontDescriptorRef aDescriptor
) {
635 const gfxFontEntry
* fe
= mFont
->GetFontEntry();
636 bool isInstalledFont
= !fe
->IsUserFont() || fe
->IsLocalUserFont();
637 CGFontRef cgFont
= static_cast<gfxMacFont
*>(mFont
)->GetCGFontRef();
638 return gfxMacFont::CreateCTFontFromCGFontWithVariations(
639 cgFont
, aSize
, isInstalledFont
, aDescriptor
);
642 void gfxCoreTextShaper::Shutdown() // [static]
644 for (size_t i
= 0; i
< kMaxFontInstances
; i
++) {
645 if (sFeaturesDescriptor
[i
] != nullptr) {
646 ::CFRelease(sFeaturesDescriptor
[i
]);
647 sFeaturesDescriptor
[i
] = nullptr;